首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sex-specific DNA markers applicable were very useful for elucidating the sex-determination mechanism and sex control in fishes. In the present study, amplified fragment-length polymorphism (AFLP) approach with 144 primer combinations was employed to identify sex-specific markers in the rock bream. Four male-specific AFLP fragments were identified which were designated as Opl286, Opl237, Opl422, and Opl228. Further sequence analysis of the sex markers’ genomic region revealed subtle differences between the males and females. We identified four male-specific single-nucleotide polymorphisms (SNPs) and a deletion of 8 bp in marker Opl286, six male-specific SNPs in marker Opl237, three male-specific SNPs in marker Opl422, and eight male-specific SNPs and 1 bp inversions in marker Opl228. Specific primers were designed based on the nucleotide variation in the sequences to develop a simple polymerase chain reaction method for identifying the genetic sex of rock bream. As a result, three out of the four male-specific markers were converted into SNP markers. The male-specific AFLP markers and AFLP-derived SNP markers were tested in 100 individuals collected from three locations around the coast of Zhoushan, yielding reproducible sex identification. These male-specific DNA markers are a useful tool for the identification of the sex-determining locus in rock bream and for guiding artificial breeding programs.  相似文献   

2.
Few amphibians possess morphologically distinguishable heteromorphic sex chromosomes.The classic indirect method is a time-consuming and resource-demanding task to identify the heterogametic sex.Here we have taken advantage of a sex-specific microsatellite marker,by amplifying a large number of samples of known male and female individuals from various populations,to reveal a homogeneous pattern of male heterogamety in Quasipaa boulengeri.The identification of the heterogametic sex will help interpreting the evolution of sex determination.Besides relevance for evolutionary studies of sex determination,the sex-linked markers have potential for addressing practical issues in conservation biology because the sex reversal that caused by anthropogenic endocrine disruptors is considered as a reason for amphibian decline.  相似文献   

3.
New, Male-Specific Microsatellite Markers from the Human Y Chromosome   总被引:14,自引:0,他引:14  
Seven novel microsatellite markers have been developed from a new cosmid library constructed from flow-sorted human Y chromosomes. These microsatellites are tetranucleotide GATA repeats and are polymorphic among unrelated individuals. Five of the seven markers are male-specific, with no PCR product being generated from female DNA. One marker produces male-specific, polymorphic PCR products but occasionally produces a much larger, invariant product from female DNA. The remaining marker is polymorphic in both males and females with many shared alleles between the sexes. This report of six new, male-specific markers doubles the number of tetranucleotide markers that are currently available for the human Y chromosome. These new markers will be valuable where nonrecombining, gender-specific DNA markers are desired, including forensic investigations as well as studies of populations and their evolutionary histories.  相似文献   

4.
Zhang L  Yang C  Zhang Y  Li L  Zhang X  Zhang Q  Xiang J 《Genetica》2007,131(1):37-49
Pacific white shrimp (Litopenaeus vannamei) is the leading species farmed in the Western Hemisphere and an economically important aquaculture species in China. In this project, a genetic linkage map was constructed using amplified fragment length polymorphism (AFLP) and microsatellite markers. One hundred and eight select AFLP primer combinations and 30 polymorphic microsatellite markers produced 2071 markers that were polymorphic in either of the parents and segregated in the progeny. Of these segregating markers, 319 were mapped to 45 linkage groups of the female framework map, covering a total of 4134.4 cM; and 267 markers were assigned to 45 linkage groups of the male map, covering a total of 3220.9 cM. High recombination rates were found in both parental maps. A sex-linked microsatellite marker was mapped on the female map with 6.6 cM to sex and a LOD of 17.8, two other microsatellite markers were also linked with both 8.6 cM to sex and LOD score of 14.3 and 16.4. The genetic maps presented here will serve as a basis for the construction of a high-resolution genetic map, quantitative trait loci (QTLs) detection, marker-assisted selection (MAS) and comparative genome mapping.  相似文献   

