首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of feeding condition and dietary lipid level on lipoprotein lipase (LPL) gene expression in the liver and visceral adipose tissue of red sea bream Pagrus major were investigated by competitive polymerase chain reaction. Not only visceral adipose tissue but also liver of red sea bream showed substantial LPL gene expression. In the liver, starvation (at 48 h post-feeding) drastically stimulated LPL gene expression in the fish-fed low lipid diet, but had no effect in the fish fed high lipid diet. Dietary lipid level did not significantly affect the liver LPL mRNA level under fed condition (at 5 h post-feeding). In the visceral adipose tissue, LPL mRNA number per tissue weight was significantly higher in the fed condition than in the starved condition, irrespective of the dietary lipid levels. Dietary lipid levels did not affect the visceral adipose tissue LPL mRNA levels under fed or starved conditions. Our results demonstrate that both feeding conditions and dietary lipid levels alter the liver LPL mRNA levels, while only the feeding conditions but not dietary lipid levels cause changes in the visceral adipose LPL mRNA level. It was concluded that the liver and visceral adipose LPL gene expression of red sea bream seems to be regulated in a tissue-specific fashion by the nutritional state.  相似文献   

2.
3.
研究采用脂肪水平分别为4.7%、7.9%、10.9%、15.4%、18.9%的五种等氮配合饲料饲喂瓦氏黄颡鱼早期幼鱼,进行了为期30d的生长实验,探讨了瓦氏黄颡鱼早期幼鱼的脂肪需求。并克隆了瓦氏黄颡鱼脂蛋白脂酶(LPL)cDNA序列片段,采用实时荧光定量PCR研究了饲料脂肪水平对肝脏LPL基因表达水平的影响。结果表明,饲料脂肪水平从4.7%增加到10.9%显著促进了瓦氏黄颡鱼早期幼鱼的生长(P<0.05)。饲料脂肪水平显著影响了实验鱼的鱼体体成分,随着饲料脂肪水平的升高,鱼体干物质和脂肪含量显著增加而蛋白含量显著下降(P<0.05)。高脂诱导了瓦氏黄颡鱼肝脏LPL基因表达,摄食15.4%、18.9%这两组较高脂肪水平的实验鱼肝脏LPLmRNA表达水平显著升高(P<0.05)。根据特定生长率通过折线回归分析得出瓦氏黄颡鱼早期幼鱼最适脂肪水平为11.2%。    相似文献   

4.
It has been shown previously that lipid metabolism is regulated by fatty acids (FA) and that thyroid hormones are important regulators of energy metabolism. The effects of weight, dietary fat level and dietary FA profile on thyroid hormone levels and expression of lipogenic genes and tissue FA composition were studied. Sixty-one crossbred gilts weighing 62 ± 5.2 kg BW average were either slaughtered at the beginning of the trial (n = 5) or fed one of seven diets (n = 8 pigs per diet): a semi-synthetic diet formulated to contain a very low level of fat (NF) and six diets based on barley-soybean meal supplemented with approximately 10% fat of different origin and slaughtered at 100 kg BW. The supplemental fats were tallow, high-oleic sunflower oil, sunflower oil (SFO), linseed oil, fat blend (55% tallow, 35% sunflower oil, 10% linseed oil) and fish oil blend (40% fish oil, 60% linseed oil). In general, the dietary FA profiles altered the FA composition of liver, semimembranosus muscle and adipose tissues. Pigs fed the NF diet had the highest free and total triiodothyronine (T3) values followed by pigs fed SFO. Total T3 levels were higher in pigs at 60 kg than in pigs at 100 kg. Correlations between thyroid hormones and genes encoding enzymes of fat synthesis in adipose tissue (acetyl CoA carboxylase (ACACA), fatty acid synthase and stearoyl CoA desaturase (SCD)) and the large differences in expression of lipogenic genes at different weights (60 and 100 kg BW), suggest a role for thyroid hormones and for T3, in particular, in regulating whole animal fat metabolism, with effects brought about by altered expression of lipogenic genes. Liver sterol receptor element binding protein-1 (SREBP1) mRNA content was affected by dietary treatment (P < 0.001) and was correlated with ACACA and SCD, whereas adipose tissue SREBP1 was not correlated with the mRNA abundance of any lipogenic enzyme. Weight and tissue factors showed greater influence on mRNA abundance of genes related with lipid metabolism than diet and tissue FA composition. In the pig, FA synthesis appear to be of greater magnitude in adipose tissue than in the liver as suggested by the higher expression of lipogenic genes in adipose tissue.  相似文献   

