首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Chronobiology international》2013,30(7):1389-1408
Food is not continuously available in the wild, and so most animals show a wide variety of circadian rhythms that can be entrained to feeding time. The aim of this research was to evaluate the effect of time-restricted feeding on the daily rhythms of gilthead sea bream, with food being provided during the day or night under a 12:12?h light-dark (LD) cycle or constant light (LL) conditions. Self-feeding and locomotor activity, as well as daily rhythms of cortisol, glucose, and melatonin, were evaluated. Fish synchronized their feeding behavior to the feeding phase, so that in LD they displayed 78% nocturnal feeding activity under night-feeding and 81% diurnal feeding activity under day-feeding, while under LL-feeding they displayed 72% of their daily activity during the 12?h feeding phase. In contrast, locomotor activity was mostly diurnal (66–71%), regardless of the feeding schedule, and it became arrhythmic under LL. Cortisol showed daily rhythms that peaked at different times, depending on the light and feeding schedule: one peak several hours before feeding under day-feeding and night-feeding, and two peaks under LL-feeding. Glucose displayed low-amplitude variations, with no daily rhythms being detected. Melatonin, however, showed a nocturnal rhythm, regardless of the feeding schedule, while the rhythm became attenuated under LL. Taken together, these results highlight the role of feeding on endocrine and metabolic rhythms, suggesting that feeding behavior should be considered when studying these variables. (Author correspondence: )  相似文献   

2.
Mouse eosinophils undergo circadian fluctuation, and the phasing of the rhythm normally is synchronized to the environmental light-dark cycle if food always is available. This study was undertaken to determine whether or not the same rhythm could be synchronized to restricted feeding schedules. It was found that if food is available ad libitum for only short spans (in this case, 4 h during each 24 h period), the rhythm becomes synchronized to the feeding schedule. In addition, restricting food to certain 4 h spans causes the amplitude of the eosinophil rhythm to increase significantly over that of normal, light-dark synchronized animals. Not all rhythmic variables synchronize to restricted feeding schedules. Some remain synchronized to the light-dark cycle; the phasing of others seems to be the result of an interaction between both the light-dark cycle and the feeding schedule. These studies help dispel the popular misconception that all body functions react in the same manner to different synchronizers and emphasize that one must not generalize about the synchronizing effect of feeding or lighting.  相似文献   

3.
The effects of the time of day of drug administration on the subchronic toxicity and pharmacokinetics of gentamicin, as well as the role of feeding schedule on circadian rhythms, were investigated in mice. ICR male mice were housed in a light-dark (LD) cycle (12:12) with food and water ad libitum (ALF) or under a time-restricted feeding (TRF) schedule (feeding time: 8 h during the light phase) for 1 day or 14 days before drug administration. The animals were given a single subcutaneous dose of gentamicin 180 mg/kg for the kinetic studies and subcutaneous doses of gentamicin 180 mg/kg/day for 14 days or 220 mg/kg/day for 18 days for the subchronic toxicity studies. A significant dosing-time dependency was shown for mortality and body weight loss, with higher values at midlight and lower ones at the middark (p > 0.05). A significant circadian rhythm was also found for gentamicin kinetics in ALF mice, with the highest clearance at middark and the lowest one at midlight (p > 0.01). The kinetic rhythm of gentamicin coincided well with the toxicity rhythm of the drug. The TRF schedule had a marked influence on the rhythms of gentamicin kinetics and toxicity, showing lowest clearance and higher toxicity at middark. The rhythm of subchronic toxicity of gentamicin seems to be due, at least in part, to the rhythm in kinetics and is strongly influenced by the feeding schedule. Thus, the timing of dosing is an important factor in the kinetics and the subchronic toxicity of gentamicin administration in mice, and the manipulation of feeding schedule can modify the rhythm of the toxicity by changing the rhythm of gentamicin kinetics.  相似文献   

