首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oribatid mites are diverse and abundant terrestrial soil arthropods that are involved in decomposition of organic matter and nutrient cycling. As indicated by fossils starting from the Devonian, they evolved varied mechanisms and structures for defense from predators. We investigated four of these defensive structures (ptychoid body, hologastry, mineralization and opisthonotal glands) and used ancestral character state reconstruction to determine whether they evolved convergently and how many times this may have happened. Phylogenetic trees based on 18S rDNA were constructed for 42 oribatid mite species and two outgroup taxa using likelihood and Bayesian algorithms. The results suggest that at least three of the four defensive structures evolved convergently several times; for opisthonotal glands convergent evolution remains equivocal. This high level of convergence indicates that predation has been an important factor throughout the evolution of oribatid mites, contributing to morphological diversity and potentially also to species richness, as there are indications that some taxa radiated after the evolution of defense structures. Despite the ancientness of oribatid mites, defense structures seems to have been rarely lost, suggesting that they still are functional and necessary to reduce predation, rather than being 'ghosts of predation past'.  相似文献   

2.
Abstract:  Two ironstone nodules are described from the Braidwood Biota of the Upper Carboniferous Mazon Creek Lagerstätte, Illinois, each preserving numerous juvenile millipedes referred to Euphoberia sp. The millipedes belong to different stadia, as evidenced by segment number, but are similar in size so probably nearly the same age. These juvenile euphoberiids differ from adults in having shorter pleurotergal spines, a reduced number of ocelli and a series of reduced, apodous trunk rings posteriorly. These nodules provide the first evidence of aggregation behaviour in Palaeozoic millipedes. Aggregation in juvenile euphoberiids is hypothesized to serve as a defence mechanism, compensating for the reduced length of their pleurotergal spines relative to adults, possibly through a collective chemical defence.  相似文献   

3.
Summary Complete or partial nucleotide sequences of five different rRNA species, coded by nuclear (18S, 5.8S, and 5S) or chloroplast genomes (5S, 4.5S) from a number of seed plants were determined. Based on the sequence data, the phylogenetic dendrograms were built by two methods, maximum parsimony and compatibility. The topologies of the trees for different rRNA species are not fully congruent, but they share some common features. It may be concluded that both gymnosperms and angiosperms are monophyletic groups. The data obtained suggest that the divergence of all the main groups of extant gymnosperms occurred after the branching off of the angiosperm lineage. As the time of divergence of at least some of these gymnosperm taxa is traceable back to the early Carboniferous, it may be concluded that the genealogical splitting of gymnosperm and angiosperm lineages occurred before this event, at least 360 million years ago, i.e., much earlier than the first angiosperm fossils were dated. Ancestral forms of angiosperms ought to be searched for among Progymnospermopsida. Genealogical relationships among gymnosperm taxa cannot be deduced unambiguously on the basis of rRNA data. The only inference may be that the taxon Gnetopsida is an artificial one, andGnetum andEphedra belong to quite different lineages of gymnosperms. As to the phylogenetic position of the two Angiospermae classes, extant monocotyledons seem to be a paraphyletic group located near the root of the angiosperm branch; it emerged at the earliest stages of angiosperm evolution. We may conclude that either monocotyledonous characters arose independently more than once in different groups of ancient Magnoliales or that monocotyledonous forms rather than dicotyledonous Magnoliales were the earliest angiosperms. Judging by the rRNA trees, Magnoliales are the most ancient group among dicotyledons. The most ancient lineage among monocotyledons leads to modern Liliaceae.  相似文献   