5.
We report on the construction of sex-specific high-density linkage maps and identification of sex-linked markers for the black tiger shrimp (Penaeus monodon). Overall, we identified 44 male and 43 female linkage groups (2n = 88) from the analysis of 2,306 AFLP markers segregating in three full-sib families, covering 2,378 and 2,362 cM, respectively. Twenty-one putatively homologous linkage groups, including the sex-linkage groups, were identified between the female and male linkage maps. Six sex-linked AFLP marker alleles were inherited from female parents in the three families, suggesting that the P. monodon adopts a WZ-ZZ sex-determining system. Two sex-linked AFLP markers, one of which we converted into an allele-specific assay, confirmed their association with sex in a panel of 52 genetically unrelated animals.  相似文献   

6.
We have integrated data from linkage mapping, physical mapping and karyotyping to gain a better understanding of the sex-determining locus, SEX, in Atlantic salmon (Salmo salar). SEX has been mapped to Atlantic salmon linkage group 1 (ASL1) and is associated with several microsatellite markers. We have used probes designed from the flanking regions of these sex-linked microsatellite markers to screen a bacterial artificial chromosome (BAC) library, representing an 11.7x coverage of the Atlantic salmon genome, which has been HindIII fingerprinted and assembled into contigs. BACs containing sex-linked microsatellites and their related contigs have been identified and representative BACs have been placed on the Atlantic salmon chromosomes by fluorescent in situ hybridization (FISH). This identified chromosome 2, a large metacentric, as the sex chromosome. By positioning several BACs on this chromosome by FISH, it was possible to orient ASL1 with respect to chromosome 2. The region containing SEX appears to lie on the long arm between marker Ssa202DU and a region of heterochromatin identified by DAPI staining. BAC end-sequencing of clones within sex-linked contigs revealed five hitherto unmapped genes along the sex chromosome. We are using an in silico approach coupled with physical probing of the BAC library to extend the BAC contigs to provide a physical map of ASL1, with a view to sequencing chromosome 2 and, in the process, identifying the sex-determining gene.  相似文献   

7.
《Genomics》2020,112(1):404-411
In this study, we first identified male-specific SNP markers using restriction site-associated DNA sequencing, and further developed a PCR-based sex identification technique for Charybdis feriatus. A total of 296.96 million clean reads were obtained, with 114.95 and 182.01 million from females and males. After assembly and alignment, 10 SNP markers were identified being heterozygous in males but homozygous in females. Five markers were further confirmed to be male-specific in a large number of individuals. Moreover, two male-specific sense primers and a common antisense primer were designed, using which, a PCR-based genetic sex identification method was successfully developed and used to identify the sex of 103 individuals, with a result of 49 females and 54 males. The presence of male-specific SNP markers suggests an XX/XY sex determination system for C. feriatus. These findings should be helpful for better understanding sex determination mechanism, and drafting artificial breeding program in crustaceans.  相似文献   

8.
The process of sex differentiation in fishes is regulated by genetic and environmental factors. The sex of Patagonian pejerrey (Odontesthes hatcheri) appears to be under strong genotypic control (GSD) because the sex ratios are balanced (1:1) between 17°C and 23°C. However, sex ratios become female-biased at <15°C and male-biased at 25°C, which shows that this species also possesses some degree of temperature-dependent sex determination (TSD). Identification of the genetic sex of an individual will help elucidate the molecular basis of sex differentiation in this species. In this study, we used amplified fragment length polymorphism (AFLP) analysis to develop a genetic linkage map for both sexes and a sex-linked DNA marker for Patagonian pejerrey. The AFLP analysis of 23 male and 23 female progeny via 64 primer combinations produced a total of 153 bands. The genetic linkage map consisted of 79 markers in 20 linkage groups and 48 markers in 15 linkage groups for males and females, respectively. One AFLP marker tightly linked to the sex-determining locus was identified: the marker, ACG/CAA-217, amplified to the male-specific DNA fragment. Sequence analysis of this region revealed a single nucleotide polymorphism (SNP) between males and females, which was converted into a SNP marker. This marker provides genetic confirmation that the sex of Patagonian pejerrey is determined genetically and would be useful for the analysis of the molecular basis of GSD and TSD in this species.  相似文献   