4.
The activities of rat intestinal enzymes, sucrase, lactase, maltase, trehalase, gamma-glutamyltransferase, leucylnaphthylamide-hydrolyzing activity, and the transport system for glucose follow diurnal rhythms on ad libitum and restricted feeding regimes. In response to 6 days of restricted feeding, food available between 1400 and 1800 Eastern Standard Time, all rhythms shifted in time and the daily levels of activities were changed. Alkaline phosphatase activity followed a diurnal rhythm only in restricted fed animals. In restricted fed rats several activity patterns were observed, some with short periods of maximum activity, 3 h or less, and some with plateaus of maximum activity, 5-9 h long. In respect to the time of day of the synchronizer, sucrase peaked before feeding, glucose transport peaked during feeding, alkaline phosphatase peaked after feeding, and the other enzymes had higher levels of activity before, during and after feeding. The effect of restricted feeding on the daily activity levels were: a decrease in leucylnaphthylamide-hydrolyzing activity, no change in alkaline phosphatase, and increases in the others. These enzyme and transport systems exhibit a large amount of individual regulation or control as reflected by the lack of a uniform activity pattern and response to the synchronizer, and the variation in direction and magnitude of the adaptations to restricted feeding.  相似文献   

5.
The activities of rat intestinal enzymes, sucrase, lactase, maltase, trehalase, γ-glutamyltransferase, leucylnaphthylamide-hydrolyzing activity, and the transport system for glucose follow diurnal rhythms on ad libitum and restricted feeding regimes. In response to 6 days of restricted feeding, food available between 1400 and 1800 Eastern Standard Time, all rhythms shifted in time and the daily levels of activities were changed. Alkaline phosphatase activity followed a diurnal rhythm only in restricted fed animals.In restricted fed rats several activity patterns were observed, some with short periods of maximum activity, 3 h or less, and some with plateaus of maximum activity, 5–9 h long. In respect to the time of day of the synchronizer, sucrase peaked before feeding, glucose transport peaked during feeding, alkaline phosphatase peaked after feeding, and the other enzymes had higher levels of activity before, during and after feeding. The effect of restricted feeding on the daily activity levels were: a decrease in leucylnaphthylamide-hydrolyzing activity, no change in alkaline phosphatase, and increases in the others.These enzyme and transport systems exhibit a large amount of individual regulation or control as reflected by the lack of a uniform activity pattern and response to the synchronizer, and the variation in direction and magnitude of the adaptations to restricted feeding.  相似文献   

6.
Circadian rhythms in honeybees: entrainment by feeding cycles   总被引:3,自引:0,他引:3  
ABSTRACT. Colonies of the South African honeybee race Apis mellifera capensis (Escholtz) were maintained under constant conditions of illumination (200 lux), temperature (25±lC) and relative humidity (65±3%). Activity was measured at the hive entrance. After ad libitum feeding for at least 5 days, food was presented for only 2 h/day either for 1 week (series 1) or for 2 weeks (series 2). In the last part of each experiment, food was again available all the time. Colonies which showed free-running circadian activity rhythms (with periods ranging from 22.6 to 24.8 h) during ad libitum feeding were submitted to feeding cycles with inter-feeding intervals (T) of 22, 23, 24 and 25 h. In most of these experiments the rhythms were synchronized by the feeding schedule, resulting in a stable phase-angle difference between onset of activity and onset of food availability. The duration of this anticipatory activity was positively correlated with T. When ad libitum feeding was resumed, the period of the rhythm induced by the feeding schedule persisted for a few days. Thereafter, the rhythm was free-running again with a period close to that observed in the first part of the experiment. The conclusion is drawn that, under the influence of periodic feeding, the activity of honeybee colonies has the characteristics of an entrained circadian system.  相似文献   