5.
Little is known about pig gene expressions related to dietary fatty acids (FAs) and most work have been conducted in rodents. The aim of this study was to investigate how dietary fats regulate fat metabolism of pigs in different tissues. Fifty-six crossbred gilts (62 ± 5.2 kg BW) were fed one of seven dietary treatments (eight animals per treatment): a semi-synthetic diet containing a very low level of fat (no fat (NF)) and six fat-supplemented diets (ca. 10%) based on barley and soybean meal. The supplemental fat sources were tallow (T), high-oleic sunflower oil (HOSF), sunflower oil (SFO), linseed oil (LO), blend (FB) (55% T, 35% SFO and 10% LO) and fish oil (FO) blend (40% FO and 60% LO). Pigs were slaughtered at 100 kg BW and autopsies from liver, adipose tissue and muscle semimembranousus were collected for qPCR. The messenger ribonucleic acid (mRNA) abundances of genes related to lipogenesis were modified due to dietary treatments in both liver (sterol regulatory element-binding protein-1 (SREBP-1), acetyl CoA carboxylase (ACACA) and stearoyl CoA desaturase (SCD)) and adipose tissue (fatty acid synthase (FASN), ACACA and SCD), but were not affected in semimembranousus muscle. In the liver, the mRNA abundances of genes encoding lipogenic enzymes were highest in pigs fed HOSF and lowest in pigs fed FO. In adipose tissue, the mRNA abundances were highest in pigs fed the NF diet and lowest in pigs fed T. The study demonstrated that dietary FAs stimulate lipogenic enzyme gene expression differently in liver, fat and muscles tissues.  相似文献   

6.
This study investigates the effects of monounsaturated and polyunsaturated fatty acids from different fat sources (High Oleic Canola, Canola, Canola–Flaxseed (3:1 blend), Safflower, or Soybean Oil, or a Lard-based diet) on adipose tissue function and markers of inflammation in Obese Prone rats fed high-fat (55% energy) diets for 12 weeks. Adipose tissue fatty acid composition reflected the dietary fatty acid profiles. Protein levels of fatty acid synthase, but not mRNA levels, were lower in adipose tissue of all groups compared to the Lard group. Adiponectin and fatty acid receptors GPR41 and GPR43 protein levels were also altered, but other metabolic and inflammatory mediators in adipose tissue and serum were unchanged among groups. Overall, rats fed vegetable oil- or lard-based high-fat diets appear to be largely resistant to major phenotypic changes when the dietary fat composition is altered, providing little support for the importance of specific fatty acid profiles in the context of a high-fat diet.  相似文献   

7.
海水鱼真鲷脂蛋白脂肪酶基因cDNA序列与组织表达   总被引:8,自引:0,他引:8  
为研究脊椎动物真鲷脂蛋白脂肪酶 (LPL)结构与功能关系以及探讨动脉粥样硬化形成机理 ,通过构建cDNA文库 ,克隆对动脉粥样硬化表现抗性的海水鱼真鲷LPL基因cDNA全序列 .再通过PCR方法扩增基因组DNA ,获取内含子 9及其两侧序列以确定外显子 10的大小 ,最后通过RT PCR ,以 β肌动蛋白为外参照 ,比较真鲷在食用两种脂肪含量不同饲料和摄食状态不同的处理条件下 ,肝脏和腹腔肠系膜脂肪组织LPLmRNA的相对水平 .从腹腔肠系膜脂肪组织cDNA文库中克隆出LPLcDNA序列 ,其完整的开放阅读框架由 15 36bp组成 ,编码 5 11个氨基酸残基 .与哺乳类不同 ,真鲷LPL基因外显子 10的开始部分是翻译的 .LPL的催化位点、二硫键位点、N 糖基化位点、肝素结合区、脂质结合位点、介导脂蛋白与低密度脂蛋白受体结合位点、二聚体形成位点等主要功能域在真骨鱼类真鲷与其它脊椎动物间基本保守 ,但肝素结合区的碱性氨基酸残基含量较人类减少 ,并在结合脂质底物的疏水环套中出现插入片段 .与哺乳类不同 ,真鲷LPL基因在成体肝脏存在诱导性表达 ,而在其腹腔肠系膜脂肪组织则存在与哺乳类相似的组成性表达 .当真鲷喂食高脂饲料时 ,其饱食状态下肝脏LPLmRNA水平升高 ,但对其腹腔肠系膜脂肪组织LPL表达没有影响 .当真鲷喂食标准商业饲料时 ,  相似文献   