9.
Fluorescence in situ hybridization (FISH) using a probe to the male-specific GH-Y (growth hormone pseudogene) was used to identify the Y chromosome in coho salmon (Oncorhynchus kisutch). The sex chromosome pair is morphologically similar to chinook salmon (Oncorhynchus tshawytscha) with the GH-Y localized to the small short arm of the largest subtelocentric chromosome pair. FISH experiments with probes containing sex-linked genes in rainbow trout (Oncorhynchus mykiss) (SCAR163) and chinook salmon (Omy7INRA) showed that the coho sex linkage group is different from chinook and rainbow trout and this was confirmed by segregation analysis for the Omy7INRA locus. The telomeric location of the SEX locus, the presence of shared male-specific markers in coho and chinook salmon, and the lack of conservation of sex-linkage groups suggest that transposition of a small male-specific region may have occurred repeatedly in salmonid fishes of the genus Oncorhynchus.  相似文献   

10.
Several new fish species are currently being included in breeding programmes. However, as specific molecular markers have not yet been developed, this represents a commercial handicap with respect to traditional aquaculture species such as gilthead sea bream or Atlantic salmon. In the present study, 12 new microsatellite loci were developed for blackspot sea bream (Pagellus bogaraveo) that show high levels of polymorphism, especially useful in parentage assignment and individual identification. In addition, cross‐amplification was obtained for two important species for Spanish aquaculture, gilthead sea bream and sea bass.  相似文献   

11.
In this study, primer pairs of 15 microsatellite markers associated with sex determination of tilapia were selected and amplified in Wami tilapia, Oreochromis urolepis hornorum. While one marker, UNH168, on linkage group 3 (LG3) was associated (P < 0.001) with the phenotypic sex in the experimental population, nine genotypes were detected in both sexes. Only 99-bp allele was detected in the female samples, while 141, 149 and 157-bp alleles were present in both male and female samples. UNH168 was localized by fluorescence in situ hybridization (FISH) on the long arm of the largest tilapia chromosome pair (chromosome 1, equivalent to LG3). This sex-linked microsatellite marker could potentially be used for marker-assisted selection in tilapia breeding programmes to produce monosex male tilapia.  相似文献   

12.
High-density genetic linkage maps of half-smooth tongue sole were developed with 1007 microsatellite markers, two SCAR markers and an F1 family containing 94. The female map was composed of 828 markers in 21 linkage groups, covering a total of 1447.3 cM, with an average interval 1.83 cM between markers. The male map consisted of 794 markers in 21 linkage groups, spanning 1497.5 cM, with an average interval of 1.96 cM. The female and male maps had 812 and 785 unique positions, respectively. The genome length of half-smooth tongue sole was estimated to be 1527.7 cM for the females and 1582.1 cM for the males. Based on estimations of the map lengths, the female and male maps covered 94.74 and 94.65% of the genome, respectively. The consensus map was composed of 1007 microsatellite markers and two SCAR markers in 21 linkage groups, covering a total of 1624 cM with an average interval of 1.67 cM. Furthermore, 159 sex-linked SSR markers were identified. Five sex-linked microsatellite markers were confirmed in their association with sex in a large number of individuals selected from different families. These sex-linked markers were mapped on the female map LG1f with zero recombination. Two QTLs that were identified for body weight, designated as We-1 and We-2, accounted for 26.39% and 10.60% of the phenotypic variation. Two QTLs for body width, designated Wi-1 and Wi-2, were mapped in LG4f and accounted for 14.33% and 12.83% of the phenotypic variation, respectively. Seven sex-related loci were mapped in LG1f, LG14f and LG1m by CIM, accounting for 12.5–25.2% of the trait variation. The results should prove to be very useful for improving growth traits using molecular MAS.  相似文献   

