首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Here, we report the expression pattern, function and regulatory mechanism of SNHG15 together with miR-18a-5p micro RNA in ovarian cancer (OC) for the first time. We recruited 20 patients and took normal ovarian tissues and ovarian tumor tissues from them. We used cell culture, transfection, in vivo tumor xenograft assay, and multiple types of detection assays to investigate the expression and regulation of long noncoding RNA (lncRNA) SNHG15/miR-18a-5p in ovarian tissues and cells. Results: We found that the messenger RNA expression level of SNHG15 was significantly higher and miR-18 was decreased in ovarian cancer tissues and in OC cells. Functional experiments showed that SNHG15 overexpression potentiated the migration and invasion of OC cells, while SNHG15 inhibition reduced the tumor proliferation, which was restored via overexpression of miR-18a. SNHG15 was found to directly target and suppress the expression of miR-18a. Our results illustrate the possible molecular mechanism of lncRNA SNHG15/miR-18a-5p functions in cell proliferation in OC. SNHG15/miR-18a promoted the progression of OC cells via the protein kinase B/mammalian target of rapamycin signaling pathway.  相似文献   

2.
3.
目的:探讨miR-520a-3p调控宫颈癌细胞因子分泌的分子机制。方法:通过Target Scan Human分析miR-520a-3p与NF-κB复合体亚基RELA的匹配情况,然后通过荧光素酶报告系统检测miR-520a-3p是否靶向NF-κB复合体亚基RELA;使用LPS刺激宫颈癌HELA细胞后,将miR-520a-3p mimics与转染试剂混合后滴入HELA细胞中,此为过表达组;将miR-520a-3p inhibitor与转染试剂混合后滴入HELA细胞中,此为敲低组,通过酶联免疫吸附试验检测过表达组和敲低组GCSF,GM-CSF,IL-2,IL-3,IL-4,IL-5,IL-6,IL-9,IL-10,IL-12 p40,IL-12 p70,IL-13,IL-17,IFN-γ,MCP-1,MCP-5,RANTES,TNFα的表达水平。每次实验重复3次。结果:miR-520a-3p靶向RELA的3’UTR; LPS激活NF-kB信号通路后,宫颈癌HELA细胞分泌的细胞因子GCSF,GM-CSF,IL-2,IL-3,IL-4,IL-5,IL-6,IL-9,IL-10,IL-12 p...  相似文献   

4.
Long noncoding RNA HOTTIP is a crucial regulator in multiple types of cancer, including ovarian cancer (OC). However, the biological roles and underlying mechanisms of HOTTIP in OC have rarely been studied. Hence, this study aimed to investigate the functional correlation between HOTTIP and pyroptosis in OC progression. The expression of HOTTIP in OC tissues and cell lines was characterized by quantitative real-time PCR. Cell proliferation was evaluated using Cell Counting Kit-8 and clone formation assays. Western blot was performed to quantify protein levels. A dual-luciferase reporter assay was used to analyze the molecular interaction among HOTTIP, miR-148a-3p, and AKT2. The expression of HOTTIP was significantly upregulated in OC tissue samples and cell lines. The silencing of HOTTIP led to the inhibition of cell proliferation and NLRP1 inflammasome-mediated pyroptosis. In addition, HOTTIP increased AKT2 expression by negatively regulating miR-148a-3p and then inhibited ASK1/JNK signaling. Further rescue experiments revealed that downregulation of miR-148a-3p and overexpression of AKT2 obviously diminished the effects of HOTTIP downregulation in OC cells. Thus, our study elucidated a novel pyroptosis-related mechanism by which HOTTIP participated in OC progression, which might provide a theoretical reference for clinical treatment.  相似文献   

5.
In this study, we aimed to explore the association between miR-99a-5p and CDC25A in breast cancer and the regulatory mechanisms of miR-99a-5p on breast cancer. The expressions of messenger RNA and microRNAs in breast cancer tissues and adjacent tissues were analyzed by the Cancer Genome Atlas microarray analysis. Quantitative real-time polymerase chain reaction was conducted to find out the expression levels of miR-99a-5p and CDC25A. The expression levels of proteins (CDC25A, ki67, cyclin D1, p21, BAX, BCL-2, BCL-XL, MMP2, and MMP9) were determined by Western blot analysis. The relationship between miR-99a-5p and CDC25A was predicted and verified by bioinformatics analysis and dual luciferase assay. After transfection, cell proliferation, invasion, and apoptosis of breast cancer tissues were, respectively, observed by cell counting kit-8 assay, transwell assay, and flow cytometry (FCM). Furthermore, the relationship among miR-99a-5p, CDC25A, and cell-cycle progression was determined by FCM assay. The nude mouse transplantation tumor experiment was performed to verify the influence of miR-99a-5p on breast cancer cell in vivo. The expression of miR-99a-5p in breast cancer tissues and cells was significantly downregulated, whereas CDC25A expression was upregulated. MiR-99a-5p targeted CDC25A and suppressed its expression in breast cancer cells. Overexpression of miR-99a-5p and decreased expression of CDC25A could suppress breast cancer cell proliferation and invasion and facilitate apoptosis. Cell-cycle progression was significantly activated by downregulated miR-99a-5p and upregulated CDC25A. Moreover, miR-99a-5p overexpression repressed the expressions of CDC25A, marker ki67, and Cyclin D1 proteins, whereas it upregulated the expression of p21 protein. MicroRNA-99a-5p suppresses breast cancer progression and cell-cycle pathway through downregulating CDC25A.  相似文献   