7.
Insulin and gastric inhibitory polypeptide (GIP) have a circadian rhythm of secretion that is altered by various feeding schedules. We acclimated rats over 3 weeks to one of 6 different feeding schedules. They were then killed at intervals over one feeding cycle. Blood was collected, and their stomachs were weighed. Hormones in the serum were measured by radioimmunoassay. When highest and lowest measured concentrations were compared in ad libitum fed rats, insulin more than doubled (445 +/- 50 to 993 +/- 180 pg/ml) and GIP more than tripled (682 +/- 108 to 1964 +/- 145 pg/ml) during a 24-h period. With restricted schedules, concentrations correlated with the feeding schedule, not the light-dark cycle. Hormone levels rose higher during feeding and fell lower with fasting than in ad lib fed rats. For example, GIP in one study fluctuated from 468 +/- 22 to 6433 +/- 432 pg/ml. In another example, insulin ranged from 30 +/- 5 to 2259 +/- 406 pg/ml during a 24-h period. However, insulin did not always correlate well with stomach weight. Circadian rhythms occurred for insulin with all feeding schedules and for GIP with all schedules except fasted rats. This finding implies an endogenous insulin rhythm, whereas food intake controls GIP secretion. Thus, disruption of normal circadian cycles of feeding may yield misleading information about gut hormone secretion.  相似文献   

8.
Under ad libitum feeding, male rats exhibit a marked rhythm of plasma and pineal melatonin; levels are low during the day and high at night. Restricting food availability to a 2 hour period during the light or dark does not markedly influence the melatonin rhythm, both groups having a crest in circulating melatonin during the dark. In contrast, plasma corticosterone levels are influenced by both the light-dark cycle and feeding. Animals fed early in the light period exhibit a biomodal corticosterone secretory pattern, with high steroid levels immediately prior to feeding and again just before lights-out, animals fed early in the dark have a single crest, just before food presentation. These data provide evidence for the dissociation of melatonin and corticosterone secretory patterns, providing support for the hypothesis that multiple regulators control neuroendocrine rhythmicity.  相似文献   

9.
The dorsomedial hypothalamus (DMH) is a site of circadian clock gene and immediate early gene expression inducible by daytime restricted feeding schedules that entrain food anticipatory circadian rhythms in rats and mice. The role of the DMH in the expression of anticipatory rhythms has been evaluated using different lesion methods. Partial lesions created with the neurotoxin ibotenic acid (IBO) have been reported to attenuate food anticipatory rhythms, while complete lesions made with radiofrequency current leave anticipatory rhythms largely intact. We tested a hypothesis that the DMH and fibers of passage spared by IBO lesions play a time-of-day dependent role in the expression of food anticipatory rhythms. Rats received intra-DMH microinjections of IBO and activity and body temperature (T(b)) rhythms were recorded by telemetry during ad-lib food access, total food deprivation and scheduled feeding, with food provided for 4-h/day for 20 days in the middle of the light period and then for 20 days late in the dark period. During ad-lib food access, rats with DMH lesions exhibited a lower amplitude and mean level of light-dark entrained activity and T(b) rhythms. During the daytime feeding schedule, all rats exhibited food anticipatory activity and T(b) rhythms that persisted during 2 days without food in constant dark. In some rats with partial or total DMH ablation, the magnitude of the anticipatory rhythm was weak relative to most intact rats. When mealtime was shifted to the late night, the magnitude of the food anticipatory activity rhythms in these cases was restored to levels characteristic of intact rats. These results confirm that rats can anticipate scheduled daytime or nighttime meals without the DMH. Improved anticipation at night suggests a modulatory role for the DMH in the expression of food anticipatory activity rhythms during the daily light period, when nocturnal rodents normally sleep.  相似文献   

10.
We examined the effects of pinealectomy and blinding (bilateral ocular enucleation) on the circadian locomotor activity rhythm in the Japanese newt, Cynops pyrrhogaster. The pinealectomized newts were entrained to a light-dark cycle of 12 h light and 12 h darkness. After transfer to constant darkness they showed residual rhythmicity for at least several days which was gradually disrupted in prolonged constant darkness. Blinded newts were also entrained to a 12 h light/12 h dark cycle. In subsequent constant darkness they showed free-running rhythms of locomotor activity. However, the freerunning periods noticeably increased compared with those observed in the previous period of constant darkness before blinding. In blinded newts entrained to the light/dark cycle the activity rhythms were gradually disrupted after pinealectomy even in the presence of the light/dark cycle. These results suggest that both the pineal and the eyes are involved in the newt's circadian system, and also suggest that the pineal of the newt acts as an extraretinal photoreceptor which mediates the entrainment of the locomotor activity rhythm.Abbreviations circadian period - DD constant darkness - LD cycle, light-dark cycle - LD 12:12 light-dark cycle of 12 h light and 12 h darkness  相似文献   

