首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Diversity as a measure of individual variation within a population is widely agreed to reflect the number of different types in the population, taking into account their frequencies. In contrast, differentiation measures variation between two or more populations, demes or subpopulations. As such, it is based on the relative frequencies of types within these subpopulations and, ideally, measures the average distance of subpopulations from their respective lumped remainders. This concept of subpopulation differentiation can be applied consistently to a single population by regarding each individual as a deme (subpopulation) of its own, and it results in a measure of population differentiation T which depends on the relative frequencies of the types and the population size. T corresponds to several indices of variation frequently applied in population genetics and ecology, and it verifies these indices as measures of differentiation rather than diversity. For any particular frequency distribution of types, the diversity is then shown to be the size of a hypothetical population in which each type is represented exactly once, i. e. for which T =1. Hence, the diversity of a population is its differentiation effective number of types. This uniquely specifies the link between the two concepts. Moreover, again corresponds to known measures of diversity applied in population genetics and ecology. While population differentiation can always be estimated from samples, the diversity of a population, particularly if it is large, may not be. In such cases, it is recommended that population differentiation is estimated and the corresponding sample diversity merely computed. Finally, a solution to the problem of measuring multi-locus diversities is provided.  相似文献   

2.
The genetic diversity of five wild populations of marine polychaete Marphysa sanguinea found in China was investigated using Inter-Simple Sequence Repeat-PCR (ISSR-PCR) polymorphisms. The results of the ISSR-PCR showed that 108 (90.8%) of the 119 ISSR loci tested were polymorphic. The Shannon's information index value was 0.4981, Nei's gene diversity was 0.3418, and the coefficient of gene differentiation (Gst) was 0.3671, which indicated that the among-population component accounted for 36.7% of the total variation, while the within-population component accounted for 63.3%. A UPGMA tree showed that the five populations clustered into two branches. Populations from Dalian, Xingcheng, and Rushan clustered together, while the two Guangxi populations, A and B, clustered into a unique group. The results indicated that the genetic diversity among the five populations of M. sanguinea is high, which will provide useful information for the protection of biodiversity among marine polychaetes.  相似文献   

3.
Identifying genetic diversity patterns is fundamentally important for effective species management and conservation. In this study, we used five microsatellite loci to investigate the genetic diversity and population differentiation of Achyranthes bidentata in Dao Di and its surrounding region. Our analysis of microsatellite data indicated the level of genetic diversity of A. bidentata (HT = 0.333) was lower than other plants. The results showed no significant genetic diversity differences and population genetic differentiation between the Dao Di and surrounding region. Significant temperature differences (Bio2: mean diurnal range and Bio7: temperature annual range) were found between the Dao Di and surrounding region, which may improve the accumulation of medicinal ingredients of populations in the Dao Di. The populations of A. bidentata were divided into two genetic groups, which was caused by five temperature variables (Bio1, Bio4, Bio7, Bio9, and Bio11). This study thus provides an important case for over-collecting within limited ranges in affecting population diversity and bioclimate variables for different producing area in driving population differentiation.  相似文献   

4.
Genus Ficus (Moraceae) plays a critical role in the sustainability and biodiversity in tropical and subtropical ecosystems. Ficus species and their host specific pollinating fig wasps (Agaonidae) represent a classic example of obligate mutualism. The genetic consequence of range expansion and range shift is still under investigation, but extensive gene flow and subsequently low level of genetic divergence may be expected to occur among the populations at the poleward range limit of some Ficus species due to long distance gene flow in the genus. In the present study, we focused on populations of F. sarmentosa var. henryi at its northeastern range limit in southeast China to test whether edge populations were genetically fragile. Consistent with our hypothesis, high level of genetic diversity and weak genetic structure were revealed in Ficus sarmentosa var. henryi populations, suggesting extensive gene flow at the plant's range limit. Long-distance movements of both pollinators and frugivorous birds were likely to be frequent and thereby predominantly contributed to the extensive gene flow at large scale despite of some magnificent landscape elements like huge mountains.  相似文献   

