首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Coastal dune grasslands are fragile ecosystems that have historically been subjected to various types of uses and human activities. In Buenos Aires Province (Argentina), these areas are frequently afforested for urban and touristic development. The introduction and subsequent spread of exotic tree species is one of the main threats to conservation of natural grasslands as invasive trees strongly transform their structure and composition. The aim of this study was to identify patterns of woody plant invasion comparing plant communities and environmental variables between invaded and non-invaded areas surrounding the coastal village of Mar Azul, Argentina. Coastal grasslands in this area are being invaded by Populus alba (white poplar) and Acacia longifolia (coast wattle). The height of the saplings and the richness of the accompanying vegetation were evaluated in relation to the distance from the edge of the mature tree patches. Also, the cover, richness and diversity of all species in the invaded and non-invaded areas were measured, as well as soil pH, temperature and particle size. Negative correlations were found between the height of the saplings and distance to mature tree patches in all areas. The richness of the accompanying vegetation was negatively and positively correlated with the distance from the poplar and acacia area, respectively. The most abundant native species was Cortaderia selloana. Less cover, richness and diversity of native plant species and greater soil particle size were found in invaded areas, where the proportion of bare soil was higher. Also, a higher proportion of leaf litter in the invaded areas was registered. The results emphasize the invasive capacity of P. alba and A. longifolia advancing on the native communities and reducing their richness. Knowledge of the impact of invasive woody plants in coastal grasslands is important to design active management strategies for conservation purposes.  相似文献   

2.
3.
三种鱼的磷排泄及其在微型生态系统磷再循环中的作用   总被引:8,自引:1,他引:8  
在考查罗非鱼或鲢、鳙下行影响的微型生态系统实验后期 ,对三种鱼的特定正磷酸盐 (PO4 P)排泄率进行了测定 ,并且估算了系统中实验鱼的PO4 P排泄率。结果表明 ,在个体大小相同的情况下 ,罗非鱼的特定PO4 P排泄率明显地高于链、鳙 ,似乎同它们的食物含磷量无关而由其体组织含磷量所决定 ;放养罗非鱼的系统中鱼的PO4 P排泄率比放养链、鳙的系统平均高 2倍多 ,其磷排泄对浮游植物的PO4 P供给率分别为 10 0 %— 15 8%和 6 1%—7 5 %。根据有鱼系统中PO4 P的供求关系和实验结束时磷分布的观测结果推断 ,沉积物的磷释放是系统中磷再生的主要途径 ,而实验鱼调节系统磷再循环的主要机制是排粪。  相似文献   

4.
The most conspicuous biological invasions in terrestrial ecosystems have been by exotic plants, insects and vertebrates. Invasions by exotic earthworms, although not as well studied, may be increasing with global commerce in agriculture, waste management and bioremediation. A number of cases has documented where invasive earthworms have caused significant changes in soil profiles, nutrient and organic matter dynamics, other soil organisms or plant communities. Most of these cases are in areas that have been disturbed (e.g., agricultural systems) or were previously devoid of earthworms (e.g., north of Pleistocene glacial margins). It is not clear that such effects are common in ecosystems inhabited by native earthworms, especially where soils are undisturbed. We explore the idea that indigenous earthworm fauna and/or characteristics of their native habitats may resist invasion by exotic earthworms and thereby reduce the impact of exotic species on soil processes. We review data and case studies from temperate and tropical regions to test this idea. Specifically, we address the following questions: Is disturbance a prerequisite to invasion by exotic earthworms? What are the mechanisms by which exotic earthworms may succeed or fail to invade habitats occupied by native earthworms? Potential mechanisms could include (1) intensity of propagule pressure (how frequently and at what densities have exotic species been introduced and has there been adequate time for proliferation?); (2) degree of habitat matching (once introduced, are exotic species faced with unsuitable habitat conditions, unavailable resources, or unsuited feeding strategies?); and (3) degree of biotic resistance (after introduction into an otherwise suitable habitat, are exotic species exposed to biological barriers such as predation or parasitism, “unfamiliar” microflora, or competition by resident native species?). Once established, do exotic species co-exist with native species, or are the natives eventually excluded? Do exotic species impact soil processes differently in the presence or absence of native species? We conclude that (1) exotic earthworms do invade ecosystems inhabited by indigenous earthworms, even in the absence of obvious disturbance; (2) competitive exclusion of native earthworms by exotic earthworms is not easily demonstrated and, in fact, co-existence of native and exotic species appears to be common, even if transient; and (3) resistance to exotic earthworm invasions, if it occurs, may be more a function of physical and chemical characteristics of a habitat than of biological interactions between native and exotic earthworms.  相似文献   