11.
The 24-hr activity patterns of intestinal maltase, lactase, leucylnaphthylamine hydrolyzing activity, γ-glutamyltransferase, and alkaline phosphatase were determined in pregnant rats maintained on a 12-12 light-dark cycle, with feeding during the dark period (1800-0600 hr, EST). The activities of these enzymes plus those of lysosomal maltase and lactase were followed during the same time period in 19- to 20-day-old fetuses. The activity patterns in the dams followed circadian rhythms, with peak activities occurring during the feeding-dark period. These rhythms are similar to the feeding schedule-cued rhythms observed in male rats and, therefore, are assumed to be feeding schedule cued also. In the fetuses, which obtained nutrients through the placenta, the activities increased in a somewhat nonlinear manner throughout the entire 24-hr period, but did not display a defined rhythm. It is concluded that endogenous intestinal enzyme rhythms do not exist in utero, and that oral and/or intermittent feeding is necessary for these rhythms to occur.  相似文献   

12.
Circadian rhythms in clock gene expressions in the suprachiasmatic nucleus (SCN) of CS mice and C57BL/6J mice were measured under a daily restricted feeding (RF) schedule in continuous darkness (DD), and entrainment of the SCN circadian pacemaker to RF was examined. After 2-3 wk under a light-dark cycle with free access to food, animals were released into DD and fed for 3 h at a fixed time of day for 3-4 wk. Subsequently, they returned to having free access to food for 2-3 wk. In CS mice, wheel-running rhythms entrained to RF with a stable phase relationship between the activity onset and feeding time, and the rhythms started to free run from the feeding time after the termination of RF. mPer1, mPer2, and mBMAL1 mRNA rhythms in the SCN showed a fixed phase relationship with feeding time, indicating that the circadian pacemaker in the SCN entrained to RF. On the other hand, in C57BL/6J mice, wheel-running rhythms free ran under RF, and clock gene expression rhythms in the SCN showed a stable phase relation not to feeding time but to the behavioral rhythms, indicating that the circadian pacemaker in the SCN did not entrain. These results indicate that the SCN circadian pacemaker of CS mice is entrainable to RF under DD and suggest that CS mice have a circadian clock system that can be reset by a signal associated with feeding time.  相似文献   

13.
In European starlings exposed to constant conditions, circadian rhythms in locomotion and feeding can occasionally exhibit complete dissociation from each other. Whether such occasional dissociation between two behavioral rhythms reflects on the strength of the mutual coupling of their internal oscillators has not been investigated. To examine this, as well as to elucidate the role of melatonin in this system, we simultaneously measured the rhythms of locomotion, feeding and melatonin secretion in starlings exposed to light-dark (LD) cycles of low intensity with steadily changing periods (T). In birds initially entrained to T 24 LD cycles (12L:12D, 10:0.2 lx), beginning on day 15, T was either lengthened to 26.5 h (experiment 1) or shortened to T 21.5 h (experiment 2) by changing the daily dark period 4 min each day. After 18 and 19 cycles of T 26.5 and T 21.5, respectively, birds were released into constant dim light conditions (LL(dim); 0.2 lx) for about 2 weeks. Locomotor and feeding rhythms were continuously recorded. Plasma melatonin levels were measured at three times: in T 24, when T equaled 26 or 22 h and at the end of T 26.5 or T 21.5 exposure. The results show that, contrary to our expectations, the three rhythms were not dissociated. Rather they remained synchronized and changed their phase angle difference with the light zeitgeber concomitantly and at the same rate. The melatonin rhythm stayed in synchrony with the behavioral rhythms and as a consequence, peaked either during day or at night, depending on the phase relationship between the activity rhythm and the zeitgeber cycle.  相似文献   

