首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 508 毫秒
1.
Candida metapsilosis is a rarely-isolated, opportunistic pathogen that belongs to a clade of pathogenic yeasts known as the C. parapsilosis sensu lato species complex. To gain insight into the recent evolution of C. metapsilosis and the genetic basis of its virulence, we sequenced the genome of 11 clinical isolates from various locations, which we compared to each other and to the available genomes of the two remaining members of the complex: C. orthopsilosis and C. parapsilosis. Unexpectedly, we found compelling genomic evidence that C. metapsilosis is a highly heterozygous hybrid species, with all sequenced clinical strains resulting from the same past hybridization event involving two parental lineages that were approximately 4.5% divergent in sequence. This result indicates that the parental species are non-pathogenic, but that hybridization between them formed a new opportunistic pathogen, C. metapsilosis, that has achieved a worldwide distribution. We show that these hybrids are diploid and we identified strains carrying loci for both alternative mating types, which supports mating as the initial mechanism for hybrid formation. We trace the aftermath of this hybridization at the genomic level, and reconstruct the evolutionary relationships among the different strains. Recombination and introgression -resulting in loss of heterozygosis- between the two subgenomes have been rampant, and includes the partial overwriting of the MTLa mating locus in all strains. Collectively, our results shed light on the recent genomic evolution within the C. parapsilosis sensu lato complex, and argue for a re-definition of species within this clade, with at least five distinct homozygous lineages, some of which having the ability to form hybrids.  相似文献   

2.
Mating between different species produces hybrids that are usually asexual and stuck as diploids, but can also lead to the formation of new species. Here, we report the genome sequences of 27 isolates of the pathogenic yeast Candida orthopsilosis. We find that most isolates are diploid hybrids, products of mating between two unknown parental species (A and B) that are 5% divergent in sequence. Isolates vary greatly in the extent of homogenization between A and B, making their genomes a mosaic of highly heterozygous regions interspersed with homozygous regions. Separate phylogenetic analyses of SNPs in the A- and B-derived portions of the genome produces almost identical trees of the isolates with four major clades. However, the presence of two mutually exclusive genotype combinations at the mating type locus, and recombinant mitochondrial genomes diagnostic of inter-clade mating, shows that the species C. orthopsilosis does not have a single evolutionary origin but was created at least four times by separate interspecies hybridizations between parents A and B. Older hybrids have lost more heterozygosity. We also identify two isolates with homozygous genomes derived exclusively from parent A, which are pure non-hybrid strains. The parallel emergence of the same hybrid species from multiple independent hybridization events is common in plant evolution, but is much less documented in pathogenic fungi.  相似文献   

3.
Candida tropicalis is an important pathogen. Here we developed and evaluated a polymorphic multilocus microsatellite scheme employing novel genetic markers for genotyping of C. tropicalis. Using 10 isolates from 10 unique (separate) patients to screen over 4000 tandem repeats from the C. tropicalis genome (strain MYA-3404), six new candidate microsatellite loci (ctm1, ctm3, ctm8, ctm18, ctm24 and ctm26) were selected according to amplification success, observed polymorphisms and stability of flanking regions by preliminary testing. Two known microsatellite loci CT14 and URA3 were also studied. The 6-locus scheme was then tested against a set of 82 different isolates from 32 patients. Microsatellite genotypes of isolates from the same patient (two to five isolates per patient) were identical. The six loci produced eight to 17 allele types and identified 11 to 24 genotypes amongst 32 patients’ isolates, achieving a discriminatory power (DP) of 0.76 to 0.97 (versus 0.78 for both CT14 and URA3 loci, respectively). Testing of a combination of only three loci, ctm1, ctm3 and ctm24, also achieved maximum typing efficiency (DP = 0.99, 29 genotypes). The microsatellite typing scheme had good correlation compared with pulsed-field gel electrophoresis, although was slightly less discriminatory. The new six-locus microsatellite typing scheme is a potentially valuable tool for genotyping and investigating microevolution of C. tropicalis.  相似文献   

