首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There has been very little effort to understand genetic divergence between wild and hatchery populations of masu salmon (Oncorhynchus masou). In this study, we used mitochondrial (mt) NADH dehydrogenase subunit 5 gene (ND5) and six polymorphic nuclear microsatellite DNA loci to compare the genetic variability in three hatchery broodstocks of masu salmon with the variability in eight putative wild masu populations sampled in five rivers including one known source river for the hatchery broodstocks. Both ND5 and microsatellites showed no significant genetic divergence (based on FST estimates) between four annual collections from the source river population, suggesting no change in genetic diversity over this time period. The FST estimates, an analysis of molecular variance (AMOVA), and a neighbor-joining tree using both DNA markers suggested significant differentiation between the three hatchery and all eight putative wild populations. We conclude that genetic diversity of hatchery populations are low relative to putative wild populations of masu salmon, and we discuss the implications for conservation and fisheries management in Hokkaido.  相似文献   

2.
Hatchery propagation of salmonids has been practiced in western North America for over a century. However, recent declines in wild salmon abundance and efforts to mitigate these declines through hatcheries have greatly increased the relative abundance of fish produced in hatcheries. The over-harvest of wild salmon by fishing mixed hatchery and wild stocks has been of concern for many years but genetic interactions between populations, such as hybridization, introgression and outbreeding depression, may also compromise the sustainability of wild populations. Our goal was to examine whether a newly established hatchery population of steelhead trout successfully reproduced in the wild and to compare their rate of reproductive success to that of sympatrically spawning native steelhead. We used eight microsatellite loci to create allele frequency profiles for baseline hatchery and wild populations and assigned the smolt (age 2) offspring of this parental generation to a population of origin. Adults originating from a generalized hatchery stock artificially selected for early return and spawning date were successful at reproducing in Forks Creek, Washington. Although hatchery females (N = 90 and 73 in the two consecutive years of the study) produced offspring that survived to emigrate as smolts, they produced only 4.4–7.0% the number produced per wild female (N = 11 and 10). This deficit in reproductive success implies that the proportion of hatchery genes in the mixed population may diminish since deliberate releases into the river have ceased. This hypothesis is being tested in a long-term study at Forks Creek.  相似文献   

3.
The amago salmon, Oncorhynchus masou ishikawae, is an endemic subspecies of O. masou in Japan. Owing to the extensive stocking of hatchery fish throughout Japan, indigenous populations of O. m. ishikawae are now on the verge of extinction. We examined the genetic effects of stocking hatchery fish on wild populations in the River Koza, Japan, using microsatellite and mitochondrial DNA (mtDNA) markers. For mtDNA, haplotype mt1, which is common in wild populations, was present exclusively in isolated wild populations assumed to be unaffected by previous stocking, while it was never observed in hatchery fish. Genetic diversity was much higher in wild populations in the stocked area, which shared many mtDNA haplotypes with hatchery fish, than in isolated wild populations with haplotype mt1. Pairwise F ST estimates based on microsatellites showed significant differentiation among the isolated populations with many microsatellite loci monomorphic. Significant deviation from Hardy–Weinberg equilibrium was observed in wild populations in the area subject to stocking, where a Bayesian-based assignment test showed a high level of introgression with hatchery fish. These results suggest that wild populations with haplotype mt1, which became isolated through anthropogenic environmental change in the 1950–1960s, represent indigenous populations of O. m. ishikawae in the River Koza. They have low genetic diversity, most likely caused by genetic bottlenecks following damming and environmental deterioration, while stocking of hatchery fish over the past 30 years apparently had a large impact on the genetic structure of wild populations in the main channel of the River Koza.  相似文献   

