首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two non-direct homing behaviours, overshoot of natal tributaries and temporary non-natal tributary use, were evaluated for 5150 radio-tagged spring–summer Chinook salmon Oncorhynchus tshawytscha from 40 populations in the large Columbia River system. Over 7 years, 2–44% (mean = 15%) of individuals within each group temporarily entered presumed non-natal tributaries. In addition, many Chinook salmon from lower river tributaries initially travelled 3 to >250 km upstream in the main-stem river beyond confluences with presumed natal tributaries before returning to the natal sites ('overshoot'). Both overshoot and temporary tributary use behaviours declined exponentially with increasing distance from the natal tributary. Non-direct homing also increased later in the season as water temperatures rose and was associated with hatchery origin in some cases. The behaviours may reflect a mix of active searching for olfactory cues from natal sites, behavioural thermoregulation and orientation challenges in a large-river migration corridor transformed by dams and reservoirs. While anadromous salmonid homing is generally accurate and precise, these results indicate that route finding can be non-direct, potentially increasing energetic costs and harvest risks during migration.  相似文献   

2.
Upstream migration rates were assessed for 1801 radio‐tagged adult spring–summer Chinook salmon Oncorhynchus tshawytscha through 12 unimpounded river reaches in the Columbia River basin from 1997 to 2002. Reaches were 36 to 241 km long (mean = 130 km) and included sections of the large Columbia and Snake Rivers and smaller free‐flowing tributaries. Median Chinook salmon migration rates ranged from <10 km day−1 in the Deschutes and Clearwater Rivers to >35 km day−1 in the Columbia and Snake Rivers. Using multivariate analyses, migration date explained the most variance in Chinook salmon migration rates while river discharge, migration year and migration reach were secondary. Both within and between years, Chinook salmon migrated more rapidly as migration date increased and more slowly when discharge was high. Arrival at high elevation spawning grounds at appropriate times and increased metabolic activity and reproductive maturation may explain the greater power of migration date, relative to river discharge, in predicting migration rates of Columbia basin spring–summer Chinook salmon.  相似文献   

3.
Synopsis Two groups of coho salmon,Oncorhynchus kisutch, were raised under identical regimes to test the hypothesis that the group from a stream with lower and less variable temperatures would have a lower and less variable preferred temperature than would the group from a stream with warmer and more variable temperatures. The preferred (modal) temperatures in an electronic shuttlebox of coho salmon young from a relatively cool, groundwater-fed stream were slightly lower and less variable than those of young from a warmer and more heterothermal stream (mean = 9.6° C, range: 6–16° C vs. mean = 11.6° C, range: 7–21° C). However, there was a great deal of variation within and among individual fish. While some genetic variation in thermal preference may exist, the species seems best characterized as tolerant of relatively large temperature fluctuations.  相似文献   

4.
By combining biotelemetry with animal-borne thermal loggers, we re-created the thermal histories of 21 summer-run Chinook salmon (Oncorhynchus tshawytscha) migrating in the Puntledge River, a hydropower impacted river system on Vancouver Island, British Columbia, Canada. Daily maximum water temperatures in the Puntledge River during the summer-run adult Chinook salmon migration and residency period frequently exceeded 21 °C, a value that has been observed to elicit behavioral thermoregulation in other Chinook salmon populations. We therefore compared river temperatures to body temperatures of 16 fish that migrated through the river to understand if cool-water refuge was available and being used by migrants. In addition, we used thermal histories from fish and thermal loggers distributed in the river to model the effect of thermal habitat on energy density using a bioenergetics model. In general, we found no evidence that cool-water refuge existed in the river, suggesting that there is no opportunity for fish to behaviorally thermoregulate during upriver migration through the regulated portion of the river. Of the thermal histories used in the bioenergetics model, fish that reached an upstream lake were able to access cooler, deeper waters, which would have reduced energy consumption compared to fish that only spent time in the warmer river. Consequently, the Puntledge River water temperatures are likely approaching and in some cases exceeding the thermal limits of the summer-run Chinook salmon during the spawning migration. Further warming may cause more declines in the stock.  相似文献   