5.
The Chinese soft-shelled turtle (Pelodiscus sinensis) is one of the most important economical chelonians in the world. To understand the genetic variations of the Chinese soft-shelled turtle in China, 62 individuals were sampled from three localities and 18 polymorphic microsatellite loci tested were used to detect genetic diversity and population structure. Results showed that the genetic diversity of the wild P. sinensis was high. Except for the Wuhu populations, the majority of microsatellite loci are not deviation from Hardy–Weinberg equilibrium in the other two populations. AMOVA analysis indicated that genetic variations occurred mainly within populations (97.4%) rather than among populations (2.6%). The gene flow estimates (Nm) among three geographic populations demonstrated that strong gene flow existed (Nm > 1, mean 6). The present study supported that different habitats, breed turtles escaped, multiple paternity and long evolutionary history may be responsible for the current genetic diversity and differentiation in the wild Chinese soft-shelled turtle.  相似文献   

6.
Abies chensiensis Tieghem and Abies fargesii Franchet are two closely related tree species of Pinaceae endemic to China. A. chensiensis is usually found scattered in small forest fragments, whereas A. fargesii is a dominant member of coniferous forest. To evaluate the genetic effect of fragmentation on A. chensiensis, a total of 24 populations were sampled from the whole distribution of the two species. Seven nuclear microsatellite loci were employed to analyze comparatively the genetic diversity and population genetic differentiation. Both A. chensiensis and A. fargesii have high level within-population genetic diversity and low inter-population genetic differentiation. Low microsatellite differentiation (2.1%) between A. fargesii and A. chensiensis was observed. But microsatellite marker was able to discriminate most populations of these two species. Compared to A. fargesii, A. chensiensi has lower allelic diversity and higher genetic differentiation among populations. It suggested the existence of negative genetic impacts of habitat fragmentation on A. chensiensis.  相似文献   

7.
Microsatellite markers are commonly used for population genetic analyses of livestock. However, up to now, combinations of microsatellite data sets or comparison of population genetic parameters from different studies and breeds has proven difficult. Often different genotyping methods have been employed, preventing standardization of microsatellite allele calling. In other cases different sets of markers have been genotyped, providing differing estimates of population genetic parameters. Here, we address these issues and illustrate a general two-step regression approach in cattle using three different sets of microsatellite data, to combine population genetics estimates of diversity and admixture. This regression-based method is independent of the loci genotyped but requires common breeds in the data sets. We show that combining microsatellite data sets can provide new insights on the origin and geographical distribution of genetic diversity and admixture in cattle, which will facilitate global management of this livestock species.  相似文献   

8.
Camel invokes fascinating chapter of Indian desert history and is integral component of its ecosystem. Camel population has reached a crisis point after three decades of decline (75%) causing major concern to the policy makers. >28% of Indian camel is not yet characterized. It is imperative to describe country’s camel germplasm and its existing diversity for designing conservation plan. One such population is Sindhi, distributed along border with Pakistan. Twenty five microsatellite markers being valuable tool for estimating genetic diversity were selected to elucidate genetic variability and relationship of Sindhi with two registered camel breeds of India- Marwari and Kharai. The standard metrics of genomic diversity detected moderate variability in all the three populations. A total of 303 alleles with a mean of 8.116 ± 0.587 alleles per locus were found in total of 143 animals. Sindhi population had intermediate allelic diversity with 8.522 ± 1.063 alleles per locus. Corresponding values in Marwari and Kharai were 8.783 ± 0.962 and 7.043 ± 1.030, respectively. Genetic variability within the breeds was moderate as evidenced by the mean observed heterozygosity of 0.556 ± 0.025. Sindhi camel population harbors higher genetic variability (Ho = 0.594) as compared to the two registered camel breeds (Marwari, 0.543 and Kharai, 0.531). Mean expected heterozygosity under Hardy-Weinberg equilibrium was higher than the observed values across the three camel groups, indicating deviations from assumptions of this model. In fact, average positive F value of 0.084 to 0.206 reflected heterozygote deficiency in these populations. These Indian camel populations have not experienced serious demographic bottlenecks in the recent past. Differences among populations were medium and accounted for 7.3% of total genetic variability. Distinctness of three camel populations was supported by all the approaches utilized to study genetic relationships such as genetic distances, phylogenetic relationship, correspondence analysis, clustering method based on Bayesian approach and individual assignment. Sindhi camel population was clearly separated from two registered breeds of Indian camel. Results conclude Sindhi to be a separate genepool. Moderate genetic diversity provides an optimistic viewpoint for the survival of severely declining indigenous camel populations with appropriate planning strategies for conserving the existing genetic variation and to avoid any escalation of inbreeding.  相似文献   