14.
Effects of feeding cycles on circadian rhythms in squirrel monkeys   总被引:1,自引:0,他引:1  
Squirrel monkeys (Saimiri sciureus) were housed singly in cages equipped with a tree for climbing to measure locomotor activity, and with a movable food cup that could be arrested automatically. The animals were kept in continuous dim illumination (LL), twice interrupted by several weeks of entrainment by a light-dark (LD) 12:12 cycle. Apart from three control sections in which the food cups were unlocked continuously (ad libitum feeding), food was accessible for 3 hr per day only, with interfeeding intervals varying from 23 to 26 hr (periodic restricted feeding, or RF). During LD entrainment, the imposition of an RF schedule resulted in anticipatory behaviors, represented by increased tugs at the food cup and a pause in locomotor activity preceding the feeding time. In LL, the animals showed free-running circadian rhythms of locomotor and "feeding" activity that nearly always persisted when ad libitum feeding was replaced by RF. The period (tau) of the free-running rhythm was slightly modulated in relation to the varying interfeeding intervals (T), but entrainment was never achieved except in one test with an animal whose tau was very close to T. It is concluded that periodic availability of food represents an extremely weak zeitgeber, if any, for the circadian pacemaker of squirrel monkeys.  相似文献   

15.
Summary In higher organisms, many physiological and behavioral functions exhibit daily variations, generated by endogenous circadian oscillators. It is not yet clear whether all the various rhythms that occur within an individual depend on one and the same pacemaker or whether different pacemakers are involved. To examine this question, the feeding and perch-hopping rhythms were measured in European starlings (Sturnus vulgaris) under light-dark cycles and continuous dim light. In dim light, the internal phase relationship between the feeding and perch-hopping rhythms changed systematically as a function of the circadian period, and the two rhythms could even dissociate and show different circadian periods in individuals with extremely long or extremely short circadian periods. Moreover, in some birds kept on lowamplitude light-dark cycles, the rhythm of feeding was synchronized 180° out of phase with the rhythm of locomotor activity. These results strongly suggest that in the European starling the feeding and locomotor activity rhythms are controlled by separate circadian pacemakers.  相似文献   

16.

Background

The phase and amplitude of rhythms in physiology and behavior are generated by circadian oscillators and entrained to the 24-h day by exposure to the light-dark cycle and feedback from the sleep-wake cycle. The extent to which the phase and amplitude of multiple rhythms are similarly affected during altered timing of light exposure and the sleep-wake cycle has not been fully characterized.

Methodology/Principal Findings

We assessed the phase and amplitude of the rhythms of melatonin, core body temperature, cortisol, alertness, performance and sleep after a perturbation of entrainment by a gradual advance of the sleep-wake schedule (10 h in 5 days) and associated light-dark cycle in 14 healthy men. The light-dark cycle consisted either of moderate intensity ‘room’ light (∼90–150 lux) or moderate light supplemented with bright light (∼10,000 lux) for 5 to 8 hours following sleep. After the advance of the sleep-wake schedule in moderate light, no significant advance of the melatonin rhythm was observed whereas, after bright light supplementation the phase advance was 8.1 h (SEM 0.7 h). Individual differences in phase shifts correlated across variables. The amplitude of the melatonin rhythm assessed under constant conditions was reduced after moderate light by 54% (17–94%) and after bright light by 52% (range 12–84%), as compared to the amplitude at baseline in the presence of a sleep-wake cycle. Individual differences in amplitude reduction of the melatonin rhythm correlated with the amplitude of body temperature, cortisol and alertness.

Conclusions/Significance

Alterations in the timing of the sleep-wake cycle and associated bright or moderate light exposure can lead to changes in phase and reduction of circadian amplitude which are consistent across multiple variables but differ between individuals. These data have implications for our understanding of circadian organization and the negative health outcomes associated with shift-work, jet-lag and exposure to artificial light.  相似文献   