5.
Synopsis The catfish Heteropneustes fossilis tolerates a wide range of temperatures. The minimal (7.9°C) and maximal (39.8°C) lethal temperature values obtained during summer are higher than the minimal (4°C) and maximal (37.7°C) lethal temperature values obtained during winter; gradual heating or cooling versus abrupt exposure to various temperatures did not produce significant differences. Catfish acclimated to temperatures of 28° (summer) or 16°C (winter) finally selected temperatures ranging from 31.3° to 32° C, when placed in a temperature gradient of 15° to 35° C. Catfish avoid temperatures below 25° C regardless of seasonal acclimatization.  相似文献   

6.
We studied the efficacy of the process for capture and upstream relocation of 26 adult spring-run Chinook salmon in Butte Creek, California in 2009. These fish had ceased volitional upstream migration prior to reaching their summer holding habitat. The purpose of the relocation was to move fish upstream of two water diversion dams and release them in a part of the stream from which they could presumably swim to cool summer holding habitat, then spawn in the fall. Fish were netted, transported by truck, given an esophageal radio tag/temperature tag, and released. Radio tagging proved to be a useful technique for determining the survival and movement of relocated fish and temperature tags provide useful information to determine thermal exposure and time of death. Twenty-three tags (88 %) were recovered, compared with a 10 % tag recovery rate for an earlier study using fin clips. Most tags were recovered within 3.5 km upstream and 1 km downstream of the release site. A single tag was recovered 6 km upstream. No fish were determined to have survived to spawn. Temperature tag data indicate that most of the salmon died within 2–6 days after the relocation operation. After preventative measures have been exhausted, future relocations efforts, in any setting, should consider (1) intervention as soon as fish cease volitional migration but before they are exposed to further deleterious conditions (2) monitoring environmental conditions to choose appropriate release sites (3) evaluation of disease transmission risk, and (4) handling practices that minimize potential stress due to air immersion and thermal shock.  相似文献   

7.
Medicinal leeches (Hirudo verbana) thermoregulate with respect to their sanguivorous feeding behavior. Immediate postprandial preferences are for warmer than their initial acclimation temperature (Ta, 21 °C, Petersen et al. 2011), while unfed leeches have a lower preferred temperature (Tpref, 12.5 °C). This may reduce energy expenditure and defer starvation if feeding opportunities are limited. Energetic benefits may have an associated cost if low temperatures reduce mobility and the ability to locate further hosts. These costs could be limited if mobility is unimpaired at low temperatures, or if acclimation can restore locomotor performance to the levels at Ta. The transition from Ta to the unfed Tpref significantly reduced speed and propulsive cycle frequency during swimming, and extension and retraction rates during crawling. Aerobic metabolic rate was also reduced from 0.20±0.03 W kg−1 at Ta to 0.10±0.03 W kg−1 at Tpref. The Q10 values of 1.7–2.9 for energetic and swimming parameters indicate a substantial temperature effect, although part of the decline in swimming performance can be attributed to temperature-related changes in water viscosity. 6 weeks at Ta resulted in no detectable acclimation in locomotor performance or aerobic metabolism. The energetic savings associated with a lower Tpref in unfed leeches effectively doubled the estimated time until depletion of energy reserves. Given that some mobility is still retained at Tpref, and that acclimation is in itself costly, the energetic benefits of selecting cooler temperatures between feedings may outweigh the costs associated with reduced locomotor performance.  相似文献   

