首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effects of agriculture and the availability of edge habitat on populations of Helmeted Guineafowl Numida meleagris and associated avian diversity and species composition in woodland and grassland biomes in the Midlands of KwaZulu-Natal province, South Africa. Study sites within woodland biome had greater species diversity than those in grassland, whereas adjacent, high-quality, protected habitat in grassland sites, enhanced diversity within this biome. Both guineafowl populations and overall avian diversity declined with increasingly intensive agriculture and disappearance of edge habitat and associated, optimally fragmented habitat mosaic. Furthermore, traditional agriculture in the form of contouring in a pesticide-free environment, resulted in extensive edge habitat that appeared to provide additional food and cover for birds. This, in turn, caused an increase in overall bird diversity, and in guineafowl populations in particular. The widespread decline in Helmeted Guineafowl populations in the Midlands that started in the 1980s, and possibly the decline in species associated with this variegated landscape, was therefore caused by the loss of the habitat mosaic to intensive, modern, monoculture, crop agriculture. Maintaining species diversity and healthy guineafowl populations within these habitats requires the persistence or re-creation of a habitat mosaic and the resulting edge habitat on a landscape scale.  相似文献   

2.
Restoration of species‐rich grasslands is a key issue of conservation. The transfer of seed‐containing local plant material is a proven technique to restore species‐rich grassland, since it potentially allows to establish genetically variable and locally adapted populations. In our study, we tested how the transfer of local plant material affected the species diversity and composition of restored grasslands and the genetic variation of the typical grassland plant species Knautia arvensis and Plantago lanceolata.For our study, we selected fifteen study sites in southeastern Germany. We analyzed species diversity and composition and used molecular markers to investigate genetic variation within and among populations of the study species from grasslands that served as source sites for restoration and grasslands, which were restored by transfer of green hay and threshed local plant material.The results revealed no significant differences in species diversity and composition between grasslands at source and restoration sites. Levels of genetic variation within populations of the study species Knautia arvensis and Plantago lanceolata were comparable at source and restoration sites and genetic variation among populations at source and their corresponding restoration sites were only marginal different.Our study suggests that the transfer of local plant material is a restoration approach highly suited to preserve the composition of species‐rich grasslands and the natural genetic pattern of typical grassland plant species.  相似文献   

3.
The Conservation Reserve Program (CRP) is a primary tool for restoring grassland in the United States, in part as wildlife habitat, which has benefited declining grassland bird populations. Among potential mid-contract management practices used to maintain early-successional CRP grasslands, cattle grazing had been prohibited and is currently disincentivized during the primary nesting season for birds (much of the growing season), despite the important role that large herbivores historically played in structuring grassland ecosystems. Conservative grazing of CRP grasslands could increase spatial heterogeneity in vegetation structure and plant diversity, potentially supporting higher densities of some grassland bird species and higher bird diversity. Our objective was to determine the effect of experimental cattle grazing on species-specific relative abundance and occupancy, species diversity, and community dissimilarity of grassland birds on CRP grasslands across the longitudinal extent of Kansas, USA (a 63.5-cm precipitation gradient) during the 2017–2019 avian breeding seasons. Fifty-three of 108 fields were grazed by cattle during the growing seasons of 2017 and 2018 and all fields were rested from grazing in 2019. For all analyses, we examined separate model sets for semiarid western versus more mesic eastern Kansas. Using data from line transect surveys, we modeled relative abundances of 5 songbird species: grasshopper sparrow (Ammodramus savannarum), dickcissel (Spiza americana), eastern meadowlark (Sturnella magna), western meadowlark (Sturnella neglecta), and brown-headed cowbird (Molothrus ater). Grazing had delayed yet positive effects on abundances of grasshopper sparrow in western Kansas, and eastern meadowlark in eastern Kansas, but negative effects on dickcissel abundance in western Kansas and especially on burned fields in eastern Kansas. Somewhat counterintuitively, brown-headed cowbirds in western Kansas were more abundant on ungrazed versus grazed fields in the years after grazing began. In addition, we modeled multi-season occupancy of 3 gamebird species (ring-necked pheasant [Phasianus colcicus], northern bobwhite [Colinus virginianus], mourning dove [Zenaida macroura]) and Henslow's sparrow (Centronyx henslowii); grazing did not affect occupancy of these species. In eastern Kansas, species diversity was highest in grazed, unburned fields. In western Kansas, bird communities in grazed and ungrazed fields were dissimilar, as determined from multivariate analysis. Though regionally variable, conservative stocking of cattle on CRP grasslands during the nesting season as a mid-contract management tool might increase bird species diversity by restructuring habitat that accommodates a greater variety of species and decreasing abundances of species associated with taller, denser stands of vegetation.  相似文献   

