首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prospects of using low pressure that creates a low-oxygen atmosphere to control stored-product insects were investigated in the laboratory. Eggs, larvae, and pupae of Tribolium castaneum (Herbst), Plodia interpunctella (Hübner), and Rhyzopertha dominica (F.) were exposed to 32.5 mmHg in glass chambers at 25, 33, 37, and 40 degrees C for times ranging from 30 min to 144 h. Time-mortality data were subjected to probit analyses and lethal dose ratios were computed to determine differences in lethal time (LT) values among all species-life stage combinations across the four temperatures. Eggs of each species were the life stage most tolerant to low pressure. Pupae of T. castaneum and R. dominica were more tolerant to low pressure than larvae. In all life stages, mortality increased with increasing exposure time to low pressure and also with increasing temperature. Immature stages of R. dominica were more tolerant to low pressure than immature stages of the other two species. The LT99 for R. dominica eggs was 176.32 h at 25 degrees C and that for P. interpunctella eggs was 28.35 h at the same temperature. An increase in temperature to 33 degrees C resulted in a LT99 < of 85.98 h for R. dominica and 6.21 h for P. interpunctella. Higher temperatures resulted in further significant reduction in lethal time values. Low pressure represents a simple, nonchemical alternative to fumigants such as methyl bromide and phosphine for controlling pests of stored-products or other commodities.  相似文献   

2.
One California processor of organic garbanzo beans (Cicer arietinum L.), unable to use chemical fumigants, relies on 30-d storage at -18 degrees C to disinfest product of the cowpea weevil, Callosobruchus maculatus (F). To determine whether the storage period may be shortened, the most cold-tolerant life stage of the cowpea weevil was identified. Laboratory studies showed that the egg stage was most tolerant to -18 degrees C and that adults were most susceptible. To examine the efficacy of cold storage disinfestation, bags of black-eyed peas, Vigna unguiculata (L.) Walp., infested with cowpea weevil eggs were buried within garbanzo bean bins placed in a commercial cold storage facility kept at approximately -18 degrees C and removed after 7, 14, and 21 d. Survival was highest in eggs located at the center of the bins and coincided with the slowest cooling rate. Although temperatures within the bins did not reach -18 degrees C until after 14-19 d, egg mortality was estimated to be >98% after just 7 d of exposure. Complete mortality of eggs occurred after 14 d of cold storage. A 2-wk treatment regimen may be sufficient for control of cowpea weevil in organic legumes.  相似文献   

3.
Heat treatment of food-processing facilities involves using elevated temperatures (50-60 degrees C for 24-36 h) for management of stored-product insects. Heat treatment is a viable alternative to the fumigant methyl bromide, which is phased out in the United States as of 2005 because of its adverse effects on the stratospheric ozone. Very little is known about responses of the cigarette beetle, Lasioderma serricorne (F.) (Coleoptera: Anobiidae), a pest associated with food-processing facilities, to elevated temperatures. Responses of L. serricorne life stages to elevated temperatures were evaluated to identify the most heat-tolerant stage. Exposure of eggs, young larvae, old larvae, and adults during heat treatment of a food-processing facility did not clearly show a life stage to be heat tolerant. In the laboratory, exposure of eggs, young larvae, old larvae, pupae, and adults at fixed times to 46, 50, and 54 degrees C and 22% RH indicated eggs to be the most heat-tolerant stage. Time-mortality responses at each of these three temperatures showed that the time for 99% mortality (LT99) based on egg hatchability and egg-to-adult emergence was not significantly different from one another at each temperature. Egg hatchability alone can be used to determine susceptibility to elevated temperatures between 46 and 54 degrees C. The LT99 based on egg hatchability and egg-to-adult emergence at 46 degrees C was 605 and 598 min, respectively, and it decreased to 190 and 166 min at 50 degrees C and 39 and 38 min at 54 degrees C. An exponential decay equation best described LT99 as a function of temperature for pooled data based on egg hatchability and egg-to-adult emergence. Our results suggest that during structural heat treatments eggs should be used in bioassays for gauging heat treatment effectiveness, because treatments aimed at controlling eggs should be able to control all other L. serricorne life stages.  相似文献   