8.
The duration of residence, behavior, and thermal experience of adult Chinook salmon (Oncorhynchus tshawytscha) in a stratified lagoon-type estuary over a four-year period was determined using acoustic and radio biotelemetry transmitters and archival temperature tags. Results did not support the hypothesis that adult Chinook salmon would hold extensively and migrate slowly through the estuarine lagoon with return trips to the sea and use of the salt wedge for behavioral thermo-osmoregulation in response to high summer water temperatures. Passive tidal transport was not observed as predicted and entry from the sea to the estuarine lagoon occurred during all tidal phases suggesting that conserving energy was not a priority for fish during the estuarine phase of their migration. An unexpected finding was that the persistent pursuit pressure of pinnipeds, especially from California sea lions (Zalophus californianus), appeared to negate the suitability of estuarine lagoon as holding habitat. This finding led to the hypothesis that the risk of pinniped predation was primarily responsible for the brief residence (<24 h on average) and rapid migration (mean 1.2 km/h, 0.42 body lengths/s) of adult Chinook salmon in the estuarine lagoon, especially given its relatively small size (7 km). This hypothesis will be difficult to test without exclusion of pinnipeds. Thermal records of fish that retreated back to the sea after tagging suggested that use of the marine river plume could be important for osmotic adaption to allow rapid migration through estuaries, which often contain concentrations of predators anticipating the return of migrating salmon. Alternatively, use of the marine river plume could have occurred independent of predators. Fish retreating back to the sea should be considered a tagging effect as downstream movement commonly occurs when adult salmonids are released after tagging. There was no evidence of any other tagging effects or biased behavior by fish tagged in this study. Regardless of the reasons, the successful migration of fish that held for weeks in the sea after tagging indicates that there could be considerable flexibility in the river entry timing of some salmon stocks. Tagging adult salmonids in the sea as they approach their natal rivers is ideal but the associated logistical challenges and expense make tagging fish immediately upon entrance to river mouths the next best option when possible.  相似文献   

9.
During spring and summer, we studied the thermal ecology of two populations of the Balearic lizard, Podarcis lilfordi, from two coastal islets of Menorca (Balearic Islands, Spain): Aire and Colom. We calculated the accuracy of thermoregulation, that is, the extent to which body temperatures are close to species' thermal optima, the thermal quality of the habitat as the proximity of operative temperatures to thermal optima and effectiveness of thermoregulation, as the extent to which accuracy is higher than thermal quality of the habitat. We found that seasonality affects thermoregulation differently, depending on the lizard population. Those effects are consistent for all thermal parameters under study. The effects of seasonality were significantly stronger in Aire than in Colom islet. Many factors may be responsible for this different effect of seasonality, from differences on physiological traits to differences in the environmental conditions of the two islets, as their resource availability, predator pressure or habitat structure. Identifying the factors that boost or inhibit those seasonal changes would be important to understand thermoregulation in lizards. Slight changes on two similar populations can lead to great differences in thermal ecology of conspecific ectotherms.  相似文献   

10.
Temperature-sensitive radio transmitters were employed to study the patterns of behavioural thermoregulation, habitat preference and movement of 19 adult spring chinook salmon, Oncurhynchus tshawytscha (Walbaum), in the Yakima River. During the 4 months prior to spawning, fish maintained an average internal temperature 2.5°C below ambient river temperature. This represented a 12 to 20% decrease in basal metabolic demand or a saving of 17.3 to 29.9 calkg−1 h−1. Fish were most commonly associated with islands, pools, and rock out-croppings along stream banks. Homing behaviour appeared to be modified to optimize temperature regimes and energy conservation. As the time of spawning approached, fish left thermal refuges and migrated to spawning grounds upstream and downstream of refuge areas. Although spring chinook salmon residing within cool-water refuges may be capable of mitigating sub-lethal temperature effects, cool-water areas need to be abundant and available to the fish. The availability of suitable thermal refuges and appropriate holding habitat within mainstem rivers may affect long-term population survival.  相似文献   