4.
Dispersal limitation between habitat fragments is a known driver of landscape-scale biodiversity loss. In Europe, agricultural intensification during the twentieth century resulted in losses of both grassland habitat and traditional grassland seed dispersal vectors such as livestock. During the same period, populations of large wild herbivores have increased in the landscape. Usually studied in woodland ecosystems, these animals are found to disperse seeds from grasslands and other open habitats. We studied endozoochorous seed dispersal by roe deer (Capreolus capreolus) in fragmented grasslands and grassland remnants, comparing dispersed subcommunities of plant species to those in the established vegetation and the seed bank. A total of 652 seedlings of 67 species emerged from 219 samples of roe deer dung. This included many grassland species, and several local grassland specialists. Dispersal had potentially different effects on diversity at different spatial scales. Almost all sites received seeds of species not observed in the vegetation or seed bank at that site, suggesting that local diversity might not be dispersal limited. This pattern was less evident at the landscape scale, where fewer new species were introduced. Nonetheless, long-distance dispersal by large wild herbivores might still provide connectivity between fragmented habitats within a landscape in the areas in which they are active. Finally, as only a subset of the available species were found to disperse in space as well as time, the danger of future biodiversity loss might still exist in many isolated grassland habitats.  相似文献   

5.
Summary Many natural populations are subdivided among partially isolated habitat patches, but the influence of habitat patchiness per se on species immigration, extinction, and the resulting patterns of species diversity, has received virtually no experimental study. In an experiment designed to test the effects of habitat subdivision on local community structure, we compare the diversity and annual turnover of flowering plant species in 3 treatments of the same total area, but subdivided to different degrees. We experimentally fragmented a California winter annual grassland into isolated plots, two of 32 m2, eight of 8 m2, and 32 of 2 m2, each treatment representing a combined area of 64 m2. Insularization of the experimental habitat fragments is provided by grazing sheep. The effects of plot area on species diversity, extinction, and turnover are consistent with the MacArthur-Wilson model. Species richness increases with the degree of habitat subdivision. Extinction, immigration, and turnover, however, are relatively independent of the degree of subdivision. These experimental results contrast with predictions that habitat subdivision necessarily results in greater rates of extinction accompanied by reduced species diversity.  相似文献   

6.
This study investigates the importance of spatial landscape characteristics and habitat management on the condition of calcareous grassland in the North Down Natural Area, Kent UK. We used a digitised map of the study area containing shapefiles of all the habitats including 82 patches of calcareous grassland together with management information for each patch and data on the presence and abundance of a range of calcareous grassland indicator plant species. We defined habitat condition by presence of indicator species and used classification trees to generate models with rules for predicting habitat condition from the landscape spatial characteristics and management information. We also applied the same method to investigate the factors affecting presence or diversity of three ecological groups of positive indicator species and dominance of a negative indicator species. All the models except one showed good classification accuracy and high kappa statistic. Favourable habitat condition was predicted by presence of different types of grazing management, presence of woodland around patches of calcareous grassland and shape complexity. These results indicate that calcareous grassland in favourable condition is management-dependent but also located in less intensively managed landscapes. Unfavourable habitat condition was predicted by threat factors such as lack of management and high incidence of arable or improved grassland around patches of calcareous grassland, indicating nutrient enrichment and habitat degradation. Some of these factors also predicted high diversity of the different ecological species groups. The value of this method for predicting habitat condition and species diversity from baseline ecological data for conservation monitoring at the landscape level is emphasised.  相似文献   