9.
The genetic structure of the Dexter, a minority cattle breed with complex demographic history, was investigated using microsatellite markers and a range of statistical approaches designed to detect both admixture and genetic drift. Modern representatives of two putative ancestral populations, the Devon and Kerry, together with the different populations of the Dexter, which have experienced different demographic histories, were analysed. Breed units showed comparatively high levels of genetic variability ( H E = 0.63–0.68); however, distinct genetic subgroups were detected within the Dexter, which could be attributed to known demographic events. Much lower diversity was identified in three small, isolated Dexter populations ( H E = 0.52–0.55) and higher differentiation ( F ST > 0.13) was found. For one of these populations, where strong selection has taken place, we also found evidence of a demographic bottleneck. Three methods for quantifying breed admixture were applied and substantial method-based variation in estimates for the genetic contribution of the two proposed ancestral populations for each subdivision of the Dexter was found. Results were consistent only in the case of a group consisting of selected Traditional Dexter animals, where the ancestor of the modern Kerry breed was also determined as the greater parental contributor to the Dexter. The inconsistency of estimation of admixture proportions between the methods highlights the potentially confounding role of genetic drift in shaping small population structure, and the consequences of accurately describing population histories from contemporary genetic data.  相似文献   

10.
Small yellow croaker is one of the most important fishery species in China. The mass–scale artificial propagation of this fish species was initially developed in 2015 with the aim of facilitating the fish production stock enhancement and aquaculture programs in the future. In the present study, the wild broodfish and its corresponding progeny along with three other wild populations were sampled and subjected to sequence analysis of the mitochondrial cytochrome c oxidase subunit I gene. The genetic diversity and population genetic structure were evaluated with a total sample size of 141 individuals representing the populations of the Yellow Sea (Qingdao and Lvsi populations) and the East China Sea (Xiangshan and Ningde populations). The wild populations were characterized by high haplotype diversity (0.925–0.976) and low nucleotide diversity (0.376%–0.560%). The hierarchical analysis of molecular variance (AMOVA) analysis and the values of pairwise Ф-statistics (ФST) indicated non-significant genetic differentiation among the four wild populations. The hatchery stock XSH exhibited lower indices of genetic diversity compared with the wild populations that could be attributed to the small effective population size. The findings of the present study have valuable insight to the sustainable management and utilization of this resource.  相似文献   

11.
Gupta AK  Chauhan M  Bhardwaj A  Tandon SN 《Gene》2012,499(2):357-361
Genetic diversity in Zanskari pony breed was evaluated at 48 microsatellite loci using fifty adult, healthy and unrelated animals. Allele frequency data was used to detect genetic diversity and bottleneck. The estimated average number of alleles (±s.e.) was 8.5208±2.5010 with a total of 409 alleles. A high level of genetic diversity within this breed was observed in terms of number of alleles, observed heterozygosity (0.6763±0.1704), expected Leven's heterozygosity (0.7724±0.795), expected Nei's heterozygosity (0.7644±0.0787) and polymorphism information content (>0.5). In-breeding coefficient (F(is)) was 0.115±0.0209, suggesting moderately high in-breeding in Zanskari breed. Although analysis of bottleneck revealed no bottleneck in recent past but population of Zanskari ponies has decreased drastically and only a few thousand pure-bred animals are left. The information is useful for proposing effective population management strategies for future.  相似文献   

12.
The threadsail filefish Stephanolepis cirrhifer is one of the most important commercial fish resources in Korea. However, its natural populations have declined drastically over the last several decades. To investigate the genetic characteristics of the threadsail filefish for conservation and management purposes, its genetic variation was analyzed in Korean fishing grounds using 11 microsatellite loci. All populations showed moderate genetic diversity (mean number of alleles (NA) = 8.6, expected heterozygosity (He) = 0.73), representing a slightly lower level of genetic variability than other congeneric species. The presence of a weak genetic population substructure was detected (FST = 0.023, RST = 0.030, P < 0.001), but this substructure did not feature significant isolation based on the distance between populations. This differentiation may be primarily attributable to genetic differences between populations from Geomundo and other localities, based on relative low level of gene flow, a high level of pairwise FST and RST or the position of this population in a phylogenetic tree. An analysis of molecular variance (AMOVA) also revealed a greater part of the variation within the population and genetic differentiation among the samples analyzed and identified two genetic clusters. The possibility of a recent genetic bottleneck was observed in some populations of S. cirrhifer. Given the prevailing ocean currents and the intensity of threadsail filefish harvesting activities in Korea, the possibility that human harvest and stock enhancement activities may have partially contributed to our detected genetic pattern cannot be excluded. Management strategies that take these findings into account might lower the risk of harmful genetic change in the species.  相似文献   

