首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary WhenNecturus gallbladder epithelium is treated with ouabain the cells swell rapidly for 20–30 minutes then stabilize at a cell volume 30% greater than control. The cells then begin to shrink slowly to below control size. During the initial rapid swelling phase cell Na activity, measured with microelectrodes, rises rapidly. Calculations of the quantity of intracellular Na suggest that the volume increase is due to NaCl entry. Once the peak cell volume is achieved, the quantity of Na in the cell does not increase, suggesting that NaCl entry has been inhibited. We tested for inhibition of apical NaCl entry during ouabain treatment either by suddenly reducing the NaCl concentration in the mucosal bath or by adding bumetanide to the perfusate. Both maneuvers caused rapid cell shrinkage during the initial phase of the ouabain experiment, but had no effect on cell volume if performed during the slow shrinkage period. The lack of sensitivity to the composition of the mucosal bath during the shrinkage period occurred because of apparent feedback inhibition of NaCl entry. Another maneuver, reduction of the Na in the serosal bath to 10mm, also resulted in inhibition of apical NaCl uptake. The slow shrinkage which occurred after one or more hours of ouabain treatment was sensitive to the transmembrane gradients for K and Cl across the basolateral membrane and could be inhibited by bumetanide. Thus during pump inhibition inNecturus gallbladder epithelium cell Na and volume first increase due to continuing NaCl entry and then cell volume slowly decreases due to inhibition of the apical NaCl entry and activation of basolateral KCl exit.  相似文献   

2.
Summary Taurine influx is inhibited and taurine efflux accelerated when the cell membrane of Ehrlich ascites tumor cells is depolarized. Taurine influx is inhibited at acid pH partly due to the concomitant depolarization of the cell membrane partly due to a reduced availability of negatively charged free carrier. These results are in agreement with a 2Na, 1Cl, 1taurine cotransport system which is sensitive to the membrane potential due to a negatively charged empty carrier. Taurine efflux from Ehrlich cells is stimulated by addition of LTD4 and by swelling in hypotonic medium. Cell swelling in hypotonic medium is known to result in stimulation of the leukotriene synthesis and depolarization of the cell membrane. The taurine efflux, activated by cell swelling, is dramatically reduced when the phospholipase A2 is inhibited indirectly by addition of the anti-calmodulin drug pimozide, or directly by addition of RO 31-4639. The inhibition is in both cases lifted by addition of LTD4. The swelling-induced taurine efflux is also inhibited by addition of the 5-lipoxygenase inhibitors ETH 615-139 and NDGA. It is concluded that the swelling-induced activation of the taurine leak pathway involves a release of arachidonic acid from the membrane phospholipids and an increased oxidation of arachidonic acid into leukotrienes via the 5-lipoxygenase pathway. LTD4 seems to act as a second messenger for the swelling induced activation of the taurine leak pathway either directly or indirectly via its activation of the Cl channels, i.e., via a depolarization of the cell membrane.  相似文献   

3.
Bumetanide inhibition of NaCl transport byNecturus gallbladder   总被引:4,自引:0,他引:4  
Salt transport by the Necturus gallbladder epithelium is the result of the coupled entry of NaCl into the cells across the apical membrane and the active transport of Na out of the cells across the basolateral membrane. The NaCl entry step was studied by measuring the rate of cell volume increase accompanying ouabain inhibition of the Na--K-ATPase in the basolateral membrane. When bumetanide, a diuretic analog of furosemide, was added to the mucosal bathing solution it reversibly blocked the entry of NaCl into the cells and abolished fluid transport. A dose-response relationship showed half-maximal inhibition of NaCl entry at a bumetanide concentration of 10(-9) M; complete inhibition of coupled NaCl movement occurred with as little as 10(-7) M bumetanide. Partial substitution of Na or Cl in the mucosal solution failed to demonstrate competition between bumetanide and either of the ions. The drug was also effective in blocking NaCl entry in the absence of ouabain; addition of the diuretic to the mucosal bathing solution resulted in prompt cell shrinkage and a decrease in intracellular NaCl. Cell volume decrease followed bumetanide addition to the mucosal bath because NaCl entry was blocked but active Na transport continued for several minutes until the intracellular Na transport pool was depleted.  相似文献   