13.
In the context of developing a noninvasive, practicable method for population size estimation in wild boar, we present a stepwise procedure to reduce the number of required microsatellite markers for individual genotyping. Step1: an initial marker set of 12 microsatellite loci was tested for species specificity with nontarget DNA and resulted in an exclusion of two markers. Step 2: a variability test regarding heterozygosity and deviations from Hardy–Weinberg equilibrium led to the rejection of two further markers. Step 3: the remaining eight markers were tested for transferability across populations with three separate wild boar sample sets. Step 4: on the basis of probability of identity values, a reduction from eight to five markers was possible. Step 5: a novel test using tissue samples from female wild boars and their embryos provided evidence that four variable microsatellite markers and one sex marker are sufficient for individual identification of close relatives. Step 6: feces samples were finally used to estimate PCR (PS) and genotyping success (GS). In conclusion, we recommend a specific four-marker combination with both PS and GS >50% for a reliable individual identification in noninvasive population size estimation of wild boar.  相似文献   

14.
A PCR-based method for sex determination of bovine DNA samples and embryo biopsies is presented. Using only one primer pair both the male-specific sequence FBNY (127 bp) and a sex-independent control PCR-fragment, the microsatellite marker FBN17 (136-140 bp) are generated in the same PCR reaction. Synteny mapping assigned the male-specific sequence to bovine chromosome Y (BTA Y), whereas FBN17 was mapped to bovine chromosome 2. Localisation of FBNY on BTA Y was confirmed by fluorescence in hybridisation of two BAC clones containing the male-specific sequence. There was no amplification of the male-specific target sequence FBNY in sheep, pig, goat, mice, man, and several wild species of the tribe Bovini. The bovine male-specific fragment was detected in dilutions containing as little as 10 pg genomic DNA and in blastomeres from embryo biopsies. The PCR assay presented here does require neither restriction endonuclease digestion of the PCR product nor additional nested PCR steps. Owing to the advantage of parallel amplification of the autosomal locus FBN17 no additional control fragment is necessary to detect PCR failure. The results of sex determination in embryo biopsies using FBNY were in agreement with the outcome from a reference assay used in commercial breeding programs.  相似文献   

15.
Abstract We present a predicted passerine genome map consisting of 196 microsatellite markers distributed across 25 chromosomes. The map was constructed by assigning chromosomal locations based on the sequence similarity between 550 publicly available passerine microsatellites and the draft chicken genome sequence published by the International Chicken Genome Sequencing Consortium. We compared this passerine microsatellite map with a recently published great reed warbler (Acrocephalus arundinaceus) linkage map derived from the segregation of marker alleles in a pedigree of a natural population. Twenty-four microsatellite markers were shared between the two maps, distributed across ten chromosomes. Synteny was maintained between the predicted passerine microsatellite map and the great reed warbler linkage map, confirming the validity and accuracy of our approach. Possible applications of the predicted passerine microsatellite map include genome mapping; quantitative trait locus (QTL) discovery; understanding heterozygosity-fitness correlations; investigating avian karyotype evolution; understanding microsatellite mutation processes; and for identifying loci conserved in multiple species, unlinked loci for use in genotyping sets and sex-linked markers.  相似文献   

16.
The dioecious character of Pistacia vera L (the pistachio tree) limits its breeding capacity. Thus, early stage selection of males can save time, labor, and land. This study aimed to develop sex-linked single nucleotide polymorphism (SNP) markers, together with expressed sequence tag-derived simple sequence repeats (EST-SSRs), to determine position of the sex locus in pistachio by constructing a linkage map of its sex chromosome for the first time. Nine novel sex-linked SNP markers were successfully identified by SNaPshot minisequencing analysis of 25 SNP loci from 17 restriction site-associated DNA (RAD) reads in 309 individuals. All nine markers were heterozygous in females and homozygous in males supporting a ZW/ZZ sex determination system in pistachio. A total of 105 segregating SSRs and sex-linked markers were used to identify the sex chromosome and the position of the sex locus through analysis of a Siirt × Ba?yolu F1 population with 122 progenies. Of these 105 markers, four common and four paternal SSRs were mapped onto the sex chromosome, along with the phenotypic sex locus and sex-linked markers. The resulting consensus map had a total length of 65.19 cM. The sex locus and sex-linked SNP markers were located in the center of the chromosome at a distance of 31.86 and 31.92 cM, respectively. This study presents valuable information about the sex chromosome and sex locus position as well as novel polymorphic EST-SSRs and nine sex-linked SNP markers in pistachio.  相似文献   