17.
Chronobiology of the intestinal tract of the mouse   总被引:1,自引:0,他引:1  
This paper summarizes recent and continuing work on circadian rhythms in the alimentary tract of rodents; these include: (1) cell proliferation, (2) activities of intestinal enzymes, and (3) behavioral aspects of spontaneous feeding and drinking. All regions of the intestinal tract show marked circadian behavior in cell proliferation. The roles of the light-dark cycle and meal timing in synchronizing such rhythms are discussed as well as the influence of epidermal growth factor, insulin, glucagon, and ACTH 1-17. Attention is called to the potential importance of these rhythms to basic research and medicine. Other circadian rhythms in the alimentary tract are reviewed briefly, such as those characterizing a host of intestinal enzymes, monosaccharide transport, and the height and width of the villi. Many of these have been shown to be cued to a feeding schedule; however, a number of the enzyme rhythms persist for one or two cycles in fasting animals, and this also is the case for the cell-proliferation rhythms. After having been acclimated to a circadian feeding schedule (within a range of 23-30 hr), rodents can on subsequent days anticipate the food an hour or more prior to its arrival. Some enzymes behave in a similar manner in that their activities increase prior to the expected intake of the daily food. These anticipatory response rhythms are under endogenous control, since both will persist in the fasted animal and both will free run when a mouse is placed under constant conditions. Somehow these animals are able to measure circadian intervals of time. This challenges the concept that the oscillations seen in enzyme activities are simply a passive consequence of feeding and fasting, respectively.  相似文献   

18.
The activity of the enzyme, guanyl cyclase, associated with the rat intestinal brush border membrane, has an endogenous circadian rhythm which is observed in the absence of oral intermittent feeding and of a dark period. This rhythm is cued by the feeding schedule but is essentially unaffected by a light-dark cycle.  相似文献   

19.
These studies investigated feeding responses to indirect activation of parabrachial cannabinoid CB1 receptors. Arachidonoyl serotonin (AA5HT), an inhibitor of the endocannabinoid degradative enzyme, fatty acid amide hydrolase (FAAH), was infused into the parabrachial nucleus of male Sprague-Dawley rats, and intakes of high-fat/sucrose pellets and standard rodent chow were subsequently evaluated under various feeding schedules. FAAH blockade stimulated the intake of high-fat/sucrose pellets that were presented daily for 4 h during the light period, with compensatory decreases in the consumption of standard chow during the ensuing 20 h. These diet-selective changes were repeated on the next day, indicating a shift in feeding toward the more palatable diet that lasted for 48 h after a single infusion. The cannabinoid CB1 receptor antagonist, AM251, blocked the orexigenic actions of AA5HT, implicating CB1 receptors in mediating the feeding responses to FAAH inactivation. When the feeding schedule was reversed, AA5HT produced nominal increases in the consumption of standard chow for the 4-h access period, but substantial increases in the intake of high-fat/sucrose during the following 20-h interval. When presented with only high-fat/sucrose diet for 24 h, AA5HT increased 24-h food intake. In contrast, when given 24-h access only to standard chow, AA5HT failed to affect intake. Therefore, indirectly activating parabrachial CB1 receptors by blocking the degradation of native ligands selectively stimulates the intake of palatable food, with differential actions on total energy intake depending upon the feeding schedule. Our results support a role for parabrachial cannabinoid mechanisms in providing physiological regulation to neural substrates modulating feeding, energy balance, and behavioral responses for natural reward.  相似文献   

20.
ABSTRACT. Locomotor, feeding, drinking, and oxygen consumption rhythms in adult virgin Acheta domesticus L. all appear to peak in the first half of the scotophase, be entrained cophasically by a LD 14:10 h cycle, have a lights-off Zeitgeber and persist in LL with a π c. 25 h for the locomotor rhythm and c. 23 h for the oxygen consumption rhythm. There is no evidence of these rhythms in last instar larvae. The onset of the locomotor rhythm requires 3 days at 30°C but 5–7 days at 25–28°C after the final ecdysis in virgins, indicating a temperature related development of the locomotor rhythm. Oxygen consumption rhythms are lacking in 2-day-old virgins but present in 8-day-old virgins. Feeding rhythms can be recorded in virgins as young as 2 days (before locomotor rhythm developed). Both oxygen consumption and locomotor rhythms persist during starvation. The results suggest that a central brain oscillator drives both feeding and locomotor rhythms independently, but that the oxygen consumption rhythm is derived from the metabolic demands associated with the other rhythms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号