7.
Rare plant species can be divided into naturally, ‘old rare’ species and anthropogenically, ‘new rare’ species. Many recent studies explored genetic diversity of ‘new rare’ species. Less is, however, known about genetic diversity of ‘old rare’ species. We examined isozyme genetic variability of 20 populations of an ‘old rare’ plant species, Ligularia sibirica (Asteraceae) in the Czech and Slovak Republic. It is a long-lived perennial herb with mixed-mating breeding system, widely distributed from East Asia to European Russia, with few isolated relict populations in the remaining part of Europe.The results showed high genetic diversity within populations (80.8%) and a low level of genetic differentiation (FST = 0.179). Genetic distance between populations correlated significantly with geographic distance. There was also a significant positive correlation between genetic diversity and population size. This is probably caused by destruction of habitats in last centuries and subsequent decrease of population size. Patterns of genetic diversity suggest that the recent distribution is a result of stepwise postglacial migration of the species and subsequent natural fragmentation.We conclude that L. sibirica populations preserve high levels of genetic diversity and are not yet threatened by genetic factors. However, this may change if changes in habitat conditions continue.  相似文献   

8.
Many plants live in habitats that are becoming increasingly rare and fragmented due to human disturbance. Studies of genetic diversity are necessary for understanding and evaluating the impact of habitat fragmentation, and land-use change on the dynamics of rare species to help in setting priorities for their management. We used AFLP markers to study variation in genetic structure within and among three border populations of the orchidHimantoglossum hircinum. Study sites were located in central Germany, which represents the north-eastern border of distribution, and they were separated from each other by a maximum distance of 10 km. Landscape between the populations was characterized by man-made habitat features including agricultural fields, major roads and settlements. We compared pairs of populations to evaluate genetic variation, genetic differentiation, and the current level of gene flow between them. Genetic diversity was high within the populations and higher within than between the populations. Population genetic differentiation was relatively high compared to other orchid species (G st=0.20). Gene flow between pairs of the populations varied and appeared to be influenced by landscape characteristics separating the localities. Recommendations for conservation ofH. hircinum are provided. Management activities should concentrate on maintenance or enlargement of habitat size to prevent loss of genetic diversity due to genetic drift. Sites are genetically relatively isolated, but using stepping stones to improve gene exchange would be problematic because of the intense land-use in the area.  相似文献   

9.
Population genetic diversity is widely accepted as important to the conservation and management of wildlife. However, habitat features may differentially affect evolutionary processes that facilitate population genetic diversity among sympatric species. We measured genetic diversity for two pond‐breeding amphibian species (Dwarf salamanders, Eurycea quadridigitata; and Southern Leopard frogs, Lithobates sphenocephalus) to understand how habitat characteristics and spatial scale affect genetic diversity across a landscape. Samples were collected from wetlands on a longleaf pine reserve in Georgia. We genotyped microsatellite loci for both species to assess population structures and determine which habitat features were most closely associated with observed heterozygosity and rarefied allelic richness. Both species exhibited significant population genetic structure; however, structure in Southern Leopard frogs was driven primarily by one outlier site. Dwarf salamander allelic richness was greater at sites with less surrounding road area within 0.5 km and more wetland area within 1.0 and 2.5 km, and heterozygosity was greater at sites with more wetland area within 0.5 km. In contrast, neither measure of Southern Leopard frog genetic diversity was associated with any habitat features at any scale we evaluated. Genetic diversity in the Dwarf salamander was strongly associated with land cover variables up to 2.5 km away from breeding wetlands, and/or results suggest that minimizing roads in wetland buffers may be beneficial to the maintenance of population genetic diversity. This study suggests that patterns of genetic differentiation and genetic diversity have associations with different habitat features across different spatial scales for two syntopic pond‐breeding amphibian species.  相似文献   

