首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary

The reproductive effort in terms of fecundity and energy allocation was studied in two species of semelparous polychaetes belonging to the genus Perinereis, living in the same environment, with different reproductive modalities. There is a great individual variability both in terms of reproductive effort and fecundity. Fecundity varied from 4080 to 15000 oocytes in P. rullieri and from 7000 to 26000 in P. cultrifera; no linear relationship was found between oocyte number and total jaw length utilised as size index. The energy content of germinal and somatic tissues was determined by Differential Scanning Calorimeter (DSC). The reproductive effort was calculated as RE = EG/(EG + ES) where EG is the total energy in germinal tissues and ES is the total energy in somatic tissues. Reproductive effort is very high with mean values of 0.62 for P. rullieri and 0.79 for P. cultrifera. The different amounts of energy allocated in germinal tissues can be attributed to the different reproductive modalities—P. rullieri reproduces in the atokous phase whereas P. cultrifera has conserved epitoky in its life-cycle. The lack of correlation between reproductive effort and size index strongly suggests that reproductive allocation does not increase with age. In semelparous species the variability in fecundity and reproductive effort observed cannot be interpreted in terms of a trade-off between fecundity and survival as in iteroparous species. In fact, in semelparous an individual allocates all available resources to reproduction and then dies.  相似文献   

2.
为探讨巴西橡胶树(Hevea brasiliensis)自根幼态无性系与供体间差异产生的原因,应用甲基化敏感扩增多态性扩增技术,对巴西橡胶树体细胞胚发生过程中基因组DNA 胞嘧啶甲基化程度和模式进行了分析。结果表明,在巴西橡胶树体细胞胚发生过程中不同阶段的DNA 甲基化程度不同,以花药的DNA 甲基化程度最高,体细胞胚的DNA 甲基化水平最低。在体细胞胚发生过程中出现了I、Ⅱ和Ⅲ 3 种类型的甲基化多态性带型的改变,包括他们的出现与消失。因此,橡胶树体细胞胚发生过程中可能通过DNA 甲基化甲基化和去甲基化来调控基因的表达。  相似文献   

3.
Summary A flow cytometric analysis and an in situ DNA microspectrophotometric study were made concomitantly to establish why somatic grapevine (Vitis viniferacv. Grenache noir) embryos showed a low level of conversion into plantlets. In somatic embryos at the torpedo stage and in zygotic embryos at the same stage of development, ploidy level, DNA content per 2 C nucleus, and the cell-cycle state of the shoot apical meristem were examined. The frequency distribution histograms of nuclear DNA values were similar in the two types of embryos. At the torpedo stage both types of embryos had a majority of nuclei with 2 C DNA content equal to 1.6pg. In the shoot apices of somatic and zygotic embryos, DNA microspectrophotometry showed preferential blockage of the cell cycle at the G0–1 stage; however, 20% of somatic embryo shoot apices were blocked at the G0–2 stage. Analogies between somatic embryos and their zygotic homologues were shown. The genetical and environmental causes of the low level of conversion of grapevine somatic embryos into plantlets are discussed. Our work suggests that the in vitro culture conditions which were used could be incompatible with normal morphogenesis from the torpedo stage.  相似文献   

4.
W. C. Sin  J. Pasternak 《Chromosoma》1971,32(2):191-204
Nuclei from the four major tissues of the nematode Panagrellus silusiae were enumerated and examined using Feulgen microspectrophotometry at each stage during postembryonic development. The number of nuclei in the hypodermis, nerve, and intestine remains fairly constant during maturation, but there is a slight increase (57%) in the number of muscle nuclei. Thus, this organism is not stringently eutelic. The total number of somatic nuclei is about 600. DNA values of hypodermis and nerve nuclei were unimodal and adult nuclei had 2C amounts of DNA. The DNA distribution of muscle nuclei reflects the pattern expected for a tissue in which a portion of the nuclei are undergoing DNA synthesis. Intestinal nuclei accumulated DNA in the absence of nuclear division and in the adult the nuclei fall into discrete DNA classes which correspond to a geometric series of the 2C value. It is concluded that chromatin diminution does not occur in this species. In addition, the relationship in the different tissues of nuclear DNA content to nuclear volume and cell size is discussed.The study was supported by the National Research Council of Canada (Grant A-3491).  相似文献   