11.
12.
13.
Global climate change is projected to increase the incidence of heat waves, their magnitude and duration resulting in insects experiencing increasing environmental stress in both natural and managed ecosystems. While studies on insect thermal tolerance are rapidly increasing, variation across developmental or juvenile stress cross-stage effects within and across generations remain largely unexplored. Yet in holometabolous insects, heat stress at an early developmental stage may influence performance and survival during later stages. Here, we investigated the effects of pupal mild heat stress on the performance of laboratory-reared adult Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) measured as longevity, critical thermal maximum (CTmax), critical thermal minima (CTmin), heat knockdown time (HKDT) and chill coma recovery time (CCRT). Pupal heat stress significantly influenced performance of B. dorsalis adults resulting in impaired longevity and heat tolerance (CTmax and HKDT) in both sexes with improved and compromised cold tolerance (CTmin and CCRT) in females and males, respectively. These findings highlight the role of juvenile stages in mediating stress responses at adult stages. For B. dorsalis, pupal heat stress largely compromised thermal tolerance implying that the species has limited potential to shift its geographic range in heat prone areas. Significant benefits in cold tolerance in females following heat stress may help in improving survival in the cold in the short-term despite restricted activity to the same traits in males. This study suggests that basal heat tolerance and not short-term compensatory thermal plasticity following heat stress may have aided the recent invasion of B. dorsalis in African landscapes.  相似文献   

14.
15.
Thermal biology of zebrafish (Danio rerio)   总被引:1,自引:0,他引:1  
Zebrafish has become one of the most important animal models in research. Most of the variables studied using zebrafish are influenced by water temperature. The objective of this review was to analyze the published data on the thermal biology of the zebrafish. The paper first provides a brief introduction to zebrafish ecology and thermal tolerance, and continues with a review of the influence of temperature on several physiological variables, including development, growth, metabolism, reproduction, behavior, circadian biology and toxicology. Although a number of papers have already studied the effects of temperature on the zebrafish biology, knowledge in this field is still scarce, especially compared with other model organisms such as the rat, and therefore further research should be encouraged.  相似文献   

16.
Understanding how species might respond to climate change involves disentangling the influence of co‐occurring environmental factors on population dynamics, and is especially problematic for migratory species like Pacific salmon that move between ecosystems. To date, debate surrounding the causes of recent declines in Yukon River Chinook salmon (Oncorhynchus tshawytscha) abundance has centered on whether factors in freshwater or marine environments control variation in survival, and how these populations at the northern extremity of the species range will respond to climate change. To estimate the effect of factors in marine and freshwater environments on Chinook salmon survival, we constructed a stage‐structured assessment model that incorporates the best available data, estimates incidental marine bycatch mortality in trawl fisheries, and uses Bayesian model selection methods to quantify support for alternative hypotheses. Models fitted to two index populations of Yukon River Chinook salmon indicate that processes in the nearshore and marine environments are the most important determinants of survival. Specifically, survival declines when ice leaves the Yukon River later in the spring, increases with wintertime temperature in the Bering Sea, and declines with the abundance of globally enhanced salmon species consistent with competition at sea. In addition, we found support for density‐dependent survival limitations in freshwater but not marine portions of the life cycle, increasing average survival with ocean age, and age‐specific selectivity of bycatch mortality in the Bering Sea. This study underscores the utility of flexible estimation models capable of fitting multiple data types and evaluating mortality from both natural and anthropogenic sources in multiple habitats. Overall, these analyses suggest that mortality at sea is the primary driver of population dynamics, yet under warming climate Chinook salmon populations at the northern extent of the species’ range may be expected to fare better than southern populations, but are influenced by foreign salmon production.  相似文献   

17.
Ichthyophonus hoferi Plehn & Mulsow, 1911, is a cosmopolitan, protistan pathogen of marine fishes. It is prevalent in mature returning Chinook salmon Oncorhynchus tshawytscha in the Yukon River watershed, and may be associated with prespawning mortality. We developed and evaluated a polymerase chain reaction (PCR) test for I. hoferi using primers specific to the parasite's small subunit rDNA. The test has a minimum detection limit of approximately 10(-5) parasite spores per reaction and does not cross-react with the closely related salmon parasites Dermocystidium salmonis or Sphaerothecum destruens. Sensitivity and specificity of the PCR test used on somatic muscle and heart tissue for detecting infected fish were determined using 334 Chinook salmon collected from the Yukon River at 2 locations (Tanana and Emmonak) in 2003 and 2004. The true infection status of the fish was determined by testing somatic muscle, heart and kidney tissue using histological evaluation, culture, and PCR. The severity of infection was grouped into 2 categories, light and heavy infection. The probability of detecting a heavily infected fish (sensitivity of the test) was generally much higher than the probability of detecting light infection, suggesting that more than one tissue and/or method should be used to accurately detect light or early infection by I. hoferi. The probability of correctly identifying a negative fish (specificity of the test) was always greater than 94% regardless of the tissue used, infection severity, sampling site or year of collection.  相似文献   