10.
Plant diversity is decreasing mainly through anthropogenic factors like habitat fragmentation, which lead to spatial separation of remaining populations and thereby affect genetic diversity and structure within species. Twenty populations of the threatened grassland species Crepis mollis were studied across Germany (578 individual plants) based on microsatellite genotyping. Genetic diversity was significantly higher in populations from the Alpine region than from the Central Uplands. Furthermore, genetic diversity was significantly positively correlated with population size. Despite smaller populations in the Uplands there were no signs of inbreeding. Genetic differentiation between populations was moderate (F ST?=?0.09) and no isolation by distance was found. In contrast, large-scale spatial genetic structure showed a significant decrease of individual pairwise relatedness, which was higher than in random pairs up to 50 km. Bayesian analyses detected three genetic clusters consistent with two regions in the Uplands and an admixture group in the Alpine region. Despite the obvious spatial isolation of the currently known populations, the absence of significant isolation by distance combined together with moderate population differentiation indicates that drift rather than inter-population gene flow drives differentiation. The absence of inbreeding suggests that pollination is still effective, while seed dispersal by wind is likely to be impaired by discontinuous habitats. Our results underline the need for maintaining or improving habitat quality as the most important short term measure for C. mollis. For maintaining long-term viability, establishing stepping stone habitats or, where this is not possible, assisted gene flow needs to be considered.  相似文献   

11.
Understanding the correlation between genetic diversity and species diversity in freshwater communities is important to elucidate the influences of local selective forces on the genetic diversity of local aquatic plant populations across different communities. This study employed amplified fragment length polymorphism (AFLP) to assess the genetic diversity of Potamogeton pectinatus L. populations between two sister-lakes with contrasting trophic levels, eutrophic and oligotrophic, in the Yunnan Plateau in southwest of China. The results showed high genetic differentiation between eutrophic lake and oligotrophic lake. The genetic distances between P. pectinatus populations were significantly correlated with the species evenness, but not with difference in species richness of aquatic plant communities. The results underpinned that genetic diversity at inter-population levels and local species diversity in plant communities are positively correlated. In addition, our results also suggested that habitat types might play an important role in the genetic diversity of the P. pectinatus populations between these two lakes.  相似文献   

12.
宁夏盐池荒漠草原步甲物种多样性   总被引:8,自引:5,他引:3  
贺奇  王新谱  杨贵军 《生态学报》2011,31(4):923-932
采用巴氏罐诱法于2009年3月到10月对盐池四墩子3种不同类型荒漠草原的步甲物种组成、数量分布进行了系统调查,共获得步甲标本1318号,分属于9属15种,其中直角通缘步甲Pterostichus gebleri、蒙古伪葬步甲Pseudotaphoxnus mongolicus、径婪步甲Harpalus salinus和短翅伪葬步甲Pseudotaphoxnus brevipennis为优势种,个体数量分别占个体总数的33.08%、19.73%、15.94%和8.04%。多样性分析表明适度干扰荒漠草地的Shannon-Wiener多样性、丰富度和均匀度均高于低干扰和强干扰荒漠草地。群落相似性分析显示猪毛蒿和甘草混交带与围栏放牧带及柠条带有较高的相似性,蒙古冰草带和苜蓿与柠条混种带相似性较高。从时间动态上看,步甲群落的个体数量在8月份达到最高。4种优势种季节性变化分别是直角通缘步甲盛发期为8月,径婪步甲发生的高峰期为8、9月,短翅伪葬步甲在5月和8月,蒙古伪葬步甲7-10月个体数量均多;不同物种在不同类型荒漠草地出现的高峰期是不一致的。典范对应分析(CCA)分析表明土壤含水量是影响步甲分布的最重要环境因子,植物生物量和植被密度次之;土壤含水量与步甲的Shannon-Wiener多样性、均匀度显著负相关,与优势度呈显著正相关。  相似文献   

13.
Human activities lead to declines in species’ abundance and diversity, as well as loss of habitat quality from overexploitation. The effects of livestock grazing increase on small felids are poorly understood, primarily due to the low detectability of these species. The grazing of domestic camelids, such as the llama (Lama glama) and the alpaca (Vicugna pacos), is the main traditional source of income for the inhabitants of the Andes, where the Andean cat (Leopardus jacobita) and Pampas cat (L. colocolo) are also present. In this study, we employ camera trap data to evaluate the association of llama and alpaca grazing with occupancy by the Andean and Pampas cat in Sajama National Park. In each of 36 sampling stations, we installed a camera trap, a grid of traps for rodents and two habitat transects along a gradient of intensity of livestock grazing. Occupancy models showed that negative effect of camelid abundance was stronger for the Andean cat than the Pampas cat. For both species, occupancy was also associated positively to the abundance of prey, proximity to water bodies, and vegetation. Given that livestock activity is a way of life for human populations in the Andes, we suggest that mechanisms should be implemented to compensate for the negative effects of livestock on Andean and Pampas cat populations.  相似文献   