6.
7.
8.
9.
10.
11.
Lung cancer is one of the deadliest cancers, in which non-small cell lung cancer (NSCLC) accounting for 85% and has a low survival rate of 5 years. Dysregulation of microRNAs (miRNAs) can participate in tumor regulation and many major diseases. In this study, we found that miR-199a-3p/5p were down-expressed in NSCLC tissue samples, cell lines, and the patient sample database. MiR-199a-3p/5p overexpression could significantly suppress cell proliferation, migration ability and promote apoptosis. Through software prediction, ras homolog enriched in brain (Rheb) was identified as a common target of miR-199a-3p and miR-199a-5p, which participated in regulating mTOR signaling pathway. The same effect of inhibiting NSCLC appeared after down-regulating the expression of Rheb. Furthermore, our findings revealed that miR-199a can significantly inhibit tumor growth and metastasis in vivo, which fully demonstrates that miR-199a plays a tumor suppressive role in NSCLC. In addition, miR-199a-3p/5p has been shown to enhance the sensitivity of gefitinib to EGFR-T790M in NSCLC. Collectively, these results prove that miR-199a-3p/5p can act as cancer suppressor genes to inhibit the mTOR signaling pathway by targeting Rheb, which in turn inhibits the regulatory process of NSCLC. Thus, to investigate the anti-cancer effect of pre-miR-199a/Rheb/mTOR axis in NSCLC, miR-199a-3p and miR-199a-5p have the potential to become an early diagnostic marker or therapeutic target for NSCLC.  相似文献   

12.
There is increasing evidence has indicated that long non-coding RNAs (lncRNAs) are implicated in the tumorigenesis and development of colorectal cancer (CRC). Nevertheless, the clinical significances and functions of FENDRR in CRC remain unknown. In this study, we reveal that lncRNA FENDRR is downregulated in CRC and negatively correlated with advanced stage and poor clinical outcomes of patient with CRC. Overexpression of FENDRR represses the proliferation, migrate and invasive capacities of CRC cell in vitro, and upregulation of FENDRR inhibits the growth and distant metastatic capacity of CRC cell in vivo. Mechanistically, FENDRR interacts with miRNA-18a-5p (miR-18a-5p) and subsequently regulates the expression of inhibitor of growth 4 (ING4) in CRC cell. Interestingly, ING4 repression or miR-18a-5p rescues FENDRR induced proliferation and aggressive phenotypes inhibition of CRC cell. Altogether, our findings suggest that FENDRR exerts an inhibitory role in CRC by interacting with miR-18a-5p and future increases ING4 expression.  相似文献   

13.
Long noncoding RNAs (lncRNAs) have been reported to dysregulate and involve in the pathology of hepatocellular carcinoma (HCC). Nonetheless, the functional role of lncRNA T cell leukemia/lymphoma 6 (TCL6) and its underlying mechanism in HCC remain unclear. Herein, we analyzed the expression of TCL6 and elucidated its mechanistic involvement in HCC. Bioinformatics analyses indicated TCL6 was evidently downregulated in HCC tissues compared with normal controls. TCL6 was downregulated while microRNA-106a-5p (miR-106a-5p) was upregulated in HCC cell lines. Moreover, knockdown or overexpression of TCL6 significantly raised or diminished the expression level of miR-106a-5p in HCC cells, similar to the effect of miR-106a-5p on TCL6 expression. Functionally, TCL6 inhibited the proliferative, migratory, and invasive potentials of HCC cells as analyzed by cell counting kit-8, scratch wound healing, and transwell assays, respectively. Conversely, miR-106a-5p exerted an opposite effect on the proliferative, migratory, and invasive potentials of HCC. RNA immune precipitation and luciferase reporter assays revealed TCL6 directly bound to miR-106a-5p and luciferase reporter assay verified phosphatase and tensin homolog (PTEN) was a target gene of miR-106a-5p. Mechanistically, TCL6 knockdown evidently reduced PTEN expression at both messenger RNA and protein levels, and miR-106a-5p inhibitor partially rescued this reduction effect in HCC cells. Additionally, western blot assays demonstrated miR-106a-5p downregulation or TCL6 overexpression promoted the protein level of PTEN, and suppressed the phosphorylation level of AKT, the protein level of phosphatidylinositol 3-kinase (PI3K). Collectively, these results revealed TCL6 as a tumor-suppressive lncRNA regulates PI3K/AKT signaling pathway via directly binding to miR-106a-5p in HCC. This mechanism provides a theoretical basis for HCC pathogenesis and a potential therapeutic strategy for HCC treatment.  相似文献   