4.
The results of the present study that NaCl transport by in vitro rabbit gallbladder must be a consequence of a neutral coupled carrier-mediated mechanism that ultimately results in the active absorption of both ions; pure electrical coupling between the movements of Na and Cl can be excluded on the grounds of electrphysiologic considerations. Studies on the unidirectional influxes of Na and Cl have localized the site of this coupled mechanism to the mucosal membranes. Studies on the intracellular ion concentrations and the intracellular electrical potential are consistent with the notion that (a) the coupled NaCl influx process results in the movement of Cl from the mucosal solution into the cell against an apparent electrochemical potential difference; (b) the energy for the uphill movement of Cl is derived from the Na gradient across the mucosal membrane which is maintained by an active Na extrusion mechanism located at the basolateral membranes; and (c) Cl exit from the cell across the basolateral membranes is directed down an electrochemical potential gradient and may be diffusional. Finally, as for the case of rabbit ileum, the coupled NaCl influx process is inhibited by elevated intracellular levels of cyclic 3',5'-adenosine monophosphate. A working model for transcellular and paracellular NaCl transport by in vitro rabbit gallbladder is proposed.  相似文献   

5.
Summary Arachidonic acid inhibits the cell shrinkage observed in Ehrlich ascites tumor cells during regulatory volume decrease (RVD) or after addition of the Ca ionophore A23187 plus Ca. In Na-containing media, arachidonic acid increases cellular Na uptake under isotonic as well as under hypotonic conditions. Arachidonic acid also inhibits KCl and water loss following swelling in Na-free, hypotonic media even when a high K conductance has been ensured by addition of gramicidin. In isotonic, Na-free medium arachidonic acid inhibits A23187 + Ca-induced cell shrinkage in the absence but not in the presence of gramicidin. It is proposed that inhibition of RVD in hypotonic media by arachidonic acid is caused by reduction in the volume-induced Cl and K permeabilities as well as by an increase in Na permeability and that reduction in A23187 + Ca-induced cell shrinkage is due to a reduction in K permeability and an increase in Na permeability. The A23187 + Ca-activated Cl permeability in unaffected by arachidonic acid. PGE2 inhibits RVD in Na-containing, hypotonic media but not in Na-free, hypotonic media, indicating a PGE2-induced Na uptake. PGE2 has no effect on the volume-activated K and Cl permeabilities. LTB4, LTC4 and LTE4 inhibit RVD insignificantly in hypotonically swollen cells. LTD4, more-over, induces cell shrinkage in steady-state cells and accelerates the RVD following hypotonic exposure. The effect of LTD4 even reflects a stimulating effect on K and Cl transport pathways. Thus none of the leukotrienes show the inhibitory effect found for arachidonic acid on the K and Cl permeabilities. The RVD response in hypotonic, Na-free media is, on the other hand, also inhibited by addition of the unsaturated oleic, linoleic, linolenic and palmitoleic acid, even in the presence of the cationophor gramicidin. The saturated arachidic and stearic acid had no effect on RVD. It is, therefore, suggested that a minor part of the inhibitory effect of arachidonic acid on RVD in Na-containing media is via an increased synthesis of prostaglandins and that the major part of the arachidonic acid effect on RVD in Na-free media, and most probably also in Na-containing media, is due to the inhibition of the volume-induced K and Cl transport pathways, caused by a nonspecific detergent effect of an unsaturated fatty acid.  相似文献   

6.
Summary Intracellular ion activities inNecturus gallbladder epithelium were measured with liquid ion-exchanger microelectrodes. Mean values for K, Cl and Na activities were 87, 35 and 22mm, respectively. The intracellular activities of both K and Cl are above their respective equilibrium values, whereas the Na activity is far below. This indicates that K and Cl are transported uphill toward the cell interior, whereas Na is extruded against its electrochemical gradient. The epithelium transports NaCl from mucosa to serosa. From the data presented and the known Na and Cl conductances of the cell membranes, we conclude that neutral transport driven by the Na electrochemical potential difference can account for NaCl entry at the apical membrane. At the basolateral membrane, Na is actively transported. Because of the low Cl conductance of the membrane, only a small fraction of Cl transport can be explained by diffusion. These data suggest that Cl transport across the basolateral membrane is a coupled process which involves a neutral NaCl pump, downhill KCl transport, or a Cl-anion exchange system.  相似文献   