14.
Correlates between genetic diversity at intra- and interpopulation levels and the species diversity in plant communities are rarely investigated. Such correlates may give insights into the effect of local selective forces across different communities on the genetic diversity of local plant populations. This study has employed amplified fragment length polymorphism to assess the genetic diversity within and between 10 populations of Ranunculus acris in relation to the species diversity (richness and evenness) of grassland communities of two different habitat types, 'seminatural' and 'agriculturally improved', located in central Germany. Within-population genetic diversity estimated by Nei's unbiased gene diversity (HE) was high (0.258-0.334), and was not correlated with species richness (Pearson's r = -0.17; P = 0.64) or species evenness (Pearson's r = 0.15; P = 0.68) of the plant communities. However, the genetic differentiation between R. acris populations was significantly correlated with the difference in species evenness (Mantel's r = 0.62, P = 0.02), but not with difference in species richness of plant communities (r = -0.17, P = 0.22). Moreover, we also found that populations of R. acris from the 'seminatural' habitat were genetically different (amova, P < 0.05) from those in 'agriculturally improved' habitats, suggesting that gene flow between these habitat types is limited. The results reported in this study may indicate that habitat characteristics influence the genetic diversity of plant species.  相似文献   

15.
16.
The distribution, habitat occurrence and feeding ecology of Crocidura montis and Lophuromys flavopunctatus coexisting in the afro‐alpine zone on Mt. Elgon, Uganda, are described. Crocidura montis was the only shrew species occupying the afro‐alpine zone, but was not found in forested habitats below 3200 m. While there was considerable overlap in habitat occurrence between the two species, C. montis was most abundant in the montane grassland and in drier sites while L. flavopunctatus occupied a wider range of habitats and wetter sites. C. montis ate a diversity of invertebrates, the most important being Coleoptera, Araneae and Lumbricidae. Invertebrates, mostly Diptera larvae, Lumbricidae and Coleoptera, formed a major component of the L. flavopunctatus diets, plus plant material (particularly Hepaticae and monocots). The arthropod components of the diets reflected their abundance in pitfall samples.  相似文献   

17.
Question: We asked how landscape configuration and present management influence plant species richness and abundance of habitat specialists in grasslands in a ‘modern’(much exploited and transformed) agricultural Swedish landscape. Location: Selaön, south‐eastern Sweden (59°24’ N, 17°10’ E). Methods: Present and past (150 and 50 years ago) landscape pattern was analysed in a 25 km2 area. Species richness was investigated in 63 different grassland patches; grazed and abandoned semi‐natural grasslands, and grazed ex‐arable fields. Influence of landscape variables; area, past and present grassland connectivity, present management on total species richness, density and abundance of 25 grassland specialists was analysed. Results: Semi‐natural grasslands (permanent unfertilised pastures or meadows formed by traditional agricultural methods) had declined from 60% 150 years ago to 5% today. There was a significant decline in species richness and density in abandoned semi‐natural grasslands. Total species richness was influenced by present management, size and connectivity to present and past grassland pattern. Landscape variables did not influence species density in grazed semi‐natural grassland suggesting that maintained grazing management makes grassland patches independent of landscape context. The abundance of 16 grassland specialists was mainly influenced by management and to some extent also by landscape variables. Conclusion: Although species richness pattern reflect management and to some extent landscape variables, the response of individual species may be idiosyncratic. The historical signal from past landscapes is weak on present‐day species richness in highly transformed, agricultural landscapes. Generalizations of historical legacies on species diversity in grasslands should consider also highly transformed landscapes and not only landscapes with a high amount of diversity hotspots left.  相似文献   