4.
Were molecular data available for extinct taxa, questions regarding the origins of many groups could be settled in short order. As this is not the case, various strategies have been proposed to combine paleontological and neontological data sets. The use of fossil dates as node age calibrations for divergence time estimation from molecular phylogenies is commonplace. In addition, simulations suggest that the addition of morphological data from extinct taxa may improve phylogenetic estimation when combined with molecular data for extant species, and some studies have merged morphological and molecular data to estimate combined evidence phylogenies containing both extinct and extant taxa. However, few, if any, studies have attempted to estimate divergence times using phylogenies containing both fossil and living taxa sampled for both molecular and morphological data. Here, I infer both the phylogeny and the time of origin for Lissamphibia and a number of stem tetrapods using Bayesian methods based on a data set containing morphological data for extinct taxa, molecular data for extant taxa, and molecular and morphological data for a subset of extant taxa. The results suggest that Lissamphibia is monophyletic, nested within Lepospondyli, and originated in the late Carboniferous at the earliest. This research illustrates potential pitfalls for the use of fossils as post hoc age constraints on internal nodes and highlights the importance of explicit phylogenetic analysis of extinct taxa. These results suggest that the application of fossils as minima or maxima on molecular phylogenies should be supplemented or supplanted by combined evidence analyses whenever possible.  相似文献   

5.
Arthropods, like most other animals, generally exhibit strong defense responses to predatory threats. This communication aims to demonstrate that the intensity of expression of a particular defense response may be affected by the kind of activity an arthropod is currently performing. Millipedes coil when threatened, and we analyzed coiling responses in the millipede Phyllogonostreptus nigrolabiatus during feeding, resting and walking. Further, variation in response was also quantified with respect to the inclination of the body – horizontal on ground and perpendicular on stems of trees. The millipedes (n = 199) were tapped on their bodies with a short stick to elicit the response. Three levels of responses were obtained – complete, partial and nil. On ground, although most millipedes tended to show complete coiling, the responses alternated between the two extremes among the feeding ones; resting and walking millipedes predominantly displayed complete response. On trees however, most millipedes were non-responsive, although walking millipedes tended to show relatively greater proportion of complete response. These results prove that different activities can elicit variation in a defense response, and so does body inclination in millipedes.  相似文献   

6.
The lack of fossil tetrapod bearing deposits in the earliest Carboniferous (‘Romer’s Gap’) has provoked some recent discussions regarding the proximal cause, with three explanations being offered: environmental, taphonomic, and collection failure. One of the few, and earliest, windows into this time is the locality of Blue Beach exposed in the Tournaisian deposits at Horton Bluff lying along the Avon River near Hantsport, Nova Scotia, Canada. This locality has long been known but, because the fossils were deposited in high energy settings they are almost always disarticulated, so the fauna has not been described in detail. Recent intensive collection has revealed a diverse assemblage of material, including for the first time associated elements, which permits an evaluation of the faunal constituents at the locality. Although not diagnosable to a fine taxonomic level, sufficient apomorphies are present to identify representatives from numerous clades known from more complete specimens elsewhere. The evidence suggests a diverse fauna was present, including whatcheeriids and embolomeres. A single humerus previously had been attributed to a colosteid, but there is some uncertainty with this identification. Additional elements suggest the presence of taxa otherwise only known from the late Devonian. Depositional biases at the locality favor tetrapod fossils from larger individuals, but indirect evidence from trackways and tantalizing isolated bones evidences the presence of small taxa that remain to be discovered. The fossils from Blue Beach demonstrate that when windows into the fauna of ‘Romer’s Gap’ are found a rich diversity of tetrapods will be shown to be present, contra arguments that suggested this hiatus in the fossil record was due to extrinsic factors such as atmospheric oxygen levels. They also show that the early tetrapod fauna is not easily divisible into Devonian and Carboniferous faunas, suggesting that some tetrapods passed through the end Devonian extinction event unaffected.  相似文献   

7.
Ray‐finned fishes (Actinopterygii) constitute approximately half of all living vertebrate species. A stable hypothesis of relationships among major modern lineages has emerged over the past decade, supported by both anatomy and molecules. Diversity is unevenly partitioned across the actinopterygian tree, with most species concentrated within a handful of geologically young (i.e. Cretaceous) teleost clades. Extant non‐teleost groups are portrayed as ‘living fossils’, but this moniker should not be taken as evidence of especially primitive structure: each of these lineages is characterized by profound specializations. Attribution of fossils to the crowns and apical stems of Cladistia, Chondrostei and Neopterygii is uncontroversial, but placements of Palaeozoic taxa along deeper branches of actinopterygian phylogeny are less secure. Despite these limitations, some major outlines of actinopterygian diversification seem reasonably clear from the fossil record: low richness and disparity in the Devonian; elevated morphological variety, linked to increases in taxonomic dominance, in the early Carboniferous; and further gains in taxonomic dominance in the Early Triassic associated with earliest appearance of trophically diverse crown neopterygians.  相似文献   

