首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA methylation is known to play an important role in the regulation of gene expression in eukaryotes. In this study, we isolated NtMET1 from Nicotiana tabacum cv. Havana (SR1) and obtain transgenic plants that reduced MET1 expression level with the double-strand RNA (dsRNA) MET1 gene. Transgenic tobacco plants showed dwarf and abnormal flower development when compared with the wild type. Using methylation-sensitive amplified polymorphism (MSAP) analysis, the patterns of cytosine methylation in transformed plants and the wild type were compared. MseI/HpaII selection primers showed an interesting polymorphism, and 153 DNA bands of interest were detected. Among these, 30 selective fragments were sequenced and analyzed with a BLAST search by successful MSAP modifications. The homology search showed that the transposons and tandem repeated sequences were related to the phenotypes. These results suggested that the decreased degree of methylation by dsRNA strategy caused abnormal growth and development in N. tabacum.  相似文献   

2.
Genetic analysis of 56 samples of Jatropha curcas L. collected from Thailand and other countries was performed using the methylation-sensitive amplification polymorphism (MSAP) technique. Nine primer combinations were used to generate MSAP fingerprints. When the data were interpreted as amplified fragment length polymorphism (AFLP) markers, 471 markers were scored. All 56 samples were classified into three major groups: γ-irradiated, non-toxic and toxic accessions. Genetic similarity among the samples was extremely high, ranging from 0.95 to 1.00, which indicated very low genetic diversity in this species. The MSAP fingerprint was further analyzed for DNA methylation polymorphisms. The results revealed differences in the DNA methylation level among the samples. However, the samples collected from saline areas and some species hybrids showed specific DNA methylation patterns. AFLP data were used, together with methylation-sensitive AFLP (MS-AFLP) data, to construct a phylogenetic tree, resulting in higher efficiency to distinguish the samples. This combined analysis separated samples previously grouped in the AFLP analysis. This analysis also distinguished some hybrids. Principal component analysis was also performed; the results confirmed the separation in the phylogenetic tree. Some polymorphic bands, involving both nucleotide and DNA methylation polymorphism, that differed between toxic and non-toxic samples were identified, cloned and sequenced. BLAST analysis of these fragments revealed differences in DNA methylation in some known genes and nucleotide polymorphism in chloroplast DNA. We conclude that MSAP is a powerful technique for the study of genetic diversity for organisms that have a narrow genetic base.  相似文献   

3.
Analysis of DNA methylation in different maize tissues   总被引:2,自引:0,他引:2  
DNA methylation plays an important role in gene expression regulation during biological development and tissue differentiation in plants. This study adopted methylation-sensitive Amplified fragment length polymorphism (AFLP) to compare the levels of DNA cytosine methylation at CCGG sites in tassel, bracteal leaf, and ear leaf from maize inbred lines, 18 White and 18 Red, respectively, and also examined specific methylation patterns of the three tissues. Significant differences in cytosine methylation level among the three tissues and the same changing tendency in two inbred lines were detected. Both MSAP (methylation sensitive amplification polymorphism) ratio and full methylation level were the highest in bracteal leaf, and the lowest in tassel. Meanwhile, different methylation levels were observed in the same tissue from the inbred lines, 18 White and 18 Red. Full methylation of internal cytosine was the dominant type in the maize genome. The differential methylation patterns in the three tissues were observed. In addition, sequencing of nine differentially methylated fragments and the subsequent blast search revealed that the cytosine methylated 5 ' -CCGG-3 ' sequences were distributed in repeating sequences, in the coding and noncoding regions. Southern hybridization was used to verify the methylation polymorphism. These results clearly demonstrated the power of the MSAP technique for large-scale DNA methylation detection in the maize genome, and the complexity of DNA methylation change during plant growth and development. The different methylation levels may be related to specific gene expression in various tissues.  相似文献   