5.
An efficient and easy method for genetic characterization of plant somatic hybrids is proposed. In a first qualitative approach, four somatic hybrids and their parental species (Nicotiana tabacum andN. plumbaginifolia) were characterized by DNA fingerprinting and Random Amplification of Polymorphic DNA (RAPD). After this, a quantitative estimation of the degree of parental contribution to the hybrids was carried out by means of a slot-blot analysis. Both qualitative methods, showed one hybrid identical toN. tabacum, two almost identical toN. plumbaginifolia, and a fourth similar to this parental species, but with someN. tabacum admixture. The quantitative method, for the same hybrids, gave 83%, 7%, 7%, and 37%N. tabacum DNA contribution, respectively.  相似文献   

6.
The chromosomes of embryos within thelytokous females of Forda spp. were studied, in samples from galls on Pistacia in the Middle East, and from roots of Poaceae in the Middle East, Europe and North America. The nuclei of oogonial cells, oocytes and early cleavage stages have consistently more chromosomes than the nuclei of dividing cells in the somatic tissues of young embryos from the same mothers. Elimination of the extra germ line chromosomes apparently occurs in late cleavage. In F. marginata Koch the germ line chromosome number varies from 25 to 40 in different populations and the somatic cell number varies from 17 to 20; in F. formicaria the germ line has 21–23 chromosomes and somatic nuclei have 18 or 20. In both species variation occurs between samples from galls on Pistacia as well as between populations on roots of Poaceae. The numbers and relative sizes of the eliminated chromosomes also differ between populations. Comparable phenomena in other insects are briefly discussed.  相似文献   

7.
During the early cleavage divisions in some Ascarids, parts of the chromosomes are eliminated from the somatic blastomeres (chromatin diminution, Boveri, 1887) while the chromosomes in the germ line cells maintain their integrity. To characterize the germ line and soma genome, DNA was isolated from gametes and embryonic somatic cells of two Ascarid species,Parascaris equorum var. univalens andAscaris suum. It was shown that the germ line limited DNAs of these species have the same density and almost identical reassociation kinetics: in CsCl the predominant component of the germ line limited DNA ofP. equorum andA. suum has the buoyant density of 1.697g/cm3, while soma DNA of both species bands at 1.700 g/cm3. InP. equorum there is a small additional germ line limited satellite DNA component with the density of 1.690 g/cm3, identical to that of mitochondrial DNA of both organisms. Comparison of the reassociation kinetics of germ line and soma DNA demonstrates for both species that the eliminated DNA sequences are highly repetitive. In contrast to these similarities between the germ line limited DNAs ofP. equorum andA. suum the analysis of their base composition revealed differences (40% guanine plus cytosine inP. equorum and 36% inA. suum). The only very fast reassociating DNA sequences which we could isolate from soma DNA was demonstrated to be foldback DNA. The reassociation kinetics of totalA. suum soma DNA was investigated by hydroxylapatite chromatography. Least squares analysis of the data revealed about 10% of intermediate repetitive DNA sequences. Their interspersion between single copy DNA sequences was analyzed by comparing the reassociation kinetics of DNA fragments 0.35 and 7.2 kilobases long. Thus the DNA sequence arrangement ofAscaris does not follow the short period interspersion pattern observed in most organism.  相似文献   

8.
DNA evolution in the genus Gossypium   总被引:2,自引:0,他引:2  
Measurements of relative DNA contents in the genus Gossypium reveal more than a two-fold difference between the lowest and the highest values among diploid species with the same chromosome number. An experiment designed to detect intra-specific variation in DNA content is described. Phylogenetic implications, including the origin of amphiploids are discussed briefly.  相似文献   

9.
Species relationships in the genus Tulipa   总被引:1,自引:0,他引:1  
The relationships of diploid and polyploid species belonging to the sub-section Eriostemones of the genus Tulipa have been investigated from the point of view of chromosome morphology, relative DNA values, and meiotic pairing properties. Karyotype morphology is basically the same for all species and eight principal chromosome classes can be distinguished. The range of DNA values obtained by Feulgen cytophotometry for the diploid species is relatively small and provides little assistance in ascertaining the pattern of ploidy involved in the evolution of the group. Partial asynapsis and reverse loop pairing in several of the diploids at pachytene reveals a degree of structural differentiation which may be the outcome of hybridity between species. Significantly, these anomalies are rarely encountered at the equivalent tetraploid levels and a scheme is proposed to account for this behaviour.  相似文献   