4.
The chum and pink salmon catches in Hokkaido, Japan have increased dramatically since the 1970s and the 1990s, respectively. In contrast, masu salmon catches have been steadily decreasing. Despite intensive hatchery development in Hokkaido, naturally spawning salmon populations persist based on results from a recent river survey. This paper focuses on the challenges of maintaining hatchery salmon populations while protecting natural chum, pink and masu salmon populations in Hokkaido. Two important initiatives related to meeting this ambitious goal are managing hatcheries in a way that minimizes negative interactions between natural and hatchery salmon populations, and initiating new efforts at restoring and rehabilitating degraded freshwater habitats. In addition, in order to maintain a balance of demand and supply in the domestic market through the exportation of extra salmon, Hokkaido has decided to enter full assessment to gain Marine Stewardship Council (MSC) certification of the Hokkaido chum salmon trap net fishery. This would involve a fundamental shift in fisheries management as practiced in Japan, specifically elevating the importance of managing the fishery in a way that conserves natural salmon populations. A key component of a new salmon management strategy is the establishment of a zone management framework based on the designation of stream units to spatially separate natural salmon from hatchery salmon to minimize negative effects of hatchery fish and to utilize effectively hatchery salmon for commercial fisheries. This effort is allied with similar initiatives in other Pacific Rim countries that are focusing on management reform to restore natural ecosystem function and maintain the coexistence of wild and hatchery salmon.  相似文献   

5.
This study focuses on the strategy for the conservation of masu salmon, Oncorhynchus masou, in the northern part of the species range (via the masu populations in Sakhalin Oblast), based on data of its population structure. It is shown that masu populations that inhabit different rivers genetically differ from each other in allele frequencies at microsatellite markers. In the Naiba River basin, at least two genetically distinct masu populations exist: in the upper reaches and in a tributary, the Bolshoy Takoy River. The masu populations on Iturup Island significantly differ from those on Sakhalin Island; within Sakhalin, the masu salmon from the Chernaya River in the southwestern part of the island is genetically distinct from the southeastern Sakhalin and Aniva Bay populations. The genetic diversity of Iturup populations is substantially lower than that on Sakhalin, probably due to their small sizes. The measures for the conservation and recovery of masu salmon populations should be based primarily on their own genetic resources, or, in the case of a lack of spawners, on the base populations of their ecological/geographical region. In the latter case, masu populations of large rivers can be considered as base ones: for southeastern Sakhalin, this is masu salmon of the Naiba River; for Aniva Bay, this is masu salmon of the Lyutoga River. Transplantation of fish, fertilized eggs, or any other genetic material from a population that is different genetically and inhabits the waters with different ecological gradients should be strongly restricted. The formosan masu salmon from Taiwan Island is studied as an example of a strict genetic isolate.  相似文献   

6.
The Korean starry flounder, Platichthys stellatus, is economically valuable coastal resident fish species. However, the annual catch of this fish has fluctuated and suffered major declines in Korea. We examined the genetic diversity and population structure for four wild populations and three hatchery stocks of Korean starry flounder to protect its genetic integrity using nine microsatellites. A group of 339 genotypes belonging to seven populations were screened. High degrees of polymorphism at the microsatellite loci were observed within both the wild and hatchery populations. Compared to the wild populations, genetic changes, including reduced genetic diversity and highly significant differentiation, have occurred in cultured stocks. Significant population differentiation was also observed in wild starry flounder populations. Similar degrees of inbreeding and significant Hardy–Weinberg equilibrium deviations were detected in both the wild and the hatchery populations. The genetic connectivity pattern identified four distinct metapopulations of starry flounder in Korea by clustering in the phylogenetic tree, Bayesian analyses, molecular variance analysis, PCA and multidimensional scaling analysis. A pattern of isolation-by-distance was not significant. This genetic differentiation may be the result of the co-effects of various factors, such as historic dispersal, local environment or anthropogenic activities. These results provide useful information for the genetic monitoring of P. stellatus hatchery stocks, for the genetic improvement of this species by selective breeding and for designing suitable management guidelines for the conservation of this species.  相似文献   