4.
Abstract: The correlation between environmental stress and DNA methylation has been studied by following the methylation status of cytosine residues in the DNA of pea root tips exposed to water deficit. DNA methylation was evaluated by two complementary approaches: (i) immunolabelling by means of a monoclonal antibody against 5-methylcytosine; (ii) MSAP (Methylation-Sensitive Amplified Polymorphism) to verify if methylation and de-methylation in response to water deficit may be related to specific DNA sequences. Immunolabelling showed that water stress induces cytosine hypermethylation in the pea genome. Regarding the CCGG target sequence, an increase in methylation specifically in the second cytosine (about 40 % of total site investigated) was revealed by MSAP analyses. In addition, MSAP band profile detected in three independent repetitions was highly reproducible suggesting that, at least for the CCGG target sequence, methylation was addressed to specific DNA sequences.  相似文献   

5.
Plant SET domain proteins are known to be involved in the epigenetic control of gene expression during plant development. Here, we report that the Arabidopsis SET domain protein, SDG4, contributes to the epigenetic regulation of pollen tube growth, thus affecting fertilization. Using an SDG4-GFP fusion construct, the chromosomal localization of SDG4 was established in tobacco BY-2 cells. In Arabidopsis, sdg4 knockout showed reproductive defects. Tissue-specific expression analyses indicated that SDG4 is the major ASH1-related gene expressed in the pollen. Immunological analyses demonstrated that SDG4 was involved in the methylation of histone H3 in the inflorescence and pollen grains. The significant reduction in the amount of methylated histone H3 K4 and K36 in sdg4 pollen vegetative nuclei resulted in suppression of pollen tube growth. Our results indicate that SDG4 is capable of modulating the expression of genes that function in the growth of pollen tube by methylation of specific lysine residues of the histone H3 in the vegetative nuclei.  相似文献   

6.
Analysis of DNA methylation during the germination of wheat seeds   总被引:1,自引:0,他引:1  
DNA methylation is known to play a crucial role in regulating plant development and organ or tissue differentiation. Here, we focused on the DNA methylation dynamics during the germination of wheat seeds using the adapted AFLP technique so called methylation-sensitive amplified polymorphism (MSAP). The MSAP profiles of genomic DNA in embryo and endosperm tissues of germinating seeds, as well as dry seeds were characterized and notable changes of cytosine methylation were detected. Comparisons of MSAP profiles in different tissues tested showed that the methylation level in dry seeds is the highest. The alteration analysis of cytosine methylation displayed that the number of demethylation events were three times higher than that of de novo methylation, which indicated that the demethylation was predominant in germinating wheat seeds, though the methylation events occurred as well. Sixteen differentially displayed DNA fragments in MSAP profiles were cloned and the sequencing analysis confirmed that nine of them contained CCGG sites. The further BLAST search showed that four of the cloned sequences were located in coding regions. Interestingly, three of the sixteen candidates were homologous to retrotransposons, which indicated that switches between DNA methylation and demethylation occurred in retrotransposon elements along with the germination of wheat seeds.  相似文献   

7.
Vernalization plays a key role in the bolting and flowering of Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plants can switch from vegetative to reproductive growth and then bolt and flower under low temperature induction. The economic benefits of Chinese cabbage will decline significantly when the bolting happens before the vegetative body fully grows due to a lack of the edible value. It was found that continuous seedling breeding reduced the heading of Chinese cabbage and led to bolt and flower more easily. In the present study, two inbred lines, termed A161 and A105, were used as experiment materials. These two lines were subjected to vernalization and formed four types: seeds-seedling breeding once, seedling breeding twice, seedling breeding thrice and normal type. Differences in plant phenotype were compared. DNA methylation analysis was performed based on MSAP method. The differential fragments were cloned and analyzed by qPCR. Results showed that plants after seedling breeding thrice had a loosen heading leaves, elongated center axis and were easier to bolt and flower. It is suggested that continuous seedling breeding had a weaker winterness. It was observed that genome methylation level decreased with increasing generation. Four differential genes were identified, short for BraAPC1, BraEMP3, BraUBC26 and BraAL5. Fluorescent qPCR analysis showed that expression of four genes varied at different reproduction modes and different vernalization time. It is indicated that these genes might be involve in the development and regulation of bolting and flowering of plants. Herein, the molecular mechanism that continuous seedling breeding caused weaker winterness was analyzed preliminarily. It plays an important guiding significance for Chinese cabbage breeding.  相似文献   