10.
Patterns of genome size in the copepoda   总被引:1,自引:1,他引:0  
Adult somatic nuclear DNA contents are reported for eleven cyclopoid species (Megacyclops latipes, Mesocyclops edax, M. longisetus, M. ruttneri, M. leuckarti, M. woutersi, Macrocyclops albidus, Cyclops strenuus, Acanthocyclops robustus, Diothona oculata, Thermocyclops crassus) and for the harpacticoid Tigriopus californicus and range from 0.50 to 4.1 pg DNA per nucleus. These diploid genome sizes are consistent with previously published values for four Cyclops species (0.28–1.8 pg DNA per nucleus), but are strikingly smaller than those reported for marine calanoids (4.32–24.92 pg DNA per nucleus). We discuss three explanations, none of them exclusive of another, to account for the smaller size and range of cyclopoid genome sizes relative to calanoid genome sizes: (1) higher prevalence of chromatin diminution in the Cyclopoida, (2) phylogenetic structure or older age of the Calanoida relative to Cyclopoida and (3) nucleotypic selection that may influence life history variation and fitness. Measurements of genome size were made on Feulgen stained, somatic cell nuclei, using scanning microdensitometry which is well suited to the sparse and heterogeneous populations of copepod nuclei. The importance of measuring large numbers of nuclei per specimen, possible sources of variation associated with cytophotometric measurements, and appropriate use of internal reference standards and stoichiometry of the Feulgen stained nuclei are discussed.  相似文献   

11.
Wang CY  Li H  Hao XD  Liu J  Wang JX  Wang WZ  Kong QP  Zhang YP 《PloS one》2011,6(6):e21613
In the past decade, a high incidence of somatic mitochondrial DNA (mtDNA) mutations has been observed, mostly based on a fraction of the molecule, in various cancerous tissues; nevertheless, some of them were queried due to problems in data quality. Obviously, without a comprehensive understanding of mtDNA mutational profile in the cancerous tissue of a specific patient, it is unlikely to disclose the genuine relationship between somatic mtDNA mutations and tumorigenesis. To achieve this objective, the most straightforward way is to directly compare the whole mtDNA genome variation among three tissues (namely, cancerous tissue, para-cancerous tissue, and distant normal tissue) from the same patient. Considering the fact that most of the previous studies on the role of mtDNA in colorectal tumor focused merely on the D-loop or partial segment of the molecule, in the current study we have collected three tissues (cancerous, para-cancerous and normal tissues) respectively recruited from 20 patients with colorectal tumor and completely sequenced the mitochondrial genome of each tissue. Our results reveal a relatively lower incidence of somatic mutations in these patients; intriguingly, all somatic mutations are in heteroplasmic status. Surprisingly, the observed somatic mutations are not restricted to cancer tissues, for the para-cancer tissues and distant normal tissues also harbor somatic mtDNA mutations with a lower frequency than cancerous tissues but higher than that observed in the general population. Our results suggest that somatic mtDNA mutations in cancerous tissues could not be simply explained as a consequence of tumorigenesis; meanwhile, the somatic mtDNA mutations in normal tissues might reflect an altered physiological environment in cancer patients.  相似文献   