13.
Phoebe zhennan S. Lee et F. N. Wei (Lauraceae), is the main source of Gold Phoebe, a rare and extremely valuable wood in China. However it has undergone a dramatic decline. In this study, we used 12 amplified fragment length polymorphism primer combinations to assay 92 accessions, which were highly representative of the entire P. zhennan germplasm. It revealed that P. zhennan consisted of three genetic populations, named as SCZ (central Sichuan), CQH (eastern Sichuan, Chongqin, Hubei and Hunan) and YG (Yunnan and Guizhou), probably owing to natural selection caused by topography differences. The CQH population further diverged into two geographical sub-populations: CD-CQ (SCD and west region of Chongqin) and HB-HN (eastern side of Chongqin, Hubei and Hunan). The loci were moderately polymorphic (40.4%). The genetic distance between SCZ and YG was the highest, between CD-CQ and HB-HN the lowest. Pairwise fixation indices (ФPT) between any inferred populations were significant. This rare species exhibited low genetic diversity; therefore, the results provided significant data related to the conservation and management of P. zhennan. That is, with this genetic information, land managers are equipped with better tools allowing them to more effectively protect this species and its limited genetic diversity.  相似文献   

14.
The genetic differentiation within a subdivided population can be partitioned into two proportions, one due to differentiation within sub-populations and the other due to differentiation among subpopulations. A simple mathematical derivation of this procedure, known as Nei's G ST -statistics, is presented. The significance of considering the differing relative sizes of subpopulations is stressed. Possible fields of applications for breeders and conservationists who are concerned with the establishment of genetically diverse populations are mentioned.  相似文献   

15.
Theory predicts that genetic diversity and genetic differentiation may strongly vary among populations of the same species depending on population turnover and local population sizes. Yet, despite the importance of these predictions for evolutionary and conservation issues, empirical studies comparing high‐turnover and low‐turnover populations of the same species are scarce. In this study, we used Daphnia magna, a freshwater crustacean, as a model organism for such a comparison. In the southern/central part of its range, D. magna inhabits medium‐sized, stable ponds, whereas in the north, it occurs in small rock pools with strong population turnover. We found that these northern populations have a significantly lower genetic diversity and higher genetic differentiation compared to the southern/central populations. Total genetic diversity across populations was only about half and average within‐population diversity only about a third of that in southern/central populations. Moreover, an average southern population contains more genetic diversity than the whole metapopulation system in the north. We based our analyses both on silent sites and microsatellites. The similarity of our results despite the contrasting mutation rates of these markers suggests that the differences are caused by contemporary rather than by historical processes. Our findings show that variation in population turnover and population size may have a major impact on the genetic diversity and differentiation of populations, and hence may lead to differences in evolutionary processes like local adaptation, hybrid vigour and breeding system evolution in different parts of a species range.  相似文献   

16.
AFLP markers were used to investigate the population genetic differentiation among populations of Sebastes schlegelii from China and Japan. A total of 405 bands were amplified for 180 individuals from 9 populations by 3 pairs of selective primers. S. schlegelii exhibited high Nei's gene diversity with an average value of 0.29 for all populations. No significant genealogical branches or clusters corresponding to sampling localities were detected by UPGMA tree. The results of AMOVA analysis and pairwise FST values showed no genetic divergence among different geographic populations. The result of STRUCTURE demonstrated all populations of S. schlegelii examined in the study shared one single gene pool.  相似文献   