7.
We characterized the hyperpolarization of the electrical potential profile of flounder intestinal cells that accompanies inhibition of NaCl cotransport. Several observations indicate that hyperpolarization of psi a and psi b (delta psi a,b) results from inhibition of NaCl entry across the apical membrane: (a) the response was elicited by replacement of mucosal solution Cl or Na by nontransported ions, and (b) mucosal bumetanide or serosal cGMP, inhibitors of NaCl influx, elicited delta psi a,b and decreased the transepithelial potential (psi t) in parallel. Regardless of initial values, psi a and psi b approached the equilibrium potential for K (EK) so that in the steady state following inhibition of NaCl entry, psi a approximately equal to psi b approximately equal to ECl approximately equal to EK. Bumetanide decreased cell Cl activity (aClc) toward equilibrium levels. Bumetanide and cGMP decreased the fractional apical membrane resistance (fRa), increased the slope of the relation of psi a to [K]m, and decreased cellular conductance (Gc) by approximately 85%, which indicates a marked increase in basolateral membrane conductance (Gb). Since the basolateral membrane normally shows a high conductance to Cl, a direct relation between apical salt entry and GClb is suggested by these findings. As judged by the response to bumetanide or ion replacement in the presence of mucosal Ba, inhibition of Na/K/Cl co-transport alone is not sufficient to elicit delta psi a,b. This suggests the presence of a parallel NaCl co-transport mechanism that may be activated when Na/K/Cl co-transport is compromised. The delta psi a,b response to reduced apical NaCl entry would assist in maintaining the driving force for Na-coupled amino acid uptake across the apical membrane as luminal [NaCl] falls during absorption.  相似文献   

8.
Summary PGE2 and LTC4 syntheses in Ehrlich ascites cells were measured by radioimmunoassay. Hypotonic swelling results in stimulation of the leukotriene synthesis and a concomitant reduction in the prostaglandin synthesis. If the cells have access to sufficient arachidonic acid there is a parallel increase in the synthesis of both leukotrienes and prostaglandins following hypotonic exposure. PGE2 significantly inhibits regulatory volume decrease (RVD) following hypotonic swelling in Na-containing medium but not in Na-free media, supporting the hypothesis that the effect of PGE2 is on the Na permeability. PGE2 also had no effect on RVD in Na-free media in the presence of the cation ionophore gramicidin. Since the Cl permeability becomes rate limiting for RVD in the presence of gramicidin, whereas the K permeability is rate limiting in its absence, it is concluded that PGE2 neither affects Cl nor K permeability. Addition of LTD4 accelerates RVD and since the K permeability is rate limiting for RVD this shows that LTD4 stimulates the K permeability. Inhibition of the leukotriene synthesis by nordihydroguaiaretic acid inhibits RVD even when a high K conductance has been ensured by the presence of gramicidin. It is, therefore, proposed that an increase in leukotriene synthesis after hypotonic swelling is involved also in the activation of the Cl transport pathway.  相似文献   

9.
Cell volume regulation occurs in both tight, Na+-transporting epithelia (e.g., frog skin) and in leaky. NaCl-transporting epithelia (e.g. amphibian gallbladder). In tight epithelia volume regulation occurs only in response to cell swelling, i.e. only regulatory volume decrease (RVD) is observed, whereas in leaky epithelia cell volume regulation has been observed in response to osmotic challenges that either swell or shrink the cells. In other words, both RVD and regulatory volume increase (RVI) are present. Both volume regulatory responses involve stimulation of ion transport in a polarized fashion: in RVD the response is basolateral KCl efflux, whereas in RVI it is apical membrane NaCl uptake. The loss of KCl during RVD appears to result in most instances from increases in basolateral electrodiffusive K+ and Cl-permeabilities. In gallbladder, concomitant activation of coupled KCl efflux may also occur. The RVI response includes activation of apical membrane cation (Na+/H+) and anion (Cl-/HCO-3) exchangers. It is presently unclear whether the net ion fluxes resulting from activation of these transporters, during either RVD or RVI, account for the measured rates of restoration of cell volume. In gallbladder epithelium, RVD is inhibited by agents which disrupt microfilaments or interfere with the Ca2+-calmodulin system. These pharmacologic effects are absent in RVI. Some steps in the chain of events resulting in either RVI or RVD have been established, but the signals involved remain largely unknown. There is reason to suspect a role of intracellular pH in the case of RVI and of membrane insertion of transporters in the case of RVD, possibly with causal roles of both intracellular Ca2+ and the cytoskeleton in the latter.  相似文献   