8.
Insects dominate Earth by their diversity, and the most are Holometabola. Therefore, the holometabolous development characterised by a pupal stage between larvae and adult seems to be linked with the extensive radiation of insects. Holometaboly is suspected to appear in the carboniferous period, however until now fossils have not brought univocal evidence. The discovery in the Carboniferous (Early Langsettian, circa 310 mya, Bashkirian Stage) of France of the earliest Holometabola attributed to the Permian amphiesmenopteran or antliophoran family Protomeropidae brings the first irrefutable evidence that holometaboly existed in the Carboniferous. Given the climatic data of France at this period, this discovery contradicts the traditional scenarii of a relation between the acquisition of endopterygote pupal stage and climatic global cooling during Late Carboniferous and Early Permian. This example illustrates the hypothesis that a new, apparently more efficient, biological innovation is not always sufficient to guarantee the ‘evolutionary success’ of the concerned clade. Ecological opportunities have to be considered as well for this innovation success.  相似文献   

9.
1. Forty-eight species of oribatids in 37 families representing most of the superfamilies were collected from various environments (littoral, salt marsh, litter, sod, and freshwater) and sectioned. 2. The coxal gland is composed of a sacculus and a labyrinth in all stages of all oribatid species. Muscles, originating on the body wall, insert at several points on the thin-walled sacculus which opens into the labyrinth. The labyrinth has an internal, chitinous supporting skeleton. The type A labyrinth has 3–180° bends, producing four parallel regions, and occurs in all inferior oribatids. The type B labyrinth has 1–180° bend, producing two parallel regions, and occurs in all superior oribatids. The coxal gland duct and the lateral gland duct join, penetrate the body wall, and empty into the posterior end of the podocephalic canal. All oribatids have lateral accessory glands, but only inferior oribatids have rostral and medial glands. Three ductless coxendral bodies are always present. 3. The labyrinth length in oribatids is correlated with body size and the environment of the species. Oribatids from sod, leaflitter, or moss show a simple correlation of labyrinth length (X) to total body length (Y) where Y = 4.64X. Freshwater species have a labyrinth length greater than that of comparably sized terrestrial species and salt water (littoral) species have a labyrinth length less than that of comparably sized terrestrial species. There is a greater reduction in labyrinth length in species restricted to salt marshes than in species not restricted to salt marshes. 4. The probable function of oribatid coxal glands is osmoregulation. Hemolymph filtration would occur across the sacculus by positive hemolymph pressure and contraction of the sacculus muscles. Resorption of ions would occur in the labyrinth, which is noncollapsible due to the internal skeleton. The hypothesis is that in freshwater species the rate of filtration is high and resorption of ions would have to be very efficient, therefore they have an elongated labyrinth; but in salt water species water loss must be minimized and preservation of ions would be a disadvantage, therefore they have a shortened labyrinth. Excre ion may also be a function of the coxal glands. The lateral gland may possibly function as an endocrine gland involved with production of a molting hormone. The rostral glands in inferior oribatids may have a salivary function. 5. The coxal glands of Peripatus, some millipedes, apterygote insects, decapod crustaceans, and all arachnid orders are homologous. The Tetrastigmata, Notostigmata, Cryptostigmata, and soft ticks have typical arachnid coxal glands. The coxal glands of higher Prostigmata may be modified into salivary, silk, or venom glands. The coxal glands in Mesostigmata, Astigmata, and hard ticks are lacking or highly modified.  相似文献   