4.
The drugstore beetle, Stegobium paniceum (L.) (Coleoptera: Anobiidae), is a pest of stored medicinal and aromatic plants. Generally, mortality of each stage increased with an increase of temperature and exposure time. Heat tolerance for different stages from highest to lowest was young larvae, old larvae, eggs, adult, and pupae. The mortality after 7 h at 42 degrees C for young larvae, old larvae, eggs, adults, and pupae, respectively, was 16 +/- 5, 31 +/- 6, 48 +/- 3, 63 +/- 8, and 86 +/- 2% (mean +/- SEM). Similar trends for stage specific mortality were seen with the lethal time for 90% mortality (LT90) at 42 degrees C; 773, 144, 12, and 11 h for old larvae, eggs, adults, and pupa respectively. Mortality was too low with young larvae to estimate LT90. The LT90 for young larvae at 42, 45, 50, 55, and 60 degrees C was 25, 20, 3.9, 0.18, and 0.08 h, respectively. The cold tolerance of different stages at 0 degree C from highest to lowest was adults, old larvae, young larvae, pupae, and eggs. The LT90 at 0 degrees C was 298, 153, 151, 89, and 53 h, respectively. The LT90 for adults at 5, -5, -10, and -15 degrees C was 792, 58, 2, and 0.8 h, respectively. The supercooling point of adults was -15.2 +/- 2 degrees C; young larvae, -9.0 +/- 0.8 degrees C; old larvae, -6.5 +/- 0.5 degrees C; and pupae, -4.0 +/- 1.4 degrees C. Heat treatments that control young larvae should control all other stages of S. paniceum. Cold treatments that control adults should control all other stages of S. paniceum. Dried plants stored at 5 degrees C for 45 d or 42 degrees C for 30 h and then kept below 18 degrees C throughout the rest of the year, should remain pest-free without any chemical control.  相似文献   

5.
The use of elevated temperatures (> or = 40-60 degrees C) or heat treatments for managing insects in food-processing facilities is a viable alternative to space fumigation with methyl bromide. Quantitative data are lacking on the responses of life stages of the red flour beetle, Tribolium castaneum (Herbst), an important pest of food-processing facilities worldwide, to elevated temperatures used during heat treatments. We determined time-mortality relationships for eggs, young (neonate) larvae, old larvae, pupae, and adults of T. castaneum, exposed to constant temperatures of 42, 46, 50, 54, 58, and 60 degrees C. Generally, mortality of each stage increased with an increase in temperature and exposure time. Young larvae were the most heat-tolerant stage, especially at temperatures > or = 50 degrees C. Exposure for a minimum of 7.2 h at > or = 50 degrees C was required to kill 99% of young larvae, whereas the other stages required < or = 1.8 h. Heat treatments that control young larvae should control all other stages of T. castaneum, and young larvae should be used as test insects to evaluate efficacy against T. castaneum during an actual facility heat treatment. These results provide the basis for successful use of elevated temperatures for management of T. castaneum life stages associated with food-processing facilities.  相似文献   

6.
Low pressure applied to a commodity creates a low-oxygen atmosphere that can be effective to control stored-product insects. Previous work determined that eggs of several species of stored-product insects were among the most tolerant life stages to low pressure. The current study was conducted to determine the mortality of eggs in response to various pressures, temperatures, and exposure times. An initial experiment determined that the sensitivity of eggs to vacuum varied with their age. Eggs of Plodia interpunctella (Hübner) were most sensitive to low pressure when they were 3 or 48 h old, whereas those of Rhyzopertha dominica (F.) were most sensitive at 12 and 120 h of age. In subsequent experiments, eggs of Cadra cautella (Walker), P. interpunctella, R. dominica, and Tribolium castaneum (Herbst) were exposed to pressures of 50, 75, 100, 200, and 300 mmHg in glass chambers at 5, 15, 22.5, 30, and 37.5 degrees C for times ranging from 12 to 168 h. Time-mortality data were subjected to probit analyses and lethal dose ratios were computed to determine differences in lethal time values among species across the 25 low pressure-temperature combinations for each species. In all four species the mortality of eggs increased with increasing exposure time and temperature. Low temperatures and high pressures were the least effective conditions for killing eggs, compared with high temperatures combined with low pressures in all species investigated. These results provide important guidelines for developing treatment schedules for disinfestation of commodities on a commercial scale.  相似文献   