4.
Hybridization is an important evolutionary process, which can have significant effects on biodiversity. While hybridization is well known in plants, less is known about the prevalence of hybridization in other kingdoms. Hybridization in the field has been confirmed in brown algae in a few cases, mainly in the northern hemisphere genus Fucus. Putative hybrids have been found in the New Zealand endemic species Carpophyllum angustifolium and Carpophyllum maschalocarpum. We used nuclear‐encoded molecular data (ITS2) and morphometrics to confirm hybridization between C. angustifolium and C. maschalocarpum. Putative hybrid thalli were collected that had heterozygous ITS2, each copy corresponding to one of the parental species from that population. Morphological analysis also showed that the three classes (two parental species and hybrids) were easily distinguishable in these populations. It was found that the hybrids had an intermediate morphology to the parent species. Some individuals with C. angustifolium morphology had hybrid ITS2 ribotypes suggestive of backcrossing between the hybrids and C. angustifolium. Our data reveal another case of hybridization within the Fucales and suggests that further research on how these species remain separate is needed.  相似文献   

5.
Candida parapsilosis species complex comprises three important pathogenic species: Candida parapsilosis sensu stricto, Candida orthopsilosis and Candida metapsilosis. The majority of C. orthopsilosis and all C. metapsilosis isolates sequenced thus far are hybrids, and most of the parental lineages remain unidentified. This led to the hypothesis that hybrids with pathogenic potential were formed by the hybridization of non-pathogenic lineages that thrive in the environment. In a search for the missing hybrid parentals, and aiming to get a better understanding of the evolution of the species complex, we sequenced, assembled and analysed the genome of five close relatives isolated from the environment: Candida jiufengensis, Candida pseudojiufengensis, Candida oxycetoniae, Candida margitis and Candida theae. We found that the linear conformation of mitochondrial genomes in Candida species emerged multiple times independently. Furthermore, our analyses discarded the possible involvement of these species in the mentioned hybridizations, but identified C. theae as an additional hybrid in the species complex. Importantly, C. theae was recently associated with a case of infection, and we also uncovered the hybrid nature of this clinical isolate. Altogether, our results reinforce the hypothesis that hybridization is widespread among Candida species, and potentially contributes to the emergence of lineages with opportunistic pathogenic behaviour.  相似文献   

6.
Hybridization between different species of parasites is increasingly being recognised as a major public and veterinary health concern at the interface of infectious diseases biology, evolution, epidemiology and ultimately control. Recent research has revealed that viable hybrids and introgressed lineages between Schistosoma spp. are prevalent across Africa and beyond, including those with zoonotic potential. However, it remains unclear whether these hybrid lineages represent recent hybridization events, suggesting hybridization is ongoing, and/or whether they represent introgressed lineages derived from ancient hybridization events. In human schistosomiasis, investigation is hampered by the inaccessibility of adult-stage worms due to their intravascular location, an issue which can be circumvented by post-mortem of livestock at abattoirs for Schistosoma spp. of known zoonotic potential. To characterise the composition of naturally-occurring schistosome hybrids, we performed whole-genome sequencing of 21 natural livestock infective schistosome isolates. To facilitate this, we also assembled a de novo chromosomal-scale draft assembly of Schistosoma curassoni. Genomic analyses identified isolates of S. bovis, S. curassoni and hybrids between the two species, all of which were early generation hybrids with multiple generations found within the same host. These results show that hybridization is an ongoing process within natural populations with the potential to further challenge elimination efforts against schistosomiasis.  相似文献   