10.
Despite more than a century of research, some key aspects of habitat preference and ecology of the earliest angiosperms remain poorly constrained. Proposed growth ecology has varied from opportunistic weedy species growing in full sun to slow-growing species limited to the shaded understorey of gymnosperm forests. Evidence suggests that the earliest angiosperms possessed low transpiration rates: gas exchange rates for extant basal angiosperms are low, as are the reconstructed gas exchange rates for the oldest known angiosperm leaf fossils. Leaves with low transpirational capacity are vulnerable to overheating in full sun, favouring the hypothesis that early angiosperms were limited to the shaded understorey. Here, modelled leaf temperatures are used to examine the thermal tolerance of some of the earliest angiosperms. Our results indicate that small leaf size could have mitigated the low transpirational cooling capacity of many early angiosperms, enabling many species to survive in full sun. We propose that during the earliest phases of the angiosperm leaf record, angiosperms may not have been limited to the understorey, and that some species were able to compete with ferns and gymnosperms in both shaded and sunny habitats, especially in the absence of competition from more rapidly growing and transpiring advanced lineages of angiosperms.  相似文献   

11.
Fungivorous millipedes (subterclass Colobognatha) likely represent some of the earliest known mycophagous terrestrial arthropods, yet their fungal associates remain elusive. Here we describe relationships between fungi and the fungivorous millipede, Brachycybe lecontii. Their fungal community is surprisingly diverse, including 176 genera, 39 orders, four phyla, and several undescribed species. Of particular interest are twelve genera conserved across wood substrates and millipede clades that comprise the core fungal community of B. lecontii. Wood decay fungi, long speculated to serve as the primary food source for Brachycybe species, were absent from this core assemblage and proved lethal to millipedes in pathogenicity assays while entomopathogenic Hypocreales were more common in the core but had little effect on millipede health. This study represents the first survey of fungal communities associated with any colobognath millipede, and these results offer a glimpse into the complexity of millipede fungal communities.  相似文献   

12.
王玉净  何炎 《微体古生物学报》2000,17(4):347-352,T001,T002
80年代,当时的一些主要报纸和有关杂志相继报道过贵州威宁及其邻近地区上第三系中曾发现一批海相有孔虫化石,由此推断云贵高原曾受到晚第三纪的海侵。经过笔者鉴定,这批有孔虫为再沉积的石炭纪标本,其中不仅有非Ting小有孔虫,还有Ting类,从T类化石分析,其时代无疑为早石灰世,从而匡正了对云贵高原新生代地质历史的认识。  相似文献   

13.
Abstract:  New Palaeozoic millipedes, Zosterogrammus stichostethus gen. et sp. nov. and Casiogrammus ichthyeros gen. and sp. nov., are described from the Francis Creek Shale Member of the Carbondale Formation (Upper Carboniferous: Pennsylvanian), Mazon Creek, Illinois, and the Hagshaw Hills Inlier (Middle Silurian: Wenlock) of the Midland Valley of Scotland, respectively. These millipedes, together with Purkynia lata Fritsch from the Upper Carboniferous (Westphalian D) of Nýřany, Czech Republic, are placed in the new family Zosterogrammidae within the new order Zosterogrammida. All of these millipedes have very broad terga with a microsculpture consisting of fine transverse terrace lines along the anterior of the terga and oblique terrace lines across the remainder. Zosterogrammida have a trunk-ring architecture consisting of an arched diplotergite, a pair of free ventral diplopleurites and a pair of free ventral sternites, indicating a relatively basal phylogenetic position within Chilognatha. Although the exact phylogenetic position is indeterminate, Zosterogrammus stichostethus has divided sternites, indicating a possible affinity with the Pentazonia. The Hagshaw Hills millipede contributes significantly to the high-rank diversity of Middle Silurian millipedes as all previously described taxa of this age belong to the Archipolypoda.  相似文献   

14.
The skins of phyllomedusine frogs have long been considered as being tremendously rich sources of bioactive peptides. Previous studies of both peptides and cloning of their precursor encoding cDNAs have relied upon methanolic skin extracts or the dissected skins of recently deceased specimens and have not considered the different glands in isolation. We therefore focused our attention on the tibial gland of the Giant Monkey Frog, Phyllomedusa bicolor and constructed a cDNA library from the skin secretion that was obtained via mechanical stimulation of this macrogland. Using shotgun cloning, four precursors encoding host-defense peptides were identified: two archetypal dermaseptins, a phyllokinin and a phylloseptin that is new for this species but has been recently described from the Waxy Monkey Leaf Frog, Phyllomedusa sauvagii. Our study is the first to report defensive peptides specifically isolated from anuran tibial glands, confirming the hypothesis that these glands also contribute to chemical defense. Moreover, the discovery of novel compounds for this otherwise very well characterized species suggests that this largely neglected gland might possess a different cocktail of secretions from glands elsewhere in the same animal. We will also discuss some evolutionary implications of our findings with respect to the adaptive plasticity of secretory glands.  相似文献   