8.
Vernalization-induced flowering is an effect of the epigenetic regulation of gene expression through DNA methylation and histone modifications. Vernalization-mediated silencing of a floral repressor through histone modifications was shown in Arabidopsis thaliana. However, for Brassica napus L., the mechanism underlying vernalization is unclear, and the roles of DNA methylation and histone modifications have not been established. This study revealed the profiles of changes in the DNA methylation state during vernalization (after 14, 35, 56 days) and the subsequent growth in long- or short-day photoperiods (after 2, 7, 14 days) in the winter and spring rapeseed using TLC and MSAP techniques. TLC analysis showed a significant decrease in the amount of 5-methylcytosine (m5C) in genomic DNA in both cultivars at the beginning of vernalization, but upon its termination, the winter rape showed a reduced level of m5C contrary to a significantly increased level in the spring rape. MSAP analysis revealed that winter and spring rapeseed differed in the MSAP loci which were demethylated/methylated in the course of the experiment and presented diverse profiles of changes in the methylation state. The winter rape showed permanent demethylations at 69.2 % of MSAP loci in the course of vernalization that were mostly preserved upon its termination. The spring rape showed similar numbers of demethylations and methylations that were mainly transient. The study provides evidence of the role of DNA methylation in vernalization for rapeseed and for the significant prevalence of demethylations at the beginning of vernalization, which is necessary for the transition to reproductive growth.  相似文献   

9.
Methylation-sensitive amplified polymorphism was used in this study to investigate epigenetic information of four tobacco cultivars: Yunyan 85, NC89, K326, and Yunyan 87. The DNA fragments with methylated information were cloned by reamplified PCR and sequenced. The results of Blast alignments showed that the genes with methylation information included chitinase, nitrate reductase, chloroplast DNA, mitochondrial DNA, ornithine decarboxylase, ribulose carboxylase, and promoter sequences. Homologous comparison in three cloned gene sequences (nitrate reductase, ornithine decarboxylase, and ribulose decarboxylase) indicated that geographic factors had significant influence on the whole genome methylation. Introns also contained different information in different tobacco cultivars. These findings suggest that synthetic mechanisms for tobacco aromatic components could be affected by different environmental factors leading to variation of noncoding regions in the genome, which finally results in different fragrance and taste in different tobacco cultivars.  相似文献   

10.
In this paper we report on changes in DNA methylation pattern in rape apices and leaves during transition from vegetative to reproductive stage due to grafting and/or vernalization. Grafted plants of winter rape (Brassica napus L., var. "Górczański") (stock from vernalized, scion from non-vernalized plants) were used together with vernalized non-grafted plants. In addition, methylation status was determined also in spring rape (var. "M?ochowski") grown under normal and low temperature. The methylation-sensitive amplification polymorphism (MSAP) method with EcoRI/MspI and EcoRII/HpaII restriction enzymes was employed. The majority (ca. 68%) of analyzed loci (566 in winter and 551 in spring rape) were monomorphic, i.e. did not undergo methylation. Both cultivars showed a similar degree of methylation. 188 loci in winter and 176 in spring cultivars expressed changes in the methylation pattern. All differentially amplified fragments resulted from either full methylation of an internal cytosine or from hemi-methylation of an external cytosine. A pair-wise comparison showed that a similar number of loci underwent development-related methylation changes in apices of the winter and spring rape. The majority (80%) of changes were demethylation events in generative (vernalized) apices of the winter cultivar. However, an increased number of demethylated loci was detected in vernalized apices in comparison with generative, non-vernalized ones. In apices of vegetative and generative grafted plants the same number of demethylation events was observed. Overall, 10 MSAP loci were detected that expressed methylation changes in vernalized apices only; among them 7 loci underwent demethylation after vernalization and remained methylated in both vegetative and generative non-vernalized stage. Only 1 locus was demethylated in generative non-vernalized apices. Thus, most of demethylation events can be ascribed to vernalization and not to the generative stage. In leaves of winter rape methylation and demethylation events occurred with similar frequency, while in the spring cultivar more demethylation events were detected. The results show that during vernalization and transition to the generative stage different sets of genes are activated.  相似文献   