7.
This study investigates the patterns of genetic diversity detected in allozymes, mtDNA, and microsatellites, in order to assess their relative efficacy to differentiate sympatric landlocked salmon populations and to estimate changes in genetic diversity between wild and first-generation hatchery fish. Overall, the three genetic markers indicated a genetic differentiation between two sympatric populations of Lake Saint-Jean, Québec. MtDNA and microsatellites also showed significant differences between wild and first-generation hatchery fish originating from the same river. Allozyme analysis was the most limited approach due to the low genetic diversity detected and the necessity to kill specimens. Although low polymorphism was found in mtDNA, it was the most discriminant marker between wild populations. Microsatellite analysis appears to be a promising approach due to its high sensitivity in differentiating wild populations, in detecting changes in allele composition between wild and first-generation hatchery fish and its potential for increased resolution by augmenting the number of polymorphic loci. Given the benefits and disadvantages of the three methods, the combination of mtDNA and microsatellite analyses will best address our research objectives.  相似文献   

8.
  1. Climate oscillations during the Pleistocene had profound effects on the evolutionary history of freshwater fishes now distributed across northern temperate regions. The extent of continental glaciation on the western side of the North Pacific, including areas of East Asia, was more limited as compared with regions of North America, Europe and high-latitude areas of the North Pacific. Therefore, the effects of climate oscillations might have influenced species in dissimilar ways depending on the species' distribution.
  2. We used mitochondrial DNA (mtDNA) and microsatellite DNA (msDNA) markers to clarify the evolutionary history of masu salmon Oncorhynchus masou subspecies-complex (family Salmonidae) distributed in historically non-glaciated regions in the western North Pacific.
  3. No marked regional or subspecies-specific mtDNA haplotype associations were recognised, except for O. masou subsp., a lacustrine form endemic to Lake Biwa, an ancient lake in central Honshu. The landlocked subspecies O. masou formosanus, with a disjunct distribution on Taiwan Island, exhibited no diagnostic population features differing from the other subspecies, in either mtDNA or msDNA markers. Mismatch distribution and Bayesian skyline plot analyses indicated relatively recent range expansion and rapid population growth for masu salmon during the last glacial period (c. 0.1–0.15 Ma).
  4. Contrary to the mtDNA genealogy, Bayesian clustering using msDNA showed two main genetic clusters, mainly northern populations of the subspecies O. m. masou and populations of the subspecies O. m. ishikawae in southern areas of the Japanese Archipelago. Notably, O. m. formosanus on Taiwan Island was included in the O. m. masou group, and O. masou subsp. was included in the O. m. ishikawae group.
  5. Our results suggest that the masu salmon subspecies-complex in historically non-glaciated regions of the Temperate Northern Pacific is characterised by weak population structuring and shallow genetic differentiation among the subspecies, except for O. masou subsp. owing to its long isolation in Lake Biwa. Incomplete lineage sorting and historical inter-subspecies hybridisation, possibly due to secondary contact, seem to be plausible explanations for discrepancies in the mitochondrial DNA genealogy and nuclear DNA genetic structure.
  相似文献   

9.
The extent to which stray, hatchery-reared salmon affect wild populations is much debated. Although experiments show that artificial breeding and culture influence the genetics of hatchery salmon, little is known about the interaction between hatchery and wild salmon in a natural setting. Here, we estimated historical and contemporary genetic population structures of chum salmon (Oncorhynchus keta) in Prince William Sound (PWS), Alaska, with 135 single nucleotide polymorphism (SNP) markers. Historical population structure was inferred from the analysis of DNA from fish scales, which had been archived since the late 1960’s for several populations in PWS. Parallel analyses with microsatellites and a test based on Hardy-Weinberg proportions showed that about 50% of the fish-scale DNA was cross-contaminated with DNA from other fish. These samples were removed from the analysis. We used a novel application of the classical source-sink model to compare SNP allele frequencies in these archived fish-scales (1964–1982) with frequencies in contemporary samples (2008–2010) and found a temporal shift toward hatchery allele frequencies in some wild populations. Other populations showed markedly less introgression, despite moderate amounts of hatchery straying. The extent of introgression may reflect similarities in spawning time and life-history traits between hatchery and wild fish, or the degree that hybrids return to a natal spawning area. The source-sink model is a powerful means of detecting low levels of introgression over several generations.  相似文献   