8.
Conjugation of bile acids (BAs) to the amino acids taurine or glycine increases their solubility and promotes liver BA secretion. Supplementing diets with taurine or glycine modulates BA metabolism and enhances fecal BA excretion in rats. However, it is still unclear whether dietary proteins varying in taurine and glycine contents alter BA metabolism, and thereby modulate the recently discovered systemic effects of BAs. Here we show that rats fed a diet containing saithe fish protein hydrolysate (saithe FPH), rich in taurine and glycine, for 26 days had markedly elevated fasting plasma BA levels relative to rats fed soy protein or casein. Concomitantly, the saithe FPH fed rats had reduced liver lipids and fasting plasma TAG levels. Furthermore, visceral adipose tissue mass was reduced and expression of genes involved in fatty acid oxidation and energy expenditure was induced in perirenal/retroperitoneal adipose tissues of rats fed saithe FPH. Our results provide the first evidence that dietary protein sources with different amino acid compositions can modulate the level of plasma bile acids and our data suggest potential novel mechanisms by which dietary protein sources can affect energy metabolism.  相似文献   

9.
Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid oxidation may also contribute to the physiological activity of gamma-linolenic acid in decreasing body fat mass.  相似文献   

10.
The purpose of the present study was to compare the influence of adding no or 8% fat of varying sources (coconut oil, fish oil, rapeseed oil and sunflower oil) to diets for sows 1 week prior to farrowing and during lactation on the composition of fatty acids in plasma and tissues of the progeny while sucking and 3 weeks after weaning from the sow. A control diet without supplemental fat and four diets supplemented with 8% of coconut oil, rapeseed oil, fish oil or sunflower oil were provided to lactating sows (n = 15), and during the post-weaning period the same weaner diet was provided to all piglets (n = 15 litters), which were housed litterwise. The dietary ratio of n-6:n-3 fatty acids of the maternal diets largely influenced the progeny, as the ratio varying from 1.2 (fish oil) to 12.2 (sunflower oil) in the sow milk was reflected in plasma and adipose tissues of the sucking progeny. The liver showed similar variations according to dietary treatments, but a lower n-6:n-3 fatty acids ratio. From day 4 to later on during the suckling period, the concentration of C14:0, C16:0 and C18:1 in the liver of the piglets decreased, irrespective of the dietary treatments of sows. In plasma and liver, the total concentration of saturated fatty acids (SAFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) did not differ markedly in piglets sucking sows fed different dietary fatty acids, whereas the adipose tissue of piglets sucking sows fed sunflower oil and coconut oil showed the highest proportion of PUFA and SAFA, respectively. Weaning lowered the concentration of lipid-soluble extracts in plasma and the concentration of fatty acids in the liver of the piglets. Within the post-weaning period, dietary treatments of sows, rather than age of piglets, influenced the fatty acid composition of plasma and adipose tissue of the piglets, whereas the hepatic fatty acid profile was more affected by the age of the piglets during the post-weaning period. This study shows that the fatty acid profile of plasma and tissues of the progeny is highly dependent on the maternal dietary composition, and that the dietary impact persists for up to 3 weeks after the suckling period.  相似文献   

11.
The effects of dietary conjugated linoleic acid (CLA) on the activity and mRNA levels of hepatic enzymes involved in fatty acid synthesis and oxidation were examined in mice. In the first experiment, male ICR and C57BL/6J mice were fed diets containing either a 1.5% fatty acid preparation rich in CLA or a preparation rich in linoleic acid. In the second experiment, male ICR mice were fed diets containing either 1.5% linoleic acid, palmitic acid or the CLA preparation. After 21 days, CLA relative to linoleic acid greatly decreased white adipose tissue mass but caused hepatomegaly accompanying an approximate 10-fold increase in the tissue triacylglycerol content irrespective of mouse strain. CLA compared to linoleic acid greatly increased the activity and mRNA levels of various lipogenic enzymes in both experiments. Moreover, CLA increased the mRNA expression of Delta6- and Delta5-desaturases, and sterol regulatory element binding protein-1 (SREBP-1). The mitochondrial and peroxisomal palmitoyl-CoA oxidation rate was about 2.5-fold higher in mice fed CLA than in those fed linoleic acid in both experiments. The increase was associated with the up-regulation of the activity and mRNA expression of various fatty acid oxidation enzymes. The palmitic acid diet compared to the linoleic acid diet was rather ineffective in modulating the hepatic lipid levels or activity and mRNA levels of enzymes in fatty acid metabolism. It is apparent that dietary CLA concomitantly increases the activity and mRNA levels of enzymes involved in fatty acid synthesis and oxidation, and desaturation of polyunsaturated fatty acid in the mouse liver. Both the activation of peroxisomal proliferator alpha and up-regulation of SREBP-1 may be responsible for this.  相似文献   