17.
Genetic diversity and population structure in Bergenia stracheyi, a threatened medicinal herb in the Western Himalaya of India was analysed using directed amplification of minisatellite DNA (DAMD) and inter simple sequence repeats (ISSR) markers. A total of 41 accessions of B. stracheyi representing three populations (Khillenmarg –KLM, Jalori Pass-JLP and Rohtang-RTG) were considered in the present study. The cumulative data analysis for 26 (10 DAMD + 16 ISSR) markers revealed 87.1% polymorphism. The maximum inter-population genetic distance was found between KLM and JLP, whereas the minimum genetic distance was found between RTG and JLP populations. The analysis of molecular variance (AMOVA) revealed maximum percentage of variation among individuals within populations (75%) than among the populations (25%). Clustering pattern of the three sample populations in STRUCTURE and PCoA analyses showed high genetic variation at population level. The present study revealed that distribution patterns, high altitudinal ranges, high habitat specificity, relatively high gene flow, small and isolated population size have shaped the current population structure of B. stracheyi in the Western Himalayan region. DAMD and ISSR markers have provided significant insights into characterization of B. stracheyi populations, and facilitate selection of appropriate accessions for further utilization in conservation and bioprospecting programmes.  相似文献   

18.
Cassava (Manihot esculenta) is an allogamous, vegetatively propagated, Neotropical crop that is also widely grown in tropical Africa and Southeast Asia. To elucidate genetic diversity and differentiation in the crop's primary and secondary centers of diversity, and the forces shaping them, SSR marker variation was assessed at 67 loci in 283 accessions of cassava landraces from Africa (Tanzania and Nigeria) and the Neotropics (Brazil, Colombia, Peru, Venezuela, Guatemala, Mexico and Argentina). Average gene diversity (i.e., genetic diversity) was high in all countries, with an average heterozygosity of 0.5358 ± 0.1184. Although the highest was found in Brazilian and Colombian accessions, genetic diversity in Neotropical and African materials is comparable. Despite the low level of differentiation [Fst(theta) = 0.091 ± 0.005] found among country samples, sufficient genetic distance (1-proportion of shared alleles) existed between individual genotypes to separate African from Neotropical accessions and to reveal a more pronounced substructure in the African landraces. Forces shaping differences in allele frequency at SSR loci and possibly counterbalancing successive founder effects involve probably spontaneous recombination, as assessed by parent-offspring relationships, and farmer-selection for adaptation.Communicated by H.C. Becker  相似文献   

19.
Urophysa henryi (Oliv.) Ulbr., endemic to China with small populations, is known as a medicinal plant. In this study, ISSR markers were used to assess the genetic diversity and population structure throughout its entire distribution areas. Twelve primers revealed high genetic diversity at the species level (PPB = 95.6%; H = 0.3441; I = 0.5111), as well as high level of genetic differentiation (FST = 0.659, p < 0.001; GST = 0.677) and restricted gene flow (Nm = 0.239) among populations. According to the UPGMA and PCoA analysis, the 9 populations were clustered into three main groups, which were roughly in accordance with their geographical regions. In addition, a significant correlation between the genetic difference and geographic distances among populations was detected from the IBD analysis (r = 0.516, p = 0.003). These results indicated that the habitat heterogeneity and physical barriers play important roles in the modern distribution pattern and population divergence of U. henryi. However, human activities have posed serious threat to its living environment and continued survival. It is necessary to adopt some measures to restrict anthropogenic disturbances and preserve the existing populations.  相似文献   

20.
Genome-wide association studies (GWAS) have become popular as an approach for the identification of large numbers of phenotype-associated variants. However, differences in genetic architecture and environmental factors mean that the effect of variants can vary across populations. Understanding population genetic diversity is valuable for the investigation of possible population specific and independent effects of variants. EvoSNP-DB aims to provide information regarding genetic diversity among East Asian populations, including Chinese, Japanese, and Korean. Non-redundant SNPs (1.6 million) were genotyped in 54 Korean trios (162 samples) and were compared with 4 million SNPs from HapMap phase II populations. EvoSNP-DB provides two user interfaces for data query and visualization, and integrates scores of genetic diversity (Fst and VarLD) at the level of SNPs, genes, and chromosome regions. EvoSNP-DB is a web-based application that allows users to navigate and visualize measurements of population genetic differences in an interactive manner, and is available online at [http://biomi.cdc.go.kr/EvoSNP/]. [BMB Reports 2013; 46(8): 416-421]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号