10.
Artificially grown native species are released into natural environments to increase biological resources or to recover threatened populations. Such stocks typically have enhanced survivability and may outcompete wild conspecifics as so-called native invaders. In addition, it is likely that the competitive effects of native invaders on native species are more intense than those of nonnative invaders. To test these hypotheses, an enclosure experiment was conducted using young-of-the-year wild and hatchery (normally grown to a relatively large size to increase survival after stocking) native masu salmon, Oncorhynchus masou, and nonnative brown trout, Salmo trutta (which attain a smaller size than masu salmon). Competitive effects between these fishes were evaluated in terms of stomach fullness and specific growth rate of the wild masu salmon. The magnitude of the relationship between stomach fullness and growth between the experimental treatments revealed a similar pattern, suggesting that competition for foraging habitat most affected their growth. Wild masu salmon were negatively affected by hatchery conspecifics, and the effects were greater than those caused by brown trout. We propose that these outcomes were caused by competitive dominance as a consequence of body size differences. In conclusion, the results support the hypothesis that size-enhanced hatchery masu salmon have the potential to function as native invaders, and the negative effects of artificial stocks on wild masu salmon could be greater than those caused by a nonnative invader.  相似文献   

11.
Variability at ten microsatellite loci was examined in wild and hatchery populations of chum salmon (Oncorhynchus keta Walbaum) from the Sakhalin Island and Southern Kuril Islands, Iturup and Kunashir. Substantial genetic differences between Sakhalin and South Kurils chum salmon (the differentiation reached 6.0%) were revealed. Statistically significant differences between chum salmon from Iturup and those from Kunashir were demonstrated, as well as between the chum salmon populations from different rivers within the islands. It was shown that in different types of population comparisons, different marker sets were most informative.  相似文献   

12.
The expression of colour marks (parr marks, red and black spots) of the amago salmon Oncorhynchus masou ishikawae was compared with microsatellite information, to see the effects of stocking hatchery fish on the phenotype of indigenous populations, which face extinction through extensive stocking. A Bayesian-based assignment test suggested introgression of two exotic clusters into one indigenous cluster in the stocked area and its vicinity. The number of parr marks was significantly higher in one hatchery-origin population, which exclusively comprised one exotic cluster. An increased number of red spots in stocked hatchery fish was probably a consequence of hatchery feeding conditions. The number of black spots was correlated with body size in many populations, except for hatchery and heavily introgressed populations. Coefficients of correlation and regression of black spots with body size, which were largest in indigenous populations, decreased with an increase of introgression by hatchery fish. As indigenous populations have low genetic diversity with high relatedness, it was inferred that the height of correlation and regression coefficients in black spots is caused by high genetic homogeneity and fixation of alleles in loci related to the increase of black spots, both of which might have collapsed with introgression by hatchery fish. These results suggest the possibility that introgression by stocked fish causes a change of phenotype in indigenous populations.  相似文献   

13.
This paper explores my shifting understandings of interactions primarily between salmonid fish culture and fish conservation during the latter half of the 20th century. The idea that conspecific natural and cultured fish were largely interchangeable among phenotypically similar populations began to change with the advent of molecular genetic markers. With the gradual clarification of major geographic lineages beginning in the 1970s came awareness that translocations among anadromous lineages were generally destined for failure; in contrast, gene flow more readily occurred among non-anadromous lineages and sometimes, species. Within lineages, data concurrently were accumulating that showed adaptations to their respective environments distinguished cultured and wild populations. Reduced obstacles to gene flow at this level often resulted in homogenizations among wild and cultured fish in areas where widespread hatchery releases occurred; conversely, adaptive radiations in vacant habitats sometimes occurred over a few decades from single source hatchery releases. Current ideas relating to salmonid interbreeding, population substructure and culture evolved from these observations. Among lineages, resistance to gene flow is much greater between anadromous than purely freshwater populations or species. Within lineages, ease of gene flow in both anadromous and freshwater populations is problematical with regard to cultured and wild populations because large-scale supplementation programs erode local adaptations and fine-scale population substructures. At this level, a potential ability to regenerate natural substructure upon relaxation of supplementation is offset by uncertainties of time scales and intrinsic capabilities of homogenized populations. However, management that separates harvest and reproduction of wild and cultured subpopulations can minimize these losses. Some generality of this strategy to other fishes is supported by losses of local adaptations and outbreeding depression in black basses following population admixtures that parallel those observed in salmonids.  相似文献   