12.
Three compounds capsaicin, curcumin and ferulic acid showing hypolipidemic activity have been tested in adult Wistar rats fed high fat diets. Capsaicin (0.20 mg%) fed to female rats along with a 30% saturated fat diet lowered the rate of weight gain, liver and serum triglycerides. In male rats it lowered only the liver and serum total and very low density and low density lipoprotein triglycerides whether fed continuously for 13 or 8 weeks after interchanging the control and test diets from the 5th week onwards. Capsaicin fed to female rats in 30% mixed fat diet increased the rate of weight gain, lowered liver and serum triglycerides, lowered adipose tissue lipoprotein lipase, elevated the hormone sensitive lipase and serum free fatty acids. Capsaicin in 30% saturated fat diet lowered both the enzyme activities to a much lesser extent. Curcumin and ferulic acid (both at 25 mg%) in 30% saturated fat diet tended to lower the rate of weight gain, liver total lipids and serum triglycerides. It is of significance that a common dietary compound ‘capsaicin’ in the range of human intake triggers lipid lowering action in rats fed high fat diets. This paper was presented at the 55th Annual Meeting of the Society of Biological Chemists (India) held at Trivandrum during December 15–17th, 1986.  相似文献   

13.
ICR and C57BL/6J mice were fed experimental diets containing either a 2% fatty acid preparation rich in conjugated linoleic acid (CLA) or a preparation rich in linoleic acid and free of CLA for 21 days. CLA greatly decreased weights of white adipose tissue and interscapular brown adipose tissue in the two strains. CLA reduced mRNA levels of glucose transporter 4 (Glut 4) in white and brown adipose tissue of both strains. A CLA-dependent decrease in mRNA levels of peroxisome proliferator activated receptor (PPAR) gamma was seen in interscapular brown adipose tissue of both strains and in white adipose tissue of C57BL/6J but not ICR mice. Dietary CLA was found to cause a decrease in the mRNA levels of uncoupling protein (UCP) 1 in brown adipose tissue when the value was corrected for the expression of a house-keeping gene (beta-actin) in the two strains. Uncorrected values were, however, indistinguishable between the animals fed the CLA diet and CLA-free diet. UCP 3 expression in brown adipose tissue was much lower in mice fed the CLA diet than in those fed the control diet in both strains. In contrast, CLA greatly up-regulated the gene expression of UCP 2 in brown adipose tissue. Dietary CLA also increased UCP 2 mRNA level in skeletal muscle. It is apparent that dietary CLA decreases white and brown adipose tissue mass, accompanying changes in the gene expression of proteins regulating energy metabolism in white and brown adipose tissues, and skeletal muscle of mice.  相似文献   

14.
Increased dietary fat intake is associated with obesity, insulin resistance, and metabolic disease. In transgenic mice, adipose tissue-specific overexpression of the glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) exacerbates high-fat (HF) diet-induced visceral obesity and diabetes, whereas 11β-HSD1 gene knockout ameliorates this, favoring accumulation of fat in nonvisceral depots. Paradoxically, in normal mice HF diet-induced obesity (DIO) is associated with marked downregulation of adipose tissue 11β-HSD1 levels. To identify the specific dietary fats that regulate adipose 11β-HSD1 and thereby impact upon metabolic disease, we either fed mice diets enriched (45% calories as fat) in saturated (stearate), monounsaturated (oleate), or polyunsaturated (safflower oil) fats ad libitum or we pair fed them a low-fat (11%) control diet for 4 wk. Adipose and liver mass and glucocorticoid receptor and 11β-HSD1 mRNA and activity levels were determined. Stearate caused weight loss and hypoinsulinemia, partly due to malabsorption, and this markedly increased plasma corticosterone levels and adipose 11β-HSD1 activity. Oleate induced pronounced weight gain and hyperinsulinemia in association with markedly low plasma corticosterone and adipose 11β-HSD1 activity. Weight gain and hyperinsulinemia was less pronounced with safflower compared with oleate despite comparable suppression of plasma corticosterone and adipose 11β-HSD1. However, with pair feeding, safflower caused a selective reduction in visceral fat mass and relative insulin sensitization without affecting plasma corticosterone or adipose 11β-HSD1. The dynamic depot-selective relationship between adipose 11β-HSD1 and fat mass strongly implicates a dominant physiological role for local tissue glucocorticoid reactivation in fat mobilization.  相似文献   