7.
Y Uno  C Nishida  C Takagi  N Ueno  Y Matsuda 《Heredity》2013,111(5):430-436
It has been suggested that whole-genome duplication (WGD) occurred twice during the evolutionary process of vertebrates around 450 and 500 million years ago, which contributed to an increase in the genomic and phenotypic complexities of vertebrates. However, little is still known about the evolutionary process of homoeologous chromosomes after WGD because many duplicate genes have been lost. Therefore, Xenopus laevis (2n=36) and Xenopus (Silurana) tropicalis (2n=20) are good animal models for studying the process of genomic and chromosomal reorganization after WGD because X. laevis is an allotetraploid species that resulted from WGD after the interspecific hybridization of diploid species closely related to X. tropicalis. We constructed a comparative cytogenetic map of X. laevis using 60 complimentary DNA clones that covered the entire chromosomal regions of 10 pairs of X. tropicalis chromosomes. We consequently identified all nine homoeologous chromosome groups of X. laevis. Hybridization signals on two pairs of X. laevis homoeologous chromosomes were detected for 50 of 60 (83%) genes, and the genetic linkage is highly conserved between X. tropicalis and X. laevis chromosomes except for one fusion and one inversion and also between X. laevis homoeologous chromosomes except for two inversions. These results indicate that the loss of duplicated genes and inter- and/or intrachromosomal rearrangements occurred much less frequently in this lineage, suggesting that these events were not essential for diploidization of the allotetraploid genome in X. laevis after WGD.  相似文献   

8.
Sequencing projects have identified large numbers of rare stop-gain and frameshift variants in the human genome. As most of these are observed in the heterozygous state, they test a gene’s tolerance to haploinsufficiency and dominant loss of function. We analyzed the distribution of truncating variants across 16,260 autosomal protein coding genes in 11,546 individuals. We observed 39,893 truncating variants affecting 12,062 genes, which significantly differed from an expectation of 12,916 genes under a model of neutral de novo mutation (p<10−4). Extrapolating this to increasing numbers of sequenced individuals, we estimate that 10.8% of human genes do not tolerate heterozygous truncating variants. An additional 10 to 15% of truncated genes may be rescued by incomplete penetrance or compensatory mutations, or because the truncating variants are of limited functional impact. The study of protein truncating variants delineates the essential genome and, more generally, identifies rare heterozygous variants as an unexplored source of diversity of phenotypic traits and diseases.  相似文献   

9.
Hybridization can create the selective force that promotes assortative mating but hybridization can also select for increased hybrid fitness. Gene flow resulting from hybridization can increase genetic diversity but also reduce distinctiveness. Thus the formation of hybrids has important implications for long‐term species coexistence. This study compares the interaction between the tree wētā Hemideina thoracica and its two neighboring species; H. crassidens and H. trewicki. We examined the ratio of parent and hybrid forms in natural areas of sympatry. Individuals with intermediate phenotype were confirmed as first generation hybrids using nine independent genetic markers. Evidence of gene flow from successful hybridization was sought from the distribution of morphological and genetic characters. Both species pairs appear to be largely retaining their own identity where they live in sympatry, each with a distinct karyotype. Hemideina thoracica and H. trewicki are probably reproductively isolated, with sterile F1 hybrids. This species pair shows evidence of niche differences with adult size and timing of maturity differing where Hemideina thoracica is sympatric with H. trewicki. In contrast, evidence of a low level of introgression was detected in phenotypes and genotypes where H. thoracica and H. crassidens are sympatric. We found no evidence of size divergence although color traits in combination with hind tibia spines reliably distinguish the two species. This species pair show a bimodal hybrid zone in the absence of assortative mating and possible sexual exclusion by H. thoracica males in the formation of F1 hybrids.  相似文献   