11.
草鱼全同胞鱼苗不同个体甲基化位点的差异   总被引:2,自引:0,他引:2  
本研究通过甲基化敏感扩增多态性(Methylation sensitive amplification polymorphism)对一对草鱼亲本的20个子代甲基化位点进行了研究。从20对引物组合中扩增出311个位点,其中甲基化位点236个,占总扩增位点的75.9%,表明草鱼水花期基因组甲基化水平已经很高,说明它们大部分组织分化基本完成;其中甲基化多态位点65个,占甲基化位点的27.5%,说明这些子代草鱼甲基化位点已经有相当的差异。对其他两对亲本的后代用六个引物组合扩增的结果表明,同一亲本的子代在甲基化模式上有差异可能是普遍现象。本研究结果说明,即使来自同一对草鱼亲本的不同子代个体在基因表达上也有较大的差异,因此很多性状在草鱼后代的分离和一些基因表达的改变有一定的关系。  相似文献   

12.
The population dynamics of perennial crop plants are influenced by numerous factors, including management practices. Conditions in the field vary from year to year, and matrix population models are useful for evaluating population behaviour in relation to environmental variability. In Missouri, the stand persistence of birdsfoot trefoil ( Lotus corniculatus ), a perennial legume, is often limited by disease and poor seed production. A stage-based, matrix population model was developed to evaluate the population dynamics of birdsfoot trefoil in relation to clipping treatment. The plant growth stages represented in the model were seeds, seedlings, mature vegetative and reproductive plants. Two phases of population growth were evaluated in clipped and unclipped stands. Establishment-phase populations were characterized by relatively high mortality and low reproduction. Elasticity analysis indicated that growth of these populations was most sensitive to the survival of vegetative plants. Mature vegetative plants and seeds comprised the majority of surviving individuals in clipped and unclipped populations, respectively; however, establishment-phase populations under both management treatments tended toward extinction. Populations in the post-establishment phase of growth were characterized by relatively low mortality and high reproduction. Population growth in this phase of growth was most sensitive to seed production, and most individuals in these populations were at the seed stage.  相似文献   

13.
基因组甲基化修饰受环境因素的影响。在以甲基化为代表的表观遗传学研究中,如何减少保存环境对异地采后样品的影响,提高整个实验的准确性和科学性,目前尚未有系统的认知。该研究选取5种常用的采后样品保存方式(液氮冷冻、-20℃冷冻、变色硅胶干燥、密封袋密封、75%酒精浸泡),分别用Wilcoxon signed ranks tests统计分析和UPGMA聚类分析方法,对华南植物园锥栗进行F-MSAP研究,以期找出最佳保存方式。同时,利用正交试验法对F-MSAP体系进行优化,筛选出9对引物(E3-H/M2;E5-H/M2;E6-H/M1;E6-H/M5;E8-H/M1;E8-H/M5;E9-H/M2;E11-H/M5;E14-H/M1),并对不同发育时期的锥栗甲基化水平及遗传多样性进行了论述。结果表明:在锥栗F-MSAP的研究中,Willcoxon signed ranks tests统计分析和UPGMA聚类分析结论一致,密封袋保存效果最佳;成熟叶半甲基化率(27.83%)和总甲基化率(51.13%)高于幼叶(21.35%,45.90%),全甲基化率(23.30%)低于幼叶(24.55%),平均多态位点百分数39.60%,香农信息指数0.207±0.002,表现出较高的甲基化水平和遗传多样性。  相似文献   