15.
Macronutrient composition of diets can influence body-weight development and energy balance. We studied the short-term effects of high-protein (HP) and/or high-fat (HF) diets on energy expenditure (EE) and uncoupling protein (UCP1-3) gene expression. Adult male rats were fed ad libitum with diets containing different protein-fat ratios: adequate protein-normal fat (AP-NF): 20% casein, 5% fat; adequate protein-high fat (AP-HF): 20% casein, 17% fat; high protein-normal fat (HP-NF): 60% casein, 5% fat; high protein-high fat (HP-HF): 60% casein, 17% fat. Wheat starch was used for adjustment of energy content. After 4 days, overnight EE and oxygen consumption, as measured by indirect calorimetry, were higher and body-weight gain was lower in rats fed with HP diets as compared with rats fed diets with adequate protein content (P<.05). Exchanging carbohydrates by protein increased fat oxidation in HF diet fed groups. The UCP1 mRNA expression in brown adipose tissue was not significantly different in HP diet fed groups as compared with AP diet fed groups. Expression of different homologues of UCPs positively correlated with nighttime oxygen consumption and EE. Moreover, dietary protein and fat distinctly influenced liver UCP2 and skeletal muscle UCP3 mRNA expressions. These findings demonstrated that a 4-day ad libitum high dietary protein exposure influences energy balance in rats. A function of UCPs in energy balance and dissipating food energy was suggested. Future experiments are focused on the regulation of UCP gene expression by dietary protein, which could be important for body-weight management.  相似文献   

16.
Lipoprotein lipase (LPL) of gilthead sea bream (Sparus aurata) was cloned and sequenced using a RT-PCR approach completed by 3' and 5'RACE assays. The nucleotide sequence covered 1669 bp with an open reading frame of 525 amino acids, including a putative signal peptide of 23 amino acids long. Sequence alignment and phylogenetic analysis revealed a high degree of conservation among most fish and higher vertebrates, retaining the consensus sequence the polypeptide "lid", the catalytic triad and eight cysteine residues at the N-terminal region. A tissue-specific regulation of LPL was also found on the basis of changes in season and nutritional condition as a result of different dietary protein sources. First, the expression of LPL in mesenteric adipose tissue was several times higher than in liver and skeletal muscle. Secondly, the spring up-regulation of LPL expression in the mesenteric adipose tissue was coincident with a pronounced increase of whole body fat content. Thirdly, the highest expression of LPL in the skeletal muscle was found in summer, which may serve to cover the increased energy demands for muscle growth and protein accretion. Further, in fish fed plant-protein-based diets, hepatic LPL expression was up-regulated whereas an opposite trend was found in the mesenteric adipose tissue, which may contribute to drive dietary lipids towards liver fat storage. Finally, it is of interest that changes in circulating triglyceride (TG) levels support the key role of LPL in the clearance of TG-rich lipoproteins. This study is the first report in fish of a co-regulated expression of LPL in oxidative and fat storage tissues under different physiological conditions.  相似文献   

17.
Rats, chicks, and pigs were fed diets containing fructose or glucose. Plasma triglyceride levels were elevated in rats but not in chicks or pigs fed diets containing fructose. The rate of fatty acid synthesis in rat liver but not in chick liver was elevated when fructose-containing diets were fed. Conversely, the rate of fatty acid synthesis in rat adipose tissue but not in pig adipose tissue tended to be depressed when fructose-containing diets were fed. These results indicate that there are species-specific as well as organ-specific metabolic responses to various dietary carbohydrates.  相似文献   