7.
8.
Concerns over insect resistance, regulatory action, and the needs of organic processors have generated renewed interest in developing nonchemical alternative postharvest treatments to fumigants used on dried fruits and nuts. Low-temperature storage has been identified as one alternative for the Indianmeal moth, Plodia interpunctella (Hiibner), and navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), common postharvest pests in California dried fruits and nuts. The response of eggs, nondiapausing larvae, and pupae of both species to exposure to low temperatures (0, 5, and 10 degrees C) was evaluated. Eggs of both species were the least tolerant of low temperatures. At 0 and 5 degrees C, pupae were most tolerant, but at 10 degrees C, nondiapausing larvae of both species were most tolerant, with lethal time (LT)95 values of 127 and 100 d for Indianmeal moth and navel orangeworm, respectively. The response of diapausing Indianmeal moth larvae to subfreezing temperatures also was evaluated. Diapausing larvae were very cold tolerant at -10 degrees C, with LT95 values of 20 and 17 d for long-term laboratory and recently isolated cultures, respectively. Diapausing larvae were far less tolerant at lower temperatures. At -15 degrees C, LT95 values for both cultures were <23 h, and at -20 degrees C, LT95 values were <7 h. Refrigeration temperatures of 0-5 degrees C should be useful in disinfesting product contaminated with nondiapausing insects, with storage times of 3 wk needed for adequate control. Relatively brief storage in commercial freezers, provided that the temperature throughout the product was below -15 degrees C for at least 48 h, also shows potential as a disinfestation treatment, and it is necessary when diapausing Indianmeal moth larvae are present.  相似文献   

9.
Abstract:  The efficacy of methyl iodide (MI) as a fumigant against all developmental stages of the maize weevil, Sitophilus zeamais Motsch. was investigated. Tests were conducted with concentrations of 1.5, 1.8, 2.1, 2.4, 2.7 and 3.0 mg/l, for a 6-h exposure period. Values of LC50, LC95 and LC99 of MI for immatures and adult stages were determined. The present laboratory tests showed that MI was toxic to various life stages of S. zeamais at relatively short exposure periods. At the LC50 and LC95 levels, the most susceptible stage was the egg stage followed by larvae, pupae and adults (1-day mortality). The egg was found to be most susceptible to MI, requiring 0.81 and 2.16 mg/l for 50 and 99% mortality, respectively, while the adult was most tolerant, requiring 2.30 and 3.02 mg/l for 50 and 99% mortality, respectively, based on 1-day mortality count. Pupae were less susceptible to MI than egg and larvae, requiring 1.47 and 3.19 mg/l for 50 and 99% mortality, respectively. Based on the present toxicity tests, MI has the potential for use as a fumigant to control all developmental stages of the maize weevil, S. zeamais .  相似文献   

10.
Methyl bromide, a space fumigant used in food-processing facilities, may be phased out in the United States by 2005. The use of elevated temperatures or heat treatment is gaining popularity as a methyl bromide alternative. During heat treatment, the temperature of the whole food-processing facility, or a portion of it, is raised and held between 50 and 60 degrees C for 24-36 h to kill stored-product insects. We determined time-mortality responses of the confused flour beetle, Tribolium confusum (Jacquelin du Val), eggs, young larvae, old larvae, pupae, and adults exposed to six constant temperatures between 46 and 60 degrees C. Responses of all five insect stages also were measured using exposure times of 160, 40, and 12 min at 46, 50, and 60 degrees C, respectively. Time-mortality responses of all T. confusum life stages increased with an increase in exposure time and temperature. Both time-mortality and fixed time responses showed eggs and young larvae to be most susceptible at elevated temperatures and old larvae to be least susceptible. Our results suggest that old larvae should be used as test insects to gauge heat treatment effectiveness, because heat treatment aimed at controlling old larvae should be able to control all other T. confusum life stages. Besides providing baseline data for successful use of heat treatments, time-mortality data collected at the six temperatures can be used for developing thermal death kinetic models for this species to predict mortality during actual facility heat treatments.  相似文献   