18.
Many butterfly species are declining in range and abundance, sometimes to the point of becoming vulnerable to extinction. Several traits increase a species’ vulnerability to population decline through stochastic processes, including high larval specificity and poor dispersal rate. The Duke of Burgundy Hamearis lucina relies on Primula as its sole larval host plant. This monophagus dependency, coupled with susceptibility to environmental stochasticity, low dispersal and poor recolonization potential, means it is vital that sites supporting this rapidly-declining species are managed optimally. Here, we use two calcareous grassland sites in the UK with different grazing systems to identify optimal grazing management for Primula abundance and, for the first time, Primula characteristics linked previously to Duke oviposting preference and success: size, condition, succulence and surrounding sward height. We find that autumn and winter grazing intensity are both positively associated with Primula abundance, but there is a trade-off for winter grazing with negative effects on plant size, condition and succulence. Winter grazing also decreased the sward height below the optimum. Plants were bigger and better at the site managed using continuous (free-roaming) grazing versus the site managed using rotational (paddock-based) grazing. We recommend moderately high grazing intensity during autumn using a free-roaming system where possible to attain abundant Primula, with a reduction in grazing intensity or grazing removal during winter to ensure suitability of individual plants. This management would also benefit other host plants, such as bird’s foot trefoil Lotus corniculatus, which are vital for other declining butterflies that frequently co-occur with Dukes.  相似文献   

19.
The diversity of rhizobia that establish symbiosis with Lotus corniculatus has scarcely been studied. Several species of Mesorhizobium are endosymbionts of this legume, including Mesorhizobium loti, the type species of this genus. We analysed the genetic diversity of strains nodulating Lotus corniculatus in Northwest Spain and ten different RAPD patterns were identified among 22 isolates. The phylogenetic analysis of the 16S rRNA gene showed that the isolated strains belong to four divergent phylogenetic groups within the genus Mesorhizobium. These phylogenetic groups are widely distributed worldwide and the strains nodulate L. corniculatus in several countries of Europe, America and Asia. Three of the groups include the currently described Mesorhizobium species M. loti, M. erdmanii and M. jarvisii which are L. corniculatus endosymbionts. An analysis of the recA and atpD genes showed that our strains belong to several clusters, one of them very closely related to M. jarvisii and the remanining ones phylogenetically divergent from all currently described Mesorhizobium species. Some of these clusters include L. corniculatus nodulating strains isolated in Europe, America and Asia, although the recA and atpD genes have been sequenced in only a few L. corniculatus endosymbionts. The results of this study revealed great phylogenetic diversity of strains nodulating L. corniculatus, allowing us to predict that even more diversity will be discovered as further ecosystems are investigated.  相似文献   

20.
Background and AimsAridity is increasing in many regions of the world, but microclimatic conditions may buffer plant communities from the direct effects of decreased precipitation, creating habitat islands. However, reduced precipitation can also impact these communities indirectly by decreasing the suitability of the surrounding habitat, thus limiting incoming propagules and increasing the chances of population decline and species loss. We test whether decreased precipitation results in loss of species and functional diversity within habitat islands, evaluating in particular whether declines in species diversity and abundance are less likely to result in loss of functional diversity if species/individual loss is stochastic (i.e. independent of species/individual traits) and communities/populations are functionally redundant.MethodsLomas communities are discrete plant communities embedded in the Atacama Desert, maintained by the microclimatic conditions created by fog. We recorded species and functional diversity in six Lomas communities along a 500 km long precipitation gradient in northern Chile. Functional traits were measured in 20 individuals per species, in those species that accounted for approx. 75 % of the abundance at each site. We calculated functional diversity and functional redundancy of the community, and intraspecific functional variation.Key ResultsDecreased precipitation was associated with lower species diversity and lower species abundances. However, no traits or functional strategies increased or decreased consistently with precipitation, suggesting stochastic species/individual loss. Species with stress-tolerant strategies were predominant in all sites. Although species diversity decreased with decreasing precipitation, functional diversity remained unchanged. Lower functional redundancy in the drier sites suggests that mainly functionally redundant species were lost. Likewise, intraspecific functional variation was similar among communities, despite the lower species abundance in drier sites.ConclusionsDecreased precipitation can impact habitat island communities indirectly by decreasing the suitability of the surrounding habitat. Our results support the idea that a stochastic loss of species/individuals from functionally redundant communities and populations does not result in loss of functional diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号