18.
During pregnancy and lactation, metabolic adaptations involve changes in expression of desaturases and elongases (Elovl2 and Elovl5) in the mammary gland and liver for the synthesis of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid (AA) required for fetal and postnatal growth. Adipose tissue is a pool of LC-PUFAs. The response of adipose tissue for the synthesis of these fatty acids in a lipid-deficient diet of dams is unknown. The aim of this study was to explore the role of maternal tissue in the synthesis of LC-PUFAs in rats fed a low-lipid diet during pregnancy and lactation. Fatty acid composition (indicative of enzymatic activity) and gene expression of encoding enzymes for fatty acid synthesis were measured in liver, mammary gland and adipose tissue in rats fed a low-lipid diet. Gene expression of desaturases, elongases, fatty acid synthase (Fasn) and their regulator Srebf-1c was increased in the mammary gland, liver and adipose tissue of rats fed a low-lipid diet compared with rats from the adequate-lipid diet group throughout pregnancy and lactation. Genes with the highest (P < 0.05) expression in the mammary gland, liver and adipose tissue were Elovl5 (1333%), Fads2 (490%) and Fasn (6608%), respectively, in a low-lipid diet than in adequate-lipid diet. The percentage of AA in the mammary gland was similar between the low-lipid diet and adequate-lipid diet groups during the second stage of pregnancy and during lactation. The percentage of monounsaturated and saturated fatty acids was significantly (P < 0.05) increased throughout pregnancy and lactation in all tissues in rats fed a low-lipid diet than in rats fed an adequate-lipid diet. Results suggest that maternal metabolic adaptations used to compensate for lipid-deficient diet during pregnancy and lactation include increased expression of genes involved in LC-PUFAs synthesis in a stage- and tissue-specific manner and elevated lipogenic activity (saturated and monounsaturated fatty acid synthesis) of maternal tissues including adipose tissue.  相似文献   

19.
Fish oil feeding showed less obesity in rodents, relative to other dietary oils. N-3 fatty acids rich in fish oil and fibrate compounds are peroxisome proliferator-activated receptor alpha (PPARalpha) ligands that stimulate beta-oxidation of fatty acids in liver and are used for treatment of hypertriglycemic patients. Since UCP-2, a member of an uncoupling protein family, has been shown to express in hepatocytes, the effects of these agents on the expression of UCP2 mRNA were investigated. C57BL/6J mice were divided into three groups; the first group was given a high-carbohydrate diet, and the other two groups were given a high-fat diet (60% of total energy) as safflower oil or fish oil for 5 months. Safflower oil diet fed mice developed obesity, but those fed fish oil diet did not. Therefore, the effects of fish oil feeding on the expression of UCP1, UCP2 and UCP3 in liver, skeletal muscle (gastrocnemius), white adipose tissue (WAT) and brown adipose tissue (BAT) were assessed by Northern blotting. Compared with safflower oil feeding, fish oil feeding up-regulated liver UCP2, BAT UCP2 and skeletal muscle UCP3 mRNA, while down-regulated WAT UCP2 and BAT UCP3 mRNA. Among these alterations, 5-fold up-regulation of liver UCP2 mRNA, relative to carbohydrate feeding, was noteworthy. Fenofibrate administration (about 500 mg/kg BW/d) for 2 wks also induced liver UCP2 expression by 9-fold. These data indicated that fish oil feeding and fibrate administration each up-regulated UCP2 mRNA expression in liver possibly via PPARalpha and hence each has the potential of increasing energy expenditure for prevention of obesity.  相似文献   

20.
Diet during pregnancy and lactation influences the offspring’s health in the long-term. Indeed, human epidemiological studies and animal experiments suggest that different type of fatty acids consumption during pregnancy affect offspring development and susceptibility to metabolic disorders. Epigenetic changes are thought to be elicited by dietary factors during critical timing of development. microRNAs (miRNAs) are versatile regulators of gene expression. Thus, we aimed to determine the influence of different fatty acids on miRNA expression in offspring when given during early pregnancy. We fed pregnant either soybean (SO), olive (OO), fish (FO), linseed (LO), or palm-oil (PO) diets from conception to day 12 of gestation; and standard diet thereafter. miRNA expression was assessed in liver an adipose tissue of pregnant rats and their virgin counterparts. While liver concentrations of fatty acids in pregnant or virgin rats replicated those of the diets consumed during early pregnancy, their pups’ liver tissue marginally reflected those of the respective experimental feeds. By contrast, the liver fatty acid profile of adult offsprings was similar, regardless of the diet fed during gestation. Different parental miRNAs were modulated by the different type of fatty acid: in adult offspring, miR-215, miR-10b, miR-26, miR-377-3p, miR-21, and miR-192 among others, were differentially modulated by the different fatty acids fed during early pregnancy. Overall, our results show that maternal consumption of different types of fatty acids during early pregnancy influences miRNA expression in both maternal and offspring tissues, which may epigenetically explain the long-term phenotypic changes of the offspring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号