14.
Variability at ten microsatellite loci was examined in wild and hatchery populations of chum salmon from the Sakhalin Island and Southern Kuril Islands, Iturup and Kunashir. Substantial genetic differences between Sakhalin and South Kurils chum salmon (the differentiation theta reached 6.0%) were revealed. Statistically significant differences between chum salmon from Iturup and that from Kunashir were demonstrated, as well as between the chum salmon populations from different rivers within the islands. It was shown that in different types of population comparisons, required different marker sets most informative were.  相似文献   

15.
Major threats to freshwater fish diversity now include loss of native genetic diversity as a consequence of translocations of fishes between sites and from hatcheries to sites, and small effective population sizes resulting from overfishing and/or habitat loss. Ten polymorphic microsatellite markers were employed to evaluate genetic diversity, population genetic structure and gene flow amongst nine populations of the ecologically and economically important fish, the northern snakehead (Channa argus), in three river systems in central China. Multiple analyses revealed evidence of high genetic diversity and pronounced subdivision based on both regional separation and on river systems. A lack of evidence of genetic bottleneck over recent generations was consistent with the long-term stability of population size and contemporary distribution. The effective population sizes for most C. argus populations were small, suggesting the need for future conservation efforts focusing on these populations. Different lines of evidence point to the local enhancement of stocks by both aquaculture-reared fish and the transfer of wild fish. This study illustrates how human activities may affect genetic diversity and population genetic structure of C. argus populations, and highlights the need for new management regimes to protect native freshwater fish genetic diversity.  相似文献   

16.
A harvested stock of chum salmon homing to Kurilskiy Bay, Iturup Island, consists of two genetically distinct river populations that reproduce in two rivers that drain into the bay and are characterized by limited gene flow. One of these is small and can be regarded as wild, whereas the other is much larger and, until recently, was composed of naturally reproducing components spawning in the river??s mainstem and tributaries, with almost no hatchery reproduction during the past two decades. The only human impact on reproduction of the chum salmon stock was regulation of the escapement, with officially accepted limits to avoid ??over-escapement??. Recently the hatchery began to release a large amount of chum salmon juveniles. As confirmed by data on variation in both age composition and microsatellite DNA, first-generation hatchery-origin fish that returned from the first large releases occupied spawning grounds and presumably competed directly with, and potentially displaced wild fish. The most dramatic example is a genetically distinct beach-spawning form of chum salmon that was swamped by much more numerous hatchery-origin fish of the river-spawning form. In order to restore and support naturally reproduced population components, careful estimation of the carrying capacity of natural spawning grounds is necessary with efforts to increase escapement to these habitats. We also recommend concerted efforts to restore and conserve a unique beach-spawning population of chum salmon. We further recommend development of a marking program for direct estimation of straying and evaluation of ecological and genetic impacts of hatchery fish on neighboring wild and natural populations.  相似文献   