12.
Reproductive energy investment in corals: scaling with module size   总被引:2,自引:0,他引:2  
Leuzinger S  Anthony KR  Willis BL 《Oecologia》2003,135(4):524-531
In colonial modular organisms, differences in module size and colony growth patterns among species have the potential to impose varying constraints on reproductive investment. Here, we compare reproductive output among seven morphologically different species of spawning reef corals, and analyse the relationship between reproductive output and module (polyp) size. Reproductive output ranged between 132 and 384 J cm–2, with lipid constituting the key indicator of energy investment. Lipid decreased by 85–100%, whereas protein and carbohydrate were relatively invariant between pre- and post-spawning tissues in all species, representing 1–15% and <1%, respectively, of the energy investment to reproductive output. The ratio of energy content in reproductive to somatic tissues (gonadosomatic index, GSI) varied among species from 0.20 (Symphyllia recta) to 1.31 (Acropora tenuis), the latter being the highest value reported for any iteroparous marine invertebrate. Surprisingly, small-polyped species (Acropora, Montipora) had 2- to 6-fold higher GSIs than large-polyped ones (Lobophyllia, Symphyllia). Energy equivalents of tissues increased with the 1.50–1.76 power of polyp diameter for somatic tissues and with the 1.42–1.80 power of polyp diameter for reproductive output. In both cases, increases in energy equivalents with polyp diameter were less than the scaling exponent of 3 predicted for an isometric relationship between tissue volume (or mass) and polyp diameter, indicating significant constraints of space, design or physiological energetics with increasing polyp size. We hypothesise that such constraints have played a key role in the evolution of modularity in cnidarians.  相似文献   

13.
The DNA relative content in nuclei from several Solanum species, which were used as partners for somatic hybridization, were determined using a flow cytometry method. The nuclei were isolated mechanically or via protoplasts from leaves of in vitro grown plants. In the case of S. nigrum as well as S. tuberosum cv. Bzura and dihaploid clone H8105, the nuclei were also obtained from suspension cultured cells by lysis of protoplasts. The source and the method of nuclei isolation affected the pattern of nuclear DNA in the genotypes studied. The mesophyll nuclei showed two distinct peaks on the DNA histograms, whereas the DNA peaks produced by cell suspension nuclei were broad and less distinct. The DNA content in the nuclei, calculated from the DNA histograms of the samples and a DNA standard historgam (Trout Red Blood Cells, having DNA content of 5.05 pg per nucleus), were much lower in mesophyll nuclei than in those obtained from the cell suspension for the same genotypes. The results are discussed in respect of the genetic instability of Solanum genotypes. The usefulness of a flow cytometry approach in somatic hybridization research is also discussed.  相似文献   

14.
From the fertilization of an egg until the death of an individual, somatic cells can accumulate genetic changes, such that cells from different tissues or even within the same tissue differ genetically. The presence of multiple cell clones with distinct genotypes in the same individual is referred to as 'somatic mosaicism'. Many endogenous factors such as mobile elements, DNA polymerase slippage, DNA double-strand break, inefficient DNA repair, unbalanced chromosomal segregation and some exogenous factors such as nicotine and UV exposure can contribute to the generation of somatic mutations, thereby leading to somatic mosaicism. Such changes can potentially affect the epigenetic patterns and levels of gene expression, and ultimately the phenotypes of cells. Although recent studies suggest that somatic mosaicism is widespread during normal development and aging, its implications for heightened disease risks are incompletely understood. Here, I discuss the origins, prevalence and implications of somatic mosaicism in healthy human tissues.  相似文献   

15.
Summary Chloroplast and mitochondrial DNAs have been examined by comparison of restriction enzyme patterns in asymmetric hybrid plants, resulting from the fusion between leaf mesophyll protoplasts of Nicotiana tabacum (Solanaceae), and irradiated cell culture protoplasts of Daucus carota (Umbellifereae). These somatic hybrids with normal tobacco morphology were selected as a consequence of the transfer of methotrexate and 5-methyltryptophan resistance from carrot to tobacco. The restriction patterns of chloroplast DNAs in somatic hybrids were indistinguishable from the tobacco parent. However, we found somatic hybrids with mitochondrial DNA significantly different from either parent, as judged by analysis of fragment distribution after restriction enzyme digestion. The possible formation of altered mitochondrial DNA molecules as the result of parasexual hybrid production between two phylogenetically highly divergent plant species will be discussed.  相似文献   