14.
Paspalum notatum Flügge is a grass species organized as an agamic complex. The objective of the current research was to survey the frequencies and variation of cytosine methylation at CCGG sequences in diploid and tetraploid genotypes, and to determine the occurrence of methylation changes associated with tetraploidization by using methylation-sensitive amplification polymorphism (MSAP) markers. No differences were found in the average proportions of methylated CCGG sites between cytotypes, but methylation patterns were significantly more variable in tetraploids. In both groups of plants, epigenetic and non-epigenetic variation correlated significantly when compared by Mantel tests. The evaluation of 159 common MSAP markers showed that 18.86 % of them differed in their methylation status in the different ploidies. Dendrogram analysis, reflecting epigenetic distances, showed that the four diploids and one experimentally-obtained sexually-reproducing tetraploid, grouped together. MSAP analysis performed on a diploid plant and its autotetraploid derivative showed that new epialleles emerged after tetraploidization. Sequencing of several MASP markers showed homologies with low copy genes, non-coding sequences and transposon/retrotransposon elements.  相似文献   

15.
Introgression lines are some of the most important germplasm for breeding applications and other research conducted on cotton crops. The DNA methylation level among 10 introgression lines of cotton (Gossypium hirsutum) and three exotic parental species (G. arboreum, G. thurberi and G. barbadense) were assessed by methylation-sensitive amplified polymorphism (MSAP) technology. The methylation level in the introgression lines ranged from 33.3 to 51.5%. However, the lines PD0111 and PD0113 had the lowest methylation level (34.6 and 33.3%, respectively) due to demethylation of most non-coding sequences. Amplified fragment length polymorphism (AFLP) was used to evaluate the genetic polymorphism in the cotton introgression lines. A high degree of polymorphism was observed in all introgression lines (mean 47.2%) based on AFLP and MSAP analyses. This confirmed the effects of genetic improvement on cotton introgression lines. The low methylation varieties, PD0111 and PD0113 (introgression lines), clustered outside of the introgression lines based on MSAP data, which was incongruent with an AFLP-based dendrogram. This phenomenon could be caused by environmental changes or introgression of exotic DNA fragments.  相似文献   

16.
17.
18.
Rapid genetic changes in plants have been reported in response to current climate change. We assessed the capacity of trees in a natural forest to produce rapid acclimation responses based on epigenetic modifications. We analysed natural populations of Quercus ilex, the dominant tree species of Mediterranean forests, using the methylation‐sensitive amplified polymorphism (MSAP) technique to assess patterns and levels of methylation in individuals from unstressed forest plots and from plots experimentally exposed to drought for 12 years at levels projected for the coming decades. The percentage of hypermethylated loci increased, and the percentage of fully methylated loci clearly decreased in plants exposed to drought. Multivariate analyses exploring the status of methylation at MSAP loci also showed clear differentiation depending on stress. The PCA scores for the MSAP profiles clearly separated the genetic from the epigenetic structure, and also significantly separated the samples within each group in response to drought. Changes in DNA methylation highlight the large capacity of plants to rapidly acclimate to changing environmental conditions, including trees with long life spans, and our results demonstrate those changes. These changes, although unable to prevent the decreased growth and higher mortality associated with this experimental drought, occurred together with a dampening in such decreases as the long‐term treatment progressed.  相似文献   

19.
DNA methylation is an epigenetic phenomenon associated with gene silencing in transgenic plants, retrotransposons and virus infection. Expression analysis of specific genes in Arabidopsis methylation mutants showed an association between DNA methylation and gene expression. To determine whether DNA methylation is associated with resistance to black Sigatoka (BS) andMycosphaerella fijiensis (MF), we used anin vitro assay of mesophyll cell suspensions of reference cultivars with known resistance to BS. Methylation of CCmGG sequences was evaluated by methylation-sensitive amplification polymorphism (MSAP) markers of reference cultivars and somaclonal variants to identify molecular markers associated with resistance to MF toxins and BS. Four MSAP markers were associated with resistance (MAR) to MF toxins. The MSAP markers show a high degree of sequence similarity with resistance gene analog and with retrotransposon sequences. The MSAP markers are useful as molecular indicators of tolerance to MF toxins and resistance to BS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号