18.
Temperature-dependent sex determination (TSD) has evolved independently in at least two lineages of viviparous Australian scincid lizards, but its adaptive significance remains unclear. We studied a montane lizard species (Eulamprus heatwolei) with TSD. Our data suggest that mothers can modify the body sizes of their offspring by selecting specific thermal regimes during pregnancy (mothers with higher and more stable temperatures produced smaller offspring), but cannot influence sons versus daughters differentially in this way. A field mark-recapture study shows that optimal offspring size differs between the sexes: larger body size at birth enhanced the survival of sons but reduced the survival of daughters. Thus, a pregnant female can optimize the fitness of either her sons or her daughters (via yolk allocation and thermoregulation), but cannot simultaneously optimize both. One evolutionary solution to reduce this fitness cost is to modify the sex-determining mechanism so that a single litter consists entirely of either sons or daughters; TSD provides such a mechanism. Previous work has implicated a sex difference in optimal offspring size as a selective force for TSD in turtles. Hence, opposing fitness determinants of sons and daughters may have favored evolutionary transitions from genetic sex determination to TSD in both oviparous turtles and viviparous lizards.  相似文献   

19.

1. 1. Spectral integral reflectance, transmittance and the resulting absorption of intact and descaled butterfly wings of the black-winged Pachliopta aristolochiae (Papilionidae), the white-winged Pieris brassicae (Pieridae), and the yellow-winged Gonepteryx rhamni (Pieridae) were determined between 350 and 800 nm.

2. 2. Whereas in the black forewing of the dorsal basking Pachliopta almost all incident light is absorbed nearly independent of the wavelength and thus converted into heat, the white forewing of the body basking Pieris absorbs less than 20% in the visible range of the spectrum.

3. 3. The yellow hindwing of the lateral basking Gonepteryx absorbs to a higher degree than the Pierid wing, but—due to the sparsely arranged scales—transmittance is clearly increased (40–50% between 525 and 800 nm).

4. 4. The varying thermal characteristics of the different wings with reference to the color and arrangement of the scales and the different basking strategies of the butterflies are discussed.

Author Keywords: Behavioral thermoregulation; coloration; butterfly wing; radiation absorption; heat gain; sun basking  相似文献   


20.
Energetic demands of a long freshwater migration, extended holding period, gamete development and spawning were evaluated for a population of stream‐type Chinook salmon Oncorhynchus tshawytscha. Female and male somatic mass decreased by 24 and 21%, respectively, during migration and by an additional 18 and 12% during holding. Between freshwater entry and death after spawning, females allocated 14% of initial somatic energy towards gonad development and 78% for metabolism (46, 25 and 7% during migration, holding and spawning, respectively). Males used only 2% of initial somatic energy for gonad development and 80% on metabolic costs, as well as an increase in snout length (41, 28 and 11% during migration, holding and spawning, respectively). Individually marked O. tshawytscha took between 27 and 53 days to migrate 920 km. Those with slower travel times through the dammed section of the migration corridor arrived at spawning grounds with less muscle energy than faster migrants. Although energy depletion did not appear to be the proximate cause of death in most pre‐spawn mortalities, average final post‐spawning somatic energy densities were low at 3·6 kJ g?1 in females and 4·1 kJ g?1 in males, consistent with the concept of a minimum energy threshold required to sustain life in semelparous salmonids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号