16.
Protoplast fusion experiments between Lycopersicon esculentum or L. peruvianum and Nicotiana tabacum or N. plumbaginifolia were performed to investigate the possibility of producing symmetric and asymmetric somatic hybrids between these genera. These fusions, which involved 1.7 × 108 protoplasts, yielded 35 viable hybrid calli. Plant regeneration was successful with two calli. One of these regenerants flowered, but developed no fruits. Analysis of the nuclear DNA by means of dot blot hybridization with species-specific repetitive DNA probes combined with flow cytometry, revealed that the nuclei of most hybrid calli contained the same absolute amount of Nicotiana DNA as the Nicotiana parent or (much) less, whereas the amount of Lycopersicon DNA per nucleus was 2–5 times that of the parental genotype. Eighteen of the 34 hybrids analyzed possessed Lycopersicon chloroplast DNA (cpDNA), whereas the other 16 had DNA from Nicotiana chloroplasts. The cpDNA type was correlated with the nuclear DNA composition; hybrids with more than 2C Nicotiana nuclear DNA possessed Nicotiana chloroplasts, whereas hybrids with 2C or less Nicotiana nuclear DNA contained Lycopersicon chloroplasts. Mitochondrial DNA (mtDNA) composition was correlated with both nuclear DNA constitution and chloroplast type. Hybrids possessed only or mainly species-specific mtDNA fragments from the parent predominating in the nucleus and often providing the chloroplasts. The data are discussed in relation to somatic incompatibility which could explain the low frequency at which hybrids between Lycopersicon and Nicotiana species are obtained and the limited morphogenetic potential of such hybrids.  相似文献   

17.
outhern hybridization analysis using wheat mitochondrial gene-specific probes indicates that changes in mitochondrial genomic organization and the relative representation of certain genomic regions occur during in vitro somatic embryogenic cell culture ofLarix species. We observed differences in the mitochondrial (mt)DNA hybridization patterns between somatic embryogenic cell cultures and trees grown from seed forLarix leptolepis,L. decidua, and the reciprocal hybrids of these twoLarix species. This is the first study to describe the correlation of molecular changes in a gymnosperm mitochondrial genome with in vitro somatic embryogenic cell culture. Quantitative differences in mtDNA hybridization signals were also observed among a 4-year-old somatic embryogenic cell culture ofLarix ×eurolepis trees regenerated from this culture, and the seed source tree from which the somatic embryogenic cell cultures were initiated.  相似文献   

18.
Echymipera kalabu (Peramelidae: Marsupialia) does not have the full chromosome complement in all its adult somatic tissues. The chromosomes missing are the Y-chromosome in the male and an X-chromosome in the female. The full complement is present in the corneal epithelium and the reproductive tissue. A parallel mosaicism to this exists with respect to small supernumerary chromosomes which are found in certain animals of this species. These supernumeraries must be subject to the same control system as that which is responsible for the elimination of the sex chromosomes.  相似文献   

19.
Summary Behavior of ribosomal RNA genes in the process of somatic hybridization was analyzed using hybrids Nicotiana tabacum + Atropa belladonna. Blothybridization of parental species DNAs to 32P-rDNA specific probes revealed two classes of ribosomal repeats in both tobacco and nightshade; their length was 11.2 kb, 10.4 kb (tobacco) and 9.4 kb, 10.2 kb (night-shade). For analysis of hybrids, labelled 32P rDNA specific probes were hybridized to DNA of parental species and somatic hybrids digested with restriction endonucleases EcoR1, EcoRV and BamH1. A new class of ribosomal DNA repeat, absent in parental species, was found in hybrid line NtAb-1. Possible mechanisms of appearence of a new rDNA class in the process of somatic cell fusion are discussed.  相似文献   

20.
An approach combining morphological profiling and flow cytometric analysis was used to assess genetic stability during the several steps of somatic embryogenesis in Pinus pinaster. Embryogenic cell lines of P. pinaster were established from immature zygotic embryos excised from seeds obtained from open-pollinated trees. During the maturation stage, phenotype of somatic embryos was characterized as being either normal or abnormal. Based upon the prevalent morphological traits, different types of abnormal embryos underwent further classification and quantification. Nuclear DNA content of maritime pine using the zygotic embryos was estimated to be 57.04 pg/2C, using propidium iodide flow cytometry. According to the same methodology, no significant differences (P ≤ 0.01) in DNA ploidy were detected among the most frequently observed abnormal phenotypes, embryogenic cell lines, zygotic and normal somatic embryos, and somatic embryogenesis-derived plantlets. Although the differences in DNA ploidy level do not exclude the occurrence of a low level of aneuploidy, the results obtained point to the absence of major changes in ploidy level during the somatic embryogenesis process of this economically important species. Therefore, our primary goal of true-to-typeness was assured at this level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号