11.
Monoterpenoids and low pressure have each been demonstrated to cause mortality of stored-product insect pests. The current report investigated the prospects of integrating the two methods in the management of diapausing and nondiapausing larvae of Plodia interpunctella (Hübner). In a separate experiment, the larvae were exposed to 35.5 mmHg in Erlenmeyer flasks at 19 and 28 degrees C for times ranging from 30 min to 96 h. Another set of experiments was conducted to investigate the toxicity of exposing P. interpunctella larvae to monoterpenoids including E-anethole, estragole, S-carvone, linalool, L-fenchone, geraniol, gamma-terpinene, and DL-camphor alone or in combination with low pressure (50 mmHg). Lethal times (LT) determined by subjecting time-mortality data to probit analyses were shortened to half when both diapausing and nondiapausing larvae were exposed to low pressure at 28 degrees C compared with 19 degrees C. Exposure of diapausing larvae to a monoterpenoid alone, with the exception of DL-camphor and estragole, at a concentration of 66.7 microl/1L of volume required > 30 h to generate 99% mortality at 19.0 +/- 0.8 degrees C. However, the LT99 values for diapausing and nondiapausing larvae exposed to combinations of DL-camphor or estragole and low pressure were considerably shortened. Combinations involving the rest of the monoterpenoids investigated and low pressure did not generate LT99 that were shorter than those of the control, which was low pressure only. These results suggest that integrating low pressure with DL-camphor or estragole could be a new method for the control of diapausing larvae of P. interpunctella at cooler temperatures.  相似文献   

12.
The relative toxicity of propylene oxide (PPO) at a low pressure of 100 mm Hg to four species of stored product insect at 30 degrees C over a 4-h exposure period was investigated. PPO at 100 mm Hg was toxic to all four species tested: Tribolium castaneum (Herbst), Plodia interpunctella (Hübner), Ephestia cautella (Wlk.), and Oryzaephilus surinamensis (L.). There were differences in susceptibility between the life stages of the tested insect species. Mortality tests on all life stages of the insects resulted in LD99 values ranging from 4.7 to 26.1 mg/liter. The pupal stage of E. cautella, O. surinamensis, and T. castaneum was the most tolerant stage with LD99 values of 14.4, 26.1, and 25.7 mg/liter, respectively. For P. interpunctella, the egg stage was most tolerant, with a LD99 value of 15.3 mg/liter. Generally, PPO at 100 mm Hg was more toxic to P. interpunctella and E. cautella than to O. surinamensis and T. castaneum. A 99% mortality of all life stages of the tested species was achieved at a concentrations x time product of 104.4 mg h/liter. These findings indicate that a combination of PPO with low pressure can render the fumigant a potential alternative to methyl bromide for rapid disinfestation of commodities.  相似文献   

13.
Heating the ambient air of a whole, or a portion of a food-processing facility to 50 to 60 degrees C and maintaining these elevated temperatures for 24 to 36 h, is an old technology, referred to as heat treatment. There is renewed interest in adopting heat treatments around the world as a viable insect control alternative to fumigation with methyl bromide. There is limited published information on responses of the Indian meal moth, Plodia interpunctella (Hübner), exposed to elevated temperatures typically used during heat treatments. Time-mortality relationships were determined for eggs, fifth-instars (wandering-phase larvae), pupae, and adults of P. interpunctella exposed to five constant temperatures between 44 and 52 degrees C. Mortality of each stage increased with increasing temperature and exposure time. In general, fifth-instars were the most heat-tolerant stage at all temperatures tested. Exposure for a minimum of 34 min at 50 degrees C was required to kill 99% of the fifth-instars. It is proposed that heat treatments aimed at controlling fifth-instars should be able to control all other stages of P. interpunctella.  相似文献   