5.
Despite impressive efforts at clearing stands of invasive Australian Acacia species in South Africa, insufficient attention has been given to understanding the role of seed banks in the invasiveness and long-term persistence of populations. We review information on seeds of these species, considering seed production, seed rain, and the dynamics of seeds in three layers: leaf litter, and upper and lower seed banks in the soil. Many factors affect the accumulation and susceptibility to destruction of seed banks and thus the opportunities for intervention to reduce seed numbers for each of these components. Reduction of seed banks is crucial for the overall success of the multi-million dollar management initiatives against these species. Classical biological control of buds, flower and young pods has reduced the seed production of many Australian acacias in South Africa. Fire can be applied to reduce seed numbers in the leaf litter and upper seed bank in some cases, although there are serious problems associated with high fire intensities in dense acacia stands. Other options, e.g. soil inversion and solarisation, exist to exercise limited reduction of seed numbers in some situations. There is little prospect of meaningful reduction of seed numbers in the lower seed bank. Preventing the accumulation of seed banks by limiting seed production through biological control is by far the most effective means, and in almost all cases the only practical means, of reducing seed numbers. This must be an integral part of management strategies. Several invasive Australian acacias are already under effective biological control, and further work to identify additional potential agents for all the currently invasive species and potentially invasive alien species is the top priority for improving the efficiency of management programmes.  相似文献   

6.
    
This work aims to evaluate the antibacterial activity of biological zinc nanoparticles (BIO-ZnONPs) against pathogenic fish bacteria and assess the effect of BIO-ZnONPs on the performance, behavior, and immune response in Nile tilapia (Oreochromis niloticus) as compared to chemical zinc nanoparticles (CH- ZnONPs). Aspergillus niger TS16 fabricated the BIO-ZnONPs were spherical shape with the average size of 45 nm and net charge of −27.23 mV. Generally, the results indicate that BIO-ZnONPs were more effective than CH- ZnONPs in enhancing the performance properties of Nile tilapia. Five experimental groups of Nile tilapia (initial body weight of 20.2 g) were treated with two concentrations of 0.5 and 1 mg L−1 from biological and chemical ZnONPs, while the fifth group was served as a control. After ten weeks of treated water with ZnONPs, the performance, feed efficiency parameters, feeding, and swimming behaviors significantly improved in BIO-ZnONPs treated groups (P < 0.05). The liver function, LYZ activity, and NBT values were significantly enhanced in the 0.5 mg L−1 BIO-ZnONPS group compared to CH- ZnONPs group and control (P < 0.05). Furthermore, the lowest cortisol and the highest testosterone and growth hormone levels were recorded in 1 mg L−1 BIO-ZnONPs group. Regarding the antibacterial effects, BIO-ZnONPs displayed the lower total bacterial loads in water and fish tissues (intestine, gills, skin, and muscle) and the maximum antibacterial properties against pathogenic bacteria (Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Aeromonas hydrophila). Our study exemplifies novel findings of BIO-ZnONPs in the promotion of fish health and production and its antibacterial properties in Nile tilapia.  相似文献   

7.
8.
姚煜  梁旭方  王琳  栾添  刘理曼 《生态科学》2010,29(4):324-331
鱼类谷胱甘肽S-转移酶(glutathione S-transferase,GST)是鱼类一种重要的Ⅱ相去毒酶,在催化毒素与还原谷胱甘肽(GSH)加合去毒代谢过程中具有关键作用。采用RT-PCR及RACE法,分离、克隆得到草