17.
Sex-specific DNA markers are useful for studying sex-determination mechanisms and establishment of monosex populations. Three widely spaced geographical populations (Liangzi, Poyang and Yuni Lakes in China) of blunt snout bream (Megalobrama amblycephala) were screened with AFLPs to search for sex-linked markers. Female and male pools (10 individuals in each pool) from each population were screened using 64 different primer combinations. A total of 4789 genomic fragments were produced, with a mean frequency of 75 bands per primer pair. Three different primer combinations produced putative sex-associated amplifications and were selected for individual screening in the three populations. However, none showed sex specificity when we converted these three markers into sequence characterized amplified region markers and evaluated all the individuals from the three populations.  相似文献   

18.
We report on the construction of sex-specific linkage maps, the identification of sex-linked markers and the genome size estimation for the brine shrimp Artemia franciscana. Overall, from the analysis of 433 AFLP markers segregating in a 112 full-sib family we identified 21 male and 22 female linkage groups (2n = 42), covering 1,041 and 1,313 cM respectively. Fifteen putatively homologous linkage groups, including the sex linkage groups, were identified between the female and male linkage map. Eight sex-linked AFLP marker alleles were inherited from the female parent, supporting the hypothesis of a WZ–ZZ sex-determining system. The haploid Artemia genome size was estimated to 0.93 Gb by flow cytometry. The produced Artemia linkage maps provide the basis for further fine mapping and exploring of the sex-determining region and are a possible marker resource for mapping genomic loci underlying phenotypic differences among Artemia species.  相似文献   

19.
Molecular sexing of monomorphic endangered Ara birds   总被引:4,自引:0,他引:4  
Survival of most endangered birds may depend on breeding programs where sex identification plays an important role. Molecular sexing has shown to be a rapid and safe procedure. In this work we established sex identification of monomorphic endangered Ara birds using a chromosome W-linked DNA marker, the Chromo-helicase-DNA-Binding 1 (CHD) gene. Most birds have two CHD sex-linked genes, one W-linked (CHD-W) and one Z-linked (CHD-Z). These markers were characterized from Ara militaris and gender sex was determined by PCR and restriction analyzes. The procedure here reported was successfully applied to five different species of the genus Ara and confirmed the validity of the technique. To our knowledge, this is the first report of molecular sexing of the Ara species. This molecular sexing is currently been used in breeding programs of Ara birds.  相似文献   

20.
Female plants of several dioecious angiosperms are commercially valued for production of fruits or seeds, viz. papaya, nutmeg, pistachio, kiwi fruit and jojoba. To make the cultivation profitable it is necessary to grow more female than male plants. To discriminate between male and female plants, sex-specific molecular markers have been identified in a few dioecious species such as Silene and pistachio. However, accurate and convenient sex diagnostic methods for early sexing of seedlings are not available to date. For the first time, we report here a PCR-based Seedling Sex Diagnostic Assay (SSDA) specially designed for early sexing of papaya seedlings. We have developed a male-specific SCAR marker in papaya by cloning a male-specific RAPD (831 bp) fragment and designing longer primers. The potential of this SCAR marker is further exploited to develop a simplified and highly accurate sex diagnostic assay by (1) including an internal PCR control, (2) following a single-step DNA extraction procedure and (3) optimising the PCR conditions to simultaneously amplify male-specific and control bands from the crude leaf extract. This diagnostic approach would be of great commercial significance to papaya growers as well as to seed companies and plant nurseries for early identification of female seedlings of dioecious species. In principle, this experimental design could be easily applied to molecular analysis of any agriculturally important trait for which specific DNA probes could be identified and hence opens new avenues of research in the field of genetic diagnostics of plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号