14.
Invasive ectothermic species are limited in their geographic range expansion primarily by their capacity to withstand temperature extremes. Epiphyas postvittana is a highly polyphagous invasive leafroller that was discovered in California in 2006. To predict its potential range and future response to climate change, high temperature tolerance of this species was determined for all life stages and larval instars. Using the static method to estimate high temperature tolerance with response to probing as an endpoint, the mean time leading to 50% mortality (LT(50)) ranged from 45 to 187h at 32.3°C, 34 to 68h at 36°C, 11 to 21h at 38°C, and 1.2 to 5.6h at 40.4°C. There was no clear pattern in the relative tolerance of the life stages across the range of temperatures tested. For pupae and adults, gender did not influence the LT(50) values at any of the temperatures tested. For the larval instars, LT(50) values increased with increasing larval instar at the highest three temperatures while this trend was reversed for the lowest temperature (32.3°C). An analysis of LT(50) values obtained from acute responses to probing compared to subsequent survival to adult emergence, showed that chronic mortality severely affected all larval instars at three out of the four constant temperatures and resulted in 64-85% reduction in LT(50) values. No difference in acute and chronic mortality was found for exposure of the egg stage to high temperatures. These findings have important implications for predicting thermal limits and range expansions of insect species, since upper thermal tolerance could readily be overestimated from the use of ad hoc rather than ecologically relevant endpoint measurements such as survival to adult emergence.  相似文献   

15.
Short-term storage regimens containing elevated atmospheres of carbon dioxide (CO2) were evaluated for their ability to disinfest newly harvested 'McIntosh' apples of apple maggot, Rhagoletis pomonella (Walsh). Infested fruits containing newly laid eggs were either placed directly into the high-CO2 atmosphere at 10 degrees C to expose this life stage, or else held first for 7 d at room temperature, to allow development to the neonate larval stage. Treatment combinations consisted of three different CO2 levels (10.6, 14.9, and 19.0% CO2) and two periods of exposure (7 and 14 d). Apple maggot eggs subjected to the treatments always exhibited some survival, which was lower for the 14-d than the 7-d exposure periods. In contrast, newly hatched larvae were less able to survive the treatments. The 7-d exposure allowed low levels of survival of this life stage, but virtually none survived the 14-d exposure period. To determine the age at which eggs become more susceptible to high-CO2 atmospheres, infested fruits containing eggs three or 3d old were submitted to a 14-d exposure to 19.0% CO2. Survival of 3-d old eggs was similar to that of eggs exposed at an age of 1 d or less, but this dropped to near zero for 5-d old eggs, indicating an increase in susceptibility sometime during the 3-5-d age range. Fruits exposed to 19.0% CO2 for 14 d were significantly firmer than untreated fruits. No apparent browning, internal breakdown or other fruit defects were detected in any of the treatments.  相似文献   

16.
The mold mite Tyrophagus putrescentiae (Shrank) is a common pest of stored food products. Until recently, commodity and facility treatments have relied on acaricides and fumigants to control this mite. However, T. putrescentiae will cause infestations in areas where acaricide or fumigant use may be restricted, prohibited, or highly impractical. Because temperature is an essential factor that limits the survival of arthropod species, extreme temperatures can be exploited as an effective method of control. Making low-temperature treatments reliable requires better temperature-time mortality estimates for different stages of this mite. This was accomplished by exposing a representative culture (eggs, nymphs, and adults) of noncold-acclimated T. putrescentiae to subfreezing temperatures to determine their supercooling points (SCPs), lower lethal temperatures (LLTs) and lethal times (LTimes) at set temperatures. The results indicate that the adult and nymphal stages of T. putrescentiae are freeze intolerant; based on 95% CIs, the adult LLT90 of -22.5 degrees C is not significantly different from the SCP of -24.2 degrees C and the nymphal LLT90 of -28.7 degrees C is not significantly different from the SCP of -26.5 degrees C. The egg stage seems to be freeze tolerant, with an LLT90 of -48.1 degrees C, significantly colder by approximately 13.5 degrees C than its SCP of -35.6 degrees C. The LTime demonstrates that 90% of all mite stages of T. putrescentiae can be controlled within commodity or packaged product by freezing to -18 degrees C for 5 h. By achieving the recommended time and temperature exposures, freezing conditions can be an effective way of controlling mites and reducing chronic infestations.  相似文献   