15.
Research in the field of insect-host plant interactions has indicated that constituents of insect saliva play an important role in digestion and affect host chemical defense responses. However, most efforts have focused on studying the composition and function of regurgitant or saliva produced in the labial glands. Acknowledging the need for understanding the role of the mandibular glands in herbivory, we sought to make a qualitative and semi-quantitative comparison of soluble luminal protein fractions between mandibular and labial glands of Vanessa gonerilla butterfly larvae. Amylase and lysozyme were inspected as possible major enzymatic activities in the mandibular glands aiding in pre-digestion and antimicrobial defense. Although detected, neither of these enzymatic activities was prominent in the luminal protein preparation of a particular type of gland. Proteins isolated from the glands were identified by mass spectrometry and by searching an EST-library database generated for four other nymphalid butterfly species, in addition to the public NCBI database. The identified proteins were also quantified from the data using "Quanty", an in-house program. The proteomic analysis detected chemosensory proteins as the most abundant luminal proteins in the mandibular glands. In comparison to these proteins, the relative amounts of amylase and lysozyme were much lower in both gland types. Therefore, we speculate that the primary role of the mandibular glands in Lepidopteran larvae is chemoreception which may include the detection of microorganisms on plant surfaces, host plant recognition and communication with conspecifics.  相似文献   

16.
Methane production by intestinal methanogenic Archaea and their community structure were compared among phylogenetic lineages of millipedes. Tropical and temperate millipedes of 35 species and 17 families were investigated. Species that emitted methane were mostly in the juliform orders Julida, Spirobolida, and Spirostreptida. The irregular phylogenetic distribution of methane production correlated with the presence of the methanogen-specific mcrA gene. The study brings the first detailed survey of methanogens’ diversity in the digestive tract of millipedes. Sequences related to Methanosarcinales, Methanobacteriales, Methanomicrobiales and some unclassified Archaea were detected using molecular profiling (DGGE). The differences in substrate preferences of the main lineages of methanogenic Archaea found in different millipede orders indicate that the composition of methanogen communities may reflect the differences in available substrates for methanogenesis or the presence of symbiotic protozoa in the digestive tract. We conclude that differences in methane production in the millipede gut reflect differences in the activity and proliferation of intestinal methanogens rather than an absolute inability of some millipede taxa to host methanogens. This inference was supported by the general presence of methanogenic activity in millipede faecal pellets and the presence of the 16S rRNA gene of methanogens in all tested taxa in the two main groups of millipedes, the Helminthophora and the Pentazonia.  相似文献   

17.
《Palaeoworld》2020,29(2):186-238
Nonmarine biostratigraphic/biochronologic schemes have been created for all or parts of the late Carboniferous–Middle Triassic using palynomorphs, megafossil plants, conchostracans, blattoid insects, tetrapod footprints and tetrapod body fossils, and these provide varied temporal resolution. Cross correlation of the nonmarine biochronologies to the Standard Global Chronostratigraphic Scale has been achieved in some parts of the late Carboniferous–Middle Triassic in locations where nonmarine and marine strata are intercalated, the nonmarine strata produce biochronologically significant fossils and the marine strata yield fusulinids, conodonts and/or ammonoids. Other cross correlations have been aided by magnetostratigraphy, chemostratigraphy and a growing database of radioisotopic ages. A synthetic nonmarine biochronology for the late Carboniferous–Middle Triassic based on all available nonmarine index fossils, integrated with the Standard Global Chronostratigraphic Scale, is presented here. The focus is on the nonmarine biostratigraphy/biochronology of blattoid insects, conchostracans, branchiosaurid amphibians, tetrapod footprints and tetrapod body fossils within the biochronological framework of land-vertebrate faunachrons. Correlation to the Standard Global Chronostratigraphic Scale presented here is divided into seven time intervals: Pennsylvanian, Carboniferous–Permian boundary, Cisuralian, Guadalupian, Lopingian, Permian–Triassic boundary and Early to Middle Triassic. The insects, conchostracans and branchiosaurs provide robust nonmarine correlations in the Pennsylvanian–Cisuralian, and the footprints and tetrapod body fossils provide robust correlations of varied precision within the entire Pennsylvanian–Middle Triassic. Radioisotopic ages are currently the strongest basis for cross correlation of the nonmarine biostratigraphy/biochronology to the Standard Global Chronostratigraphic Scale, particularly for the Pennsylvanian–Cisuralian. Chemostratigraphy and magnetostratigraphy thus far provide only limited links of nomarine and marine chronologies. Improvements in the nonmarine-marine correlations of late Paleozoic–Triassic Pangea require better alpha taxonomy and stratigraphic precision for the nonmarine fossil record integrated with more reliable radioisotopic ages and more extensive chemostratigraphic and magnetostratigraphic datasets.  相似文献   