10.
Summary Movement of Cl from the lumen ofNecturus proximal tubule into the cells is mediated and dependent on the presence of luminal Na. Intracellular Cl activity was monitored with ion selective microelectrodes. In Cl Ringer's perfused kidneys, cell Cl activity was 24.5±1.1mm, 2 to 3 times higher than that predicted for passive distribution. When luminal NaCl was partially replaced by mannitol (capillaries perfused with Cl Ringer's) cell Cl decreased showing a sigmoidal dependence on luminal NaCl. Peritubular membrane potential was unaltered. Sulfate Ringer's perfusion of the kidneys washed out all cell Cl but did not alter peritubular membrane potential. Chloride did not enter the cell when the tubule lumen was perfused with 100mm KCl, LiCl, or tetramethylammonium Cl. Luminal perfusion of NaCl caused cell Cl to rise rapidly to the same value as the controls in the Cl Ringer's experiments. Perfusion of the tubule lumen with mixtures of NaCl and Na2SO4, while the capillaries contained sulfate Ringer's yielded a sigmoidal dependence of cell Cl on luminal NaCl activity. Chloride movement from the lumen into the proximal tubule cells required approximately equal concentrations of Na and Cl. Current clamp experiments indicated that intracellular chloride activity was insensitive to alterations in liminal membrane potential, suggesting that chloride entry was electrically neutral. The transcellular chloride flux was calculated to constitute about one half of the normal chloride reabsorption rate. We conclude that the cell Cl activity is primarily determined by the NaCl concentration in the tubule lumen and that Cl entry across the luminal membrane is mediated.  相似文献   

11.
We examined whether metabolites of arachidonic acid (AA) regulate K+ efflux during regulatory volume decrease (RVD) by mudpuppy red blood cells (RBCs). Volume regulation was inhibited by the phospholipase A2 antagonists mepacrine (10 μm) and ONO-RS-082 (10 μm); the inhibitory effect of ONO-RS-082 was reversed by gramicidin (5 μm). Eicosatetraynoic acid (ETYA, 100 μm), a general antagonist of AA metabolism, also blocked RVD. In addition, volume regulation was inhibited by the lipoxygenase pathway antagonist nordihydroguaiaretic acid (NDGA, 10 μm), the 5 lipoxygenase antagonists AA-861 (5 μm) and curcumin (20 μm), and by the 5-lipoxygenase activating protein inhibitor L-655,298 (5 μm). Inhibition by all four of these agents was reversed with gramicidin. In contrast, the 12- and 15-lipoxygenase pathway inhibitor ethyl-3,4-dihydroxy-benzylidene-cyanoacetate (EDBCA, 1 μm) and the cytochrome P-450 monooxygenase pathway blocker ketoconazole (20 μm) had no effect. On the other hand, the cyclooxygenase pathway inhibitor aspirin (100 μm) slightly enhanced RVD. Consistent with these findings, a K+-selective whole cell conductance responsible for K+ efflux during cell swelling was inhibited by ONO-RS-082 (10 μm), NDGA (10 μm), AA-861 (5 μm), curcumin (20 μm), and l-655,298 (5 μm). In contrast, EDBCA (1 μm), ketoconazole (20 μm), and indomethacin (10 μm) did not block this whole cell conductance. These results indicate that a channel mediating K+ loss during RVD is regulated by a 5-lipoxygenase metabolite of arachidonic acid. Received: 12 December 1996/Revised: 28 February 1997  相似文献   

12.
Summary Previous studies have led to the suggestion that salt and water absorption by rabbit and guinea pig gallbladders exposed to Amphotericin B proceeds by a rheogenic Na pump at the basolateral cell membrane. The present studyin vitro was designed to further characterize transport properties of rabbit and guinea pig gallbladders under control conditions and to identify the properties of gallbladder mucosa which are altered by Amphotericin B to allow for the induced serosa-positive electrical potential differences (PD). Potassium is required in the bathing solution at a low concentration to maintain normal tissue O2 consumption, fluid absorption and the ability of the tissue to develop the maximum Amphotericin B-induced PD; the relative effectiveness of alkali metal cations in substituting for K is KRb>Cs>Li>Na. The carrier mechanism for coupled influx of Na and Cl across the mucosal border of gallbladder appears to be functional in the presence of Amphotericin B; in addition, the diffusional influx of chloride is not significantly altered by the antibiotic. The primary action of Amphotericin B which appears to modify rabbit and guinea pig gallbladders from having transmural PD's of less than ±1 mV to having serosa-positive PD's of 5–30 mV is an increase in the mucosal cell membrane permeability to Na. This permeability change has the effect of partially uncoupling NaCl influx. A rheogenic Na pump mechanism at the basolateral membrane, presumably in operation under control conditions also, may account for the PD.  相似文献   