10.
Hybridization is a fascinating evolutionary phenomenon that raises the question of how species maintain their integrity. Inter-species hybridization occurs between certain Schistosoma species that can cause important public health and veterinary issues. In particular hybrids between Schistosoma haematobium and S. bovis associated with humans and animals respectively are frequently identified in Africa. Recent genomic evidence indicates that some S. haematobium populations show signatures of genomic introgression from S. bovis. Here, we conducted a genomic comparative study and investigated the genomic relationships between S. haematobium, S. bovis and their hybrids using 19 isolates originating from a wide geographical range over Africa, including samples initially classified as S. haematobium (n = 11), S. bovis (n = 6) and S. haematobium x S. bovis hybrids (n = 2). Based on a whole genomic sequencing approach, we developed 56,181 SNPs that allowed a clear differentiation of S. bovis isolates from a genomic cluster including all S. haematobium isolates and a natural S. haematobium-bovis hybrid. All the isolates from the S. haematobium cluster except the isolate from Madagascar harbored signatures of genomic introgression from S. bovis. Isolates from Corsica, Mali and Egypt harbored the S. bovis-like Invadolysin gene, an introgressed tract that has been previously detected in some introgressed S. haematobium populations from Niger. Together our results highlight the fact that introgression from S. bovis is widespread across S. haematobium and that the observed introgression is unidirectional.  相似文献   

11.
Cultivars of sugarcane (Saccharum) are hybrids between species S. officinarum (x = 10, 2n = 8x = 80) and S. spontaneum (x = 8, 2n = 5 – 16x = 40 – 128). These accessions have 100 to 130 chromosomes, 80–85% of which are derived from S. officinarum, 10–15% from S. spontaneum, and 5–10% are possible recombinants between the two genomes. The aim of this study was to analyze the repetition of DNA sequences in S. officinarum and S. spontaneum. For this purpose, genomic DNA from S. officinarum was digested with restriction enzymes and the fragments cloned. Sixty-eight fragments, approximately 500 bp, were cloned, sequenced and had their identity analyzed in NCBI, and in the rice, maize, and sorghum genome databases using BLAST. Twelve clones containing partial transposable elements, one single-copy control, one DNA repetitive clone control and two genome controls were analyzed by DNA hybridization on membrane, using genomic probes from S. officinarum and S. spontaneum. The hybridization experiment revealed that six TEs had a similar repetitive DNA pattern in the genomes of S. officinarum and S. spontaneum, while six TEs were more abundant in the genome of S. officinarum. We concluded that the species S. officinarum and S. spontaneum have differential accumulation LTR retrotransposon families, suggesting distinct insertion or modification patterns.  相似文献   

12.
13.
Animal hybridization is well documented, but evolutionary outcomes and conservation priorities often differ for natural and anthropogenic hybrids. Among primates, an order with many endangered species, the two contexts can be hard to disentangle from one another, which carries important conservation implications. Callithrix marmosets give us a unique glimpse of genetic hybridization effects under distinct natural and human-induced contexts. Here, we use a 44 autosomal microsatellite marker panel to examine genome-wide admixture levels and introgression at a natural C. jacchus and C. penicillata species border along the São Francisco River in NE Brazil and in an area of Rio de Janeiro state where humans introduced these species exotically. Additionally, we describe for the first time autosomal genetic diversity in wild C. penicillata and expand previous C. jacchus genetic data. We characterize admixture within the natural zone as bimodal where hybrid ancestry is biased toward one parental species or the other. We also show evidence that São Francisco River islands are gateways for bidirectional gene flow across the species border. In the anthropogenic zone, marmosets essentially form a hybrid swarm with intermediate levels of admixture, likely from the absence of strong physical barriers to interspecific breeding. Our data show that while hybridization can occur naturally, the presence of physical, even if leaky, barriers to hybridization is important for maintaining species genetic integrity. Thus, we suggest further study of hybridization under different contexts to set well informed conservation guidelines for hybrid populations that often fit somewhere between “natural” and “man-made.”  相似文献   