18.
U-Series dating of Liujiang hominid site in Guangxi,Southern China   总被引:15,自引:0,他引:15  
It has been established that modern humans were living in the Levant and Africa ca. 100ka ago. Hitherto, this has contrasted with the situation in China where no unequivocal specimens of this species have been securely dated to more than 30ka. Here we present the results of stratigraphic studies and U-series dating of the Tongtianyan Cave, the discovery site of the Liujiang hominid, which represents one of the few well-preserved fossils of modern Homo sapiens in China. The human fossils are inferred to come from either a refilling breccia or a primarily deposited gravel-bearing sandy clay layer. In the former case, which is better supported, the fossils would date to at least approximately 68ka, but more likely to approximately 111-139ka. Alternatively, they would be older than approximately 153ka. Both scenarios would make the Liujiang hominid one of the earliest modern humans in East Asia, possibly contemporaneous with the earliest known representatives from the Levant and Africa. Parallel studies on other Chinese localities have provided supporting evidence for the redating of Liujiang, which may have important implications for the origin of modern humans.  相似文献   

19.
In amphibians, secretions of toxins from specialized skin poison glands play a central role in defense against predators. The production of toxic secretions is often associated with conspicuous color patterns that warn potential predators, as it is the case of many dendrobatid frogs, including Ameerega picta. This species resembles the presumably nontoxic Leptodactylus lineatus. This study tests for mimicry by studying the morphology and distribution of skin glands, components of skin secretion, and defensive behavior. Dorsal skin was studied histologically and histochemically, and skin secretions were submitted to sodium dodecyl sulfate polyacrylamide gel electrophoresis, reversed phase high performance liquid chromatography and assays for proteolytic activity. We found that poison glands in A. picta are filled with nonprotein granules that are rich in carbohydrates, while L. lineatus glands present protein granules. Accordingly, great amounts of proteins, at least some of them enzymes, were found in the poison of L. lineatus but not in that of A. picta. Both species differ greatly on profiles of gland distribution: In L. lineatus, poison glands are organized in clusters whose position coincides with colored elements of the dorsum. These regions are evidenced through a set of displays, suggesting that poison location is announced to predators through skin colors. In contrast, A. picta presents lower densities of glands, distributed homogeneously. This simpler profile suggests a rather qualitative than quantitative investment in chemical defense, in agreement with the high toxicity attributed to dendrobatids in general. Our data suggest that both species are toxic or unpalatable and transmit common warning signals to predators, which represents a case of Müllerian mimicry. J. Morphol. 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

20.
In this article we study the cranial remains of the late Lower Pleistocene human fossils from Gran Dolina (Sierra de Atapuerca, Spain), assigned to the new species Homo antecessor. The cranial remains belong to at least five individuals, both juveniles and adults. The most outstanding feature is the totally modern human morphology of the very complete face ATD6-69, representing the earliest occurrence of the modern face in the fossil record. The Gran Dolina fossils show in the face a suite of modern human apomorphies not found in earlier hominids nor in contemporary or earlier Homo erectus fossils. There are also traits in the Gran Dolina fossils shared with both Neandertals and modern humans, which reinforce the hypothesis that Neandertals and modern humans form a clade, and that the Gran Dolina fossils are a common ancestor to both lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号