13.
Determinants of epithelial cell volume   总被引:1,自引:0,他引:1  
Epithelial cell volume is determined by the concentration of intracellular, osmotically active solutes. The high water permeability of the cell membrane of most epithelia prevents the establishment of large osmotic gradients between the cell and the bathing solutions. Steady-state cell volume is determined by the relative rates of solute entry and exit across the cell membranes. Inhibition of solute exit leads to cell swelling because solute entry continues; inhibition of solute entry leads to cell shrinkage because solute exit continues. Cell volume is then a measure of the rate and direction of net solute movements. Epithelial cells are also capable of regulation of the rate of solute entry and exit to maintain intracellular composition. Feedback control of NaCl entry into Necturus gallbladder epithelial cells is demonstrable after inhibition of the Na,K-ATPase or reduction in the NaCl concentration of the serosal bath. Necturus gallbladder cells respond to a change in the osmolality of the perfusion solution by rapidly regulating their volume to control values. This regulatory behavior depends on the transient activation of quiescent transport systems. These transport systems are responsible for the rapid readjustments of cell volume that follow osmotic perturbation. These powerful transporters may also play a role in steady-state volume regulation as well as in the control of cell pH.  相似文献   

14.
The hydraulic water permeability (Lp) of the cell membranes of Necturus gallbladder epithelial cells was estimated from the rate of change of cell volume after a change in the osmolality of the bathing solution. Cell volume was calculated from computer reconstruction of light microscopic images of epithelial cells obtained by the "optical slice" technique. The tissue was mounted in a miniature Ussing chamber designed to achieve optimal optical properties, rapid bath exchange, and negligible unstirred layer thickness. The control solution contained only 80% of the normal NaCl concentration, the remainder of the osmolality was made up by mannitol, a condition that did not significantly decrease the fluid absorption rate in gallbladder sac preparations. The osmotic gradient ranged from 11.5 to 41 mosmol and was achieved by the addition or removal of mannitol from the perfusion solutions. The Lp of the apical membrane of the cell was 1.0 X 10(-3) cm/s . osmol (Posm = 0.055 cm/s) and that of the basolateral membrane was 2.2 X 10(-3) cm/s . osmol (Posm = 0.12 cm/s). These values were sufficiently high so that normal fluid absorption by Necturus gallbladder could be accomplished by a 2.4-mosmol solute gradient across the apical membrane and a 1.1-mosmol gradient across the basolateral membrane. After the initial cell shrinkage or swelling resulting from the anisotonic mucosal or serosal medium, cell volume returned rapidly toward the control value despite the fact that one bathing solution remained anisotonic. This volume regulatory response was not influenced by serosal ouabain or reduction of bath NaCl concentration to 10 mM. Complete removal of mucosal perfusate NaCl abolished volume regulation after cell shrinkage. Estimates were also made of the reflection coefficient for NaCl and urea at the apical cell membrane and of the velocity of water flow across the cytoplasm.  相似文献   