14.
Colorectal cancer (CRC) is the fourth most deadly cancer worldwide, drug resistance impedes treatment of CRC. It is still urgent to find new molecular targets to improve the sensitivity of chemotherapeutic drugs. In this study, circ-ERBB2 was upregulated in CRC cells. Upregulation of circ-ERBB2 promoted CRC cells proliferation and clone formation, but inhibited apoptosis. We identified miR-181a-5p as circ-ERBB2's target. The effect of miR-181a-5p on CRC cells was contrary to circ-ERBB2, miR-181a-5p downregulation abolished the function of circ-ERBB2 silencing in CRC cells. In addition, phosphatase and tensin homolog (PTEN) was verified as miR-181a-5p's downstream target, circ-ERBB2 activates the Akt pathway and inhibits cell apoptosis through modulating miR-181a-5p/PTEN. Circ-ERBB2 silencing significantly reduced CRC cell resistance to 5-FU. miR-181a-5p downregulation abolished the role of circ-ERBB2 knockdown in CRC cell resistance to 5-FU. In conclusion, upregulation of circ-ERBB2 promoted the malignancy of CRC and reduced CRC cell resistance to 5-FU. Besides, additional mechanism study provided a novel regulatory pathways that circ-ERBB2 knockdown promoted CRC cell sensitivity to 5-FU by regulating miR-181a-5p/PTEN/Akt pathway. This research indicated that circ-ERBB2 may be a valuable biomarker for the diagnosis and treatment of CRC.  相似文献   

15.
16.
MicroRNAs (miRNAs) play an important role in drug resistance, and it is reported that miR-27a-3p regulated the sensitivity of cisplatin in breast cancer, lung cancer and ovarian cancer. However, the relationship between miR-27a-3p and chemosensitivity of cisplatin in hepatocellular carcinoma (HCC) was unclear, especially the underlying mechanism was unknown. In the present study, we analyzed miR-27a-3p expression levels in 372 tumor tissues and 49 adjacent tissues in HCC samples from TCGA database, and found that the miR-27a-3p was down-regulated in HCC tissues. The level of miR-27a-3p was associated with metastasis, Child–Pugh grade and race. MiR-27a-3p was regarded as a favorable prognosis indicator for HCC patients. Then, miR-27a-3p was overexpressed in HepG2 cell, and was knocked down in PLC cell. Next, we conducted a series of in vitro assays, including MTT, apoptosis and cell cycle assays to observe the biological changes. Further, inhibitor rate and apoptosis rate were detected with pre- and post-cisplatin treatment in HCC. The results showed that overexpression of miR-27a-3p repressed the cell viability, promoted apoptosis and increased the percentage of cells in G0/G1 phase. Importantly, overexpression of miR-27a-3p significantly increased the inhibitor rate and apoptosis rate with cisplatin intervention. Besides, we found that miR-27a-3p added cisplatin sensitivity potentially through regulating PI3K/Akt signaling pathway. Taken together, miR-27a-3p acted as a tumor suppressor gene in HCC cells, and it could be useful for modulating cisplatin sensitivity in chemotherapy.  相似文献   

17.
18.
19.
Most people are aware of gestational diabetes mellitus (GDM), a dangerous pregnancy complication in which pregnant women who have never been diagnosed with diabetes develop chronic hyperglycaemia. Exosomal microRNA (miRNA) dysregulation has been shown to be a key player in the pathophysiology of GDM. In this study, we looked into how placental exosomes and their miRNAs may contribute to GDM. When compared to exosomes from healthy pregnant women, it was discovered that miR-135a-5p was elevated in placenta-derived exosomes that were isolated from the maternal peripheral plasma of GDM women. Additionally, we discovered that miR-135a-5p encouraged HTR-8/SVneo cell growth, invasion and migration. Further research revealed that miR-135a-5p activates HTR-8/SVneo cells' proliferation, invasion and migration by promoting PI3K/AKT pathway activity via Sirtuin 1 (SIRT1). The transfer of exosomal miR-135a-5p generated from the placenta could be viewed as a promising agent for targeting genes and pertinent pathways involved in GDM, according to our findings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号