14.
Some plants with low fertility are morphologically intermediate between Roegneria stricta and Roegneria turczaninovii, and were suspected to be natural hybrids between these species. In this study, karyotype analysis showed that natural hybrids and their putative parents were tetraploids (2n = 4x = 28). Meiotic pairing in natural hybrids is more irregular than its putative parents. Results of genomic in situ hybridization and fluorescence in situ hybridization indicate that natural hybrids contain the same genome as their putative parents. The nuclear gene DNA meiotic recombinase 1 (DMC1) and the chloroplast gene rps16 of natural hybrids and their putative parents were analyzed for evidence of hybridization. The results from molecular data supported by morphology and cytology demonstrated that the plants represent natural hybrids between R. stricta and Rturczaninovii. The study is important for understanding species evolution in the genus since it demonstrates for the first time the existence of populations of natural homoploid hybrids in Roegneria. The study also reports for the first time that the composition of the genomic formula of Rturczaninovii is StY, confirming that the current taxonomic status is correct.  相似文献   

15.
We investigate the question of naturally occurring interspecific hybrids between two forest trees: the native North American butternut (Juglans cinerea L.) and the introduced Japanese walnut (Juglans ailantifolia Carrière). Using nuclear and chloroplast DNA markers, we provide evidence for 29 F1 and 22 advanced generation hybrids in seven locations across the eastern and southern range of the native species. Two locations show extensive admixture (95% J. ailantifolia and hybrids) while other locations show limited admixture. Hybridization appears to be asymmetrical with 90.9 per cent of hybrids having J. ailantifolia as the maternal parent. This is, to our knowledge, the first genetic data supporting natural hybridization between these species. The long-term outcome of introgression could include loss of native diversity, but could also include transfer of useful traits from the introduced species.  相似文献   

16.
Hybrids from an intergeneric cross betweenCarassius carassius ? ×Gnathopogon elongatus elongatus ♂ were analyzed morphologically and karyologically and compared with the parental species. These hybrids possessed a mosaic of character expressions, but could be generally classified in two types similar to either C.carassius orG. elongatus elongatus. The karyotype was composed of two genomes of theCarassius parent and one of theGnathopogon parent for theCarassius- type hybrids, and one genome of theCarassius parent and two genomes of theGnathopogon parent for theGnathopogon- type hybrids.  相似文献   

17.
Colletotrichum lentis is a fungal pathogen of lentil in Canada but rarely reported elsewhere. Two races, Ct0 and Ct1, have been identified using differential lines. Our objective was to develop a PCR-probe differentiating these races. Sequences of the translation elongation factor 1α (tef1α), RNA polymerase II subunit B2 (rpb2), ATP citrate lyase subunit A (acla), and internal transcribed spacer (ITS) regions were monomorphic, while the intergenic spacer (IGS) region showed length polymorphisms at two minisatellites of 23 and 39 nucleotides (nt). A PCR-probe (39F/R) amplifying the 39 nt minisatellite was developed which subsequently revealed 1–5 minisatellites with 1–12 repeats in C. lentis. The probe differentiated race Ct1 isolates having 7, 9 or 7+9 repeats from race Ct0 having primarily 2 or 4 repeats, occasionally 5, 6, or 8, but never 7 or 9 repeats. These isolates were collected between 1991 and 1999. In a 2012 survey isolates with 2 and 4 repeats increased from 34% to 67%, while isolated with 7 or 9 repeats decreased from 40 to 4%, likely because Ct1 resistant lentil varieties had been grown. The 39 nt repeat was identified in C. gloeosporioides, C. trifolii, Ascochyta lentis, Sclerotinia sclerotiorum and Botrytis cinerea. Thus, the 39F/R PCR probe is not species specific, but can differentiate isolates based on repeat number. The 23 nt minisatellite in C. lentis exists as three length variants with ten sequence variations differentiating race Ct0 having 14 or 19 repeats from race Ct1 having 17 repeats, except for one isolate. RNA-translation of 23 nt repeats forms hairpins and has the appropriate length to suggest that IGS could be a site of small RNA synthesis, a hypothesis that warrants further investigation. Small RNA from fungal plant pathogens able to silence genes either in the host or pathogen thereby aiding infection have been reported.  相似文献   