15.
The role of Na+-H+ exchange in Na+ transport across the apical membrane was evaluated in Necturus gallbladder epithelium by means of intracellular Na+ activity (aNai) and 22Na+ uptake measurements. Under control conditions, complete replacement of Na+ in the mucosal solution with tetramethylammonium reduced aNai from 14.0 to 6.9 mM in 2 min (P less than 0.001). Mucosal addition of the Na+-H+ exchange inhibitor amiloride (10(-3) M) reduced aNai from 15.0 to 13.3 mM (P less than 0.001), whereas bumetanide (10(-5) and 10(-4) M) had no effect. Na+ influx across the apical membrane was studied by treating the tissues with ouabain, bathing them in Na-free solutions, and suddenly replacing the mucosal solution with an Na-containing solution. When the mucosal solution was replaced with Na-Ringer's, aNai increased at approximately 11 mM/min. This increase was inhibited by 54% by amiloride (10(-3) M, P less than 0.001) and was unaffected by bumetanide (10(-5) M). Amiloride-inhibitable Na+ fluxes across the apical membrane were also induced by the imposition of pH gradients. Na+ influx was also examined in tissues that had not been treated with ouabain. Under control conditions, 22Na+ influx from the mucosal solution into the epithelium was linear over the first 60 s and was inhibited by 40% by amiloride (10(-3) M, P less than 0.001) and by 19% by bumetanide (10(-5) M, P less than 0.025). We conclude that Na+-H+ exchange is a major pathway for Na+ entry in Necturus gallbladder, which accounts for at least half of apical Na+ influx both under transporting conditions and during exposure to ouabain. Bumetanide-inhibitable Na+ entry mechanisms may account for only a smaller fraction of Na+ influx under transporting conditions, and cannot explain influx in ouabain-treated tissues. These results support the hypothesis that NaCl entry results primarily from the operation of parallel Na+-H+ and Cl--HCO-3 exchangers, and not from a bumetanide-inhibitable NaCl cotransporter.  相似文献   

16.
Cell volume regulation in liver   总被引:5,自引:0,他引:5  
The maintenance of liver cell volume in isotonic extracellular fluid requires the continuous supply of energy: sodium is extruded in exchange for potassium by the sodium/potassium ATPase, conductive potassium efflux creates a cell-negative membrane potential, which expelles chloride through conductive pathways. Thus, the various organic substances accumulated within the cell are osmotically counterbalanced in large part by the large difference of chloride concentration across the cell membrane. Impairment of energy supply leads to dissipation of ion gradients, depolarization and cell swelling. However, even in the presence of ouabain the liver cell can extrude ions by furosemide-sensitive transport in intracellular vesicles and subsequent exocytosis. In isotonic extracellular fluid cell swelling may follow an increase in extracellular potassium concentration, which impairs potassium efflux and depolarizes the cell membrane leading to chloride accumulation. Replacement of extracellular chloride with impermeable anions leads to cell shrinkage. During excessive sodium-coupled entry of amino acids and subsequent stimulation of sodium/potassium-ATPase by increase in intracellular sodium activity, an increase in cell volume is blunted by activation of potassium channels, which maintain cell membrane potential and allow for loss of cellular potassium. Cell swelling induced by exposure of liver cells to hypotonic extracellular fluid is followed by regulatory volume decrease (RVD), cell shrinkage induced by reexposure to isotonic perfusate is followed by regulatory volume increase (RVI). Available evidence suggests that RVD is accomplished by activation of potassium channels, hyperpolarization and subsequent extrusion of chloride along with potassium, and that RVI depends on the activation of sodium hydrogen ion exchange with subsequent activation of sodium/potassium-ATPase leading to the respective accumulation of potassium and bicarbonate. In addition, exposure of liver to anisotonic perfusates alters glycogen degradation, glycolysis and probably urea formation, which are enhanced by exposure to hypertonic perfusates and depressed by hypotonic perfusates.  相似文献   

17.
In the rat erythrocyte membrane five different transport pathways for K+ are present. In addition to the well characterised K+ transport via the Na+ pump, the Na,K,Cl cotransport and the Ca(2+)-activated K+ channel, there are a K,Cl cotransport and a residual (leak) K+ transport. The K,Cl cotransport is already present under physiological conditions, and can be stimulated by N-ethylmaleimide treatment but not by a cell volume increase. A low ionic strength stimulated increase of the residual K+ influx can be demonstrated in rat erythrocytes after suppressing the K,Cl cotransport pathway. Between 11 and 19 weeks of age, rats show significant differences in all transport pathways of the erythrocyte potassium influx. Using influx data from individual rats a significant correlation between the total K+ influx and the ouabain-sensitive K+ influx has been found. Maintaining the rats on a diet poor in essential fatty acids leads to a significant change of the linoleic acid content of the erythrocyte membrane phospholipids. However, no significant effect on the various K+ transport pathways has been found. An analysis of the fatty acid composition of the erythrocyte membrane phospholipids showed significant correlations between the content of oleic acid, and arachidonic acid, and the ouabain-sensitive K+ influx (as well as the total K+ influx).  相似文献   