17.
Patterns of genetic diversity and differentiation among five wild and four hatchery populations of Atlantic salmon in the Baltic Sea were assessed based on eight assumedly neutral microsatellite loci and six gene-associated markers, including four expressed sequence tag (EST) linked and two major histocompatibility complex (MHC) linked tandem repeat markers (micro- and mini-satellites). The coalescent simulations based on the method of Beaumont and Nichols (1996, Proc. R. Soc. Lond. Ser. B – Biol. Sci., 263, 1619–1626) indicated that two loci (MHCIIα and Ssa171, with the lowest and highest overall FST estimates, respectively) exhibited significant departures (P<0.05) from the neutral expectations. Another coalescent-based test for selective neutrality (Vitalis et al. 2001, Genetics, 158, 1811–1823) further supported the outlier status of the Ssa171 microsatellite locus but not of the MHCIIα linked minisatellite. In addition, actin related protein linked microsatellite locus was identified with this test as an outlier in six pairwise population comparisons. All genetic diversity estimates revealed more genetic variation in hatchery stocks than in the small wild salmon populations from the Gulf of Finland. However, the wild populations possessed alleles at gene-associated markers (e.g. MHCI and IGF) not found in the hatchery stocks, which together with moderate genetic differentiation and distinctive environmental conditions justifies the special conservation measures for the last remaining native salmon populations in the Gulf of Finland.  相似文献   

18.
The population structure of olive flounder Paralichthys olivaceus was estimated using nine polymorphic microsatellite (MS) loci in 459 individuals collected from eight populations, including five wild and three hatchery populations in Korea. Genetic variation in hatchery (mean number of alleles per locus, A = 10·2–12·1; allelic richness, AR = 9·3–10·1; observed heterozygosity, HO = 0·766–0·805) and wild (mean number of alleles per locus, A = 11·8–19·6; allelic richness, AR = 10·9–16·1; observed heterozygosity, HO = 0·820–0·888) samples did not differ significantly, suggesting a sufficient level of genetic variation in these well‐managed hatchery populations, which have not lost a substantial amount of genetic diversity. Neighbour‐joining tree and principal component analyses showed that genetic separation between eastern and pooled western and southern wild populations in Korea was probably influenced by restricted gene flow between regional populations due to the barrier effects of sea currents. The pooled western and southern populations are genetically close, perhaps because larval dispersal may depend on warm currents. One wild population (sample from Wando) was genetically divergent from the main distribution, but it was genetically close to hatchery populations, indicating that the genetic composition of the studied populations may be affected by hydrographic conditions and the release of fish stocks. The estimated genetic population structure and potential applications of MS markers may aid in the proper management of P. olivaceus populations.  相似文献   

19.
Native species may show invasiveness toward a recipient ecosystem through increases in abundance as a result of artificial stocking events. Salmonid species are typical examples of native invaders whose abundance is increased after stocking with hatchery fish. This study evaluated the effects of hatchery chum salmon fry on sympatric wild masu salmon fry, benthic invertebrate prey, and algae, after a single stocking event in Mamachi stream, Hokkaido, northern Japan. The results suggested that the stocked hatchery chum salmon fry decreased the foraging efficiency and growth of the wild masu salmon fry through interspecific competition, and depressed the abundance of Ephemerellidae and total grazer invertebrates (Glossosomatidae, Heptageniidae, and Baetidae) through predation. Also, the hatchery chum salmon fry may increase algal biomass through depression of grazer abundance by predation (top-down effect). These results suggested that a single release of hatchery chum salmon fry into a stream may influence the recipient stream ecosystem.  相似文献   

20.
The topmouth culter (Culter alburnus) is one of the most commercially important freshwater fish species inhabiting China. However, very limited information is available regarding its genetic diversity and population structure, thus hindering the effective management of this fish stock. Understanding the genetic diversity of wild and cultured topmouth culter populations is highly relevant for successful hatchery management. This study evaluated the genetic diversity and structure of five wild and two cultured populations of topmouth culter in China by using microsatellites and mitochondrial DNA. The genetic diversity of wild populations was found to be lower than that of cultured populations. This finding indicates that wild topmouth culter resources should be protected to prevent further degeneration and extinction. Moreover, it demonstrated that cultured populations have greater breeding potential than wild ones. Subdivisions among wild populations were observed, which should be considered as different units for conservation and hatchery management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号