17.
Eggs of the Indianmeal moth, Plodia interpunctella (Hübner), were exposed to the labeled rate of hydroprene (1.9 x 10(-3) mg [AI]/cm2) sprayed on concreted petri dishes. These eggs were exposed for 1, 3, 6, 12, and 18 h and until hatching (continuous exposure) at temperatures of 16, 20, 24, 28, and 32 degrees C and 57% RH until the emergence of first instars. The developmental time and egg mortality were significantly influenced by temperature and exposure periods. At 16 degrees C, hydroprene did not cause differences in developmental time when eggs were exposed for different periods. At temperatures >16 degrees C, both exposure period and temperature influenced developmental time. The maximum developmental time (15.0 +/- 0.2 d) occurred at 16 degrees C, and the minimum developmental time (3.2 +/- 0.3 d) occurred at 32 degrees C. Mortality increased when eggs were exposed to hydroprene for longer periods at all of the five tested temperatures. The greatest mortality (81.6 +/- 2.1%) occurred when eggs were continuously exposed on treated surfaces at 32 degrees C. We used developmental time instead of rate (1/ developmental time) to fit simple linear or polynomial regression models to the development data. Appropriate models for developmental time and mortality were chosen based upon lack-of-fit tests. The regression models can be used in predictive simulation models for the population dynamics of Indianmeal moth to aid in optimizing use of hydroprene for insect management.  相似文献   

18.
Ecotherms adjust their physiology to environmental temperatures. Long‐term exposures to heat or cold typically induce acclimation responses that generate directional, but reversible shifts in thermal tolerance and performance. However, less is known about how short exposure in different life stages will affect the adult phenotype. In the present study, we compared the effects of long‐term temperature exposure to 15, 19 and 31 °C with that of brief (16 h) exposure periods at the same temperatures in Drosophila melanogaster eggs, larvae, pupae, or adults, respectively. The acclimation responses are evaluated using activity measurements at 11, 15, 19, 27, 31 and 33 °C and by measuring upper and lower thermal limits (CTmax and CTmin) in 5‐day‐old adult males. As expected, long‐term cold exposure reduces relative CTmin, whereas long‐term heat exposure increases relative CTmax. By contrast, we find little effect on thermal limits when using short‐term exposures at different life stages. Long‐term exposures to 31 and 15 °C both suppressed activity relative to the 19 °C control, suggesting that development at high and low temperatures may lead to reduced activity later in life. Short‐term cold exposure early in development reduces activity in the adult stage, whereas the effects of short‐term heat exposure on behaviour are dependent on life stage and test temperature. Together, our results highlight how the thermal sensitivity of the trait measured determines the ability to detect acclimation responses.  相似文献   

19.
The efficacy of two different formulations of Citrullus colocynthis extracts (emulsifiable and powder) were tested as contact and fumigant toxicants against cowpea weevil adults, Callosobruchus chinensis. The emulsifiable concentrate showed repellent activity against the adults. No eggs were laid by females in the choice test at 1.0% concentration compared with 150.0 eggs in control. Using the same concentration, the females deposited 1.4 eggs in the non-choice test compared with 78.2 eggs in control. The concentration of 2.5 μl/38.5 ml air of citrullus emulsifiable caused 100% mortality to adults during one day in the fumigation test. Also, the vapor of citrullus emulsifiable was highly effective against eggs of cowpea weevil, where, at 2.5 μl/38.5 ml air, no eggs hatched. Both formulations affect the different biological aspects of cowpea weevil, however, citrullus emulsifiable concentrate was more potent than the citrullus powder.  相似文献   

20.
Lesser appleworm, Grapholita prunivora (Walsh), eggs were subjected to cold storage conditions at 2.0 degrees C +/- 0.2 degrees C for 0-90 d. The most tolerant embryonic stage was the blackhead stage (96-120-h-old eggs) with an LT90 of 25 d. The four instars of lesser appleworm were subjected to cold storage conditions at 2.0 degrees C +/- 0.2 degrees C for 0-280 d. The fourth instar was the most tolerant to cold storage, with an LT90 of 71.5 d. Exposure to low temperatures such as those commonly used for fruit storage shows promise as an alternative to fumigation for lesser appleworm eggs and larvae on apples and pears after harvest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号