18.
Burkholderia pseudomallei is the causative agent of melioidosis and a potential bioterrorism agent. In the development of medical countermeasures against B. pseudomallei infection, the US Food and Drug Administration (FDA) animal Rule recommends using well-characterized strains in animal challenge studies. In this study, whole genome sequence data were generated for 6 B. pseudomallei isolates previously identified as candidates for animal challenge studies; an additional 5 isolates were sequenced that were associated with human inhalational melioidosis. A core genome single nucleotide polymorphism (SNP) phylogeny inferred from a concatenated SNP alignment from the 11 isolates sequenced in this study and a diverse global collection of isolates demonstrated the diversity of the proposed Animal Rule isolates. To understand the genomic composition of each isolate, a large-scale blast score ratio (LS-BSR) analysis was performed on the entire pan-genome; this demonstrated the variable composition of genes across the panel and also helped to identify genes unique to individual isolates. In addition, a set of ~550 genes associated with pathogenesis in B. pseudomallei were screened against the 11 sequenced genomes with LS-BSR. Differential gene distribution for 54 virulence-associated genes was observed between genomes and three of these genes were correlated with differential virulence observed in animal challenge studies using BALB/c mice. Differentially conserved genes and SNPs associated with disease severity were identified and could be the basis for future studies investigating the pathogenesis of B. pseudomallei. Overall, the genetic characterization of the 11 proposed Animal Rule isolates provides context for future studies involving B. pseudomallei pathogenesis, differential virulence, and efficacy to therapeutics.  相似文献   

19.
Interspecific hybridisation creates new phenotypes within several ornamental plant species including the Campanula genus. We have employed phenotypic and genotypic methods to analyse and evaluate interspecific hybridisation among cultivars of four Campanula species, i.e. C. cochleariifolia, C. isophylla, C. medium and C. formanekiana. Hybrids were analysed using amplified fragment length polymorphism (AFLP), flow cytometry and biometrical measurements. Results of correlation matrices demonstrated heterogeneous phenotypes for the parental species, which confirmed our basic premise for new phenotypes of interspecific hybrids. AFLP assays confirmed the hybridity and identified self-pollinated plants. Limitation of flow cytometry analysis detection was observed while detecting the hybridity status of two closely related parents, e.g. C. cochleariiafolia × C. isophylla. Phenotypic characteristics such as shoot habitus and flower colour were strongly influenced by one of the parental species in most crosses. Rooting analysis revealed that inferior rooting quality occurred more often in interspecific hybrids than in the parental species. Only interspecific hybrid lines of C. formanekiana ‘White’ × C. medium ‘Pink’ showed a high rooting level. Phenotype analyses demonstrated a separation from the interspecific hybrid lines of C. formanekiana ‘White’ × C. medium ‘Pink’ to the other clustered hybrids of C. formanekiana and C. medium. In our study we demonstrated that the use of correlation matrices is a suitable tool for identifying suitable cross material. This study presents a comprehensive overview for analysing newly obtained interspecific hybrids. The chosen methods can be used as guidance for analyses for further interspecific hybrids in Campanula, as well as in other ornamental species.  相似文献   

20.
Hybridization probes specific for the luxA genes of four groups of luminous bacteria were used to screen luminous isolates obtained from the Persian Gulf, near Al Khiran, Kuwait Nine of these isolates were identified as Vibrio harveyi, a commonly encountered planktonic isolate, while three others showed no hybridization to any of the four probes (V. harveyi, Vibrio fischeri, Photobacterium phosphoreum, or Photobacterium leiognathi) under high-stringency conditions. Polymerase chain reaction amplification was used to prepare a luxA probe against one of these isolates, K-1, and this probe was screened under high-stringency conditions against a collection of DNAs from luminous bacteria; it was found to hybridize specifically to the DNA of the species Vibrio splendidus. A probe prepared against the type strain of V. splendidus (ATCC 33369) was tested against the collection of luminous bacterial DNA preparations and against the Kuwait isolates and was found to hybridize only against the type strain and the three unidentified Kuwait isolates. Extensive taxonomic analysis by standard methods confirmed the identification of the 13 isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号