18.
Osmotic shock is well recognized as one of the factors activating stress-activated protein kinases (SAPKs), p38 MAP kinase and c-Jun N-terminal kinases (JNKs). In renal epithelial A6 cells, hypo-osmotic shock transiently activated SAPKs with maximal activation at 5 min. A6 cells showed a regulatory volume decrease (RVD) after swelling when the cells were exposed to a hypo-osmotic solution. In contrast, activation of SAPKs was maintained over 90 min after hypo-osmotic shock in the presence of 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, a Cl(-) channel blocker), which completely blocked the RVD and kept the cells continuously swelling. Exposure of the cells to a high K(+) iso-osmotic solution containing nystatin, which induces continuous cell swelling, also continuously activated SAPKs. Furthermore, membrane deformation induced by chlorpromazine activated SAPKs. These results suggest that changes in membrane tension by cell swelling or chlorpromazine, but not osmolality, are important steps for activation of SAPKs in A6 cells.  相似文献   

19.
Measurements of cell volume changes, free cytosolic Ca2+ concentration [( Ca2+]i) with Fura 2 and cell membrane potential with 3,3'-dipropylthiodicarbocyanine iodide were used to study the effect of cell volume change on Ca2+ influx and the membrane potential of the osteoblastic osteosarcoma cell line, UMR-106-01. Swelling the cells by hypo-osmotic stress was followed by reduction in cell volume which was markedly impaired by removal of medium Ca2+. Accordingly, cell swelling resulted in [Ca2+]i increase only in the presence of medium Ca2+. The cell swelling-activated Ca2+ entry pathway was active at resting membrane potentials, and Ca2+ influx through this pathway markedly increased upon cell hyperpolarization. A linear relationship between Ca2+ entry and the potential across the plasma membrane was observed. Thus, the volume-activated Ca2+ permeating pathway in UMR-106-01 cells has conductive properties. These pathways do not spontaneously inactivate with time when the cells are not allowed to volume regulate. The pathway can be blocked by micromolar concentrations of nicardipine and La3+ but display very low sensitivity to diltiazem and verapamil. Activation of the volume-sensitive, Ca2+ permeating pathway was not dependent on an increase in [Ca2+]i. Likewise, activation of the pathway was independent of a change in membrane potential between -85 and -3 mV. The increase in [Ca2+]i resulted in hyperpolarization of the cells, probably due to activation of Ca2+-activated K+ channels. The volume-sensitive pathways were partially active under isotonic conditions. Their activity was inhibited by cell shrinkage and increased by cell swelling. The pathways were sensitive to small changes in cell volume, particularly around a medium osmolarity of 310 mosM.  相似文献   

20.
Exposure to hypotonic stress produces a transient increase in cell volume followed by a regulatory volume decrease (RVD) in both THP-1 and HL-60 cells. In contrast, cells exposed to hypotonic stress in a high K/low Na Hanks' solution not only failed to volume regulate, but displayed a secondary swelling. Thus, while an outward K gradient was required ful KVD, the secondary swelling indicated that hypotonic stress increased permeability in the absence of a negative membrane potential. The K channel blocker quinine (1–4 mM) blocked RVD in both cell types. Gramicidin's ability to overcome the quinine block of RVD indicated that RVD is mediated by a quinine-sensitive cation transport mechanism that is independent of the swelling-induced anion transport mechanism. Barium (1–4 mM), another K channel blocker, slowed the rate of RVD, while 4-aminopyridine, charybdotoxin, tetraethylammonium chloride, tetrabutylammonium chloride, and gadolinium had no effect on RVD. Furthermore, RVD was not mediated by calcium-activated conductances, since it occurred normally in Ca-free medium, in medium containing cadmium, and in BAPTA-loaded cells. Gramicidin produced little or no volume change in isotonic medium, suggesting that basal C1 permeability of both THP-1 and HL-60 cells is low. However, swelling induced an anion efflux pathway that is permeable to both chloride and bromide, but is impermeable to methanesulfonate and glutamate. The anion channel blocker 3,5-diiodosalicylic acid (DISA) antagonized RVD in both cell types. In conclusion, RVD in THP-1 and HL-60 cells is mediated by independent anion and cation transport mechanisms that involve both a DISA-sensitive anion pathway and a quinine-inhibitable K efflux pathway, neither of which requires increases in intra-cellular calcium to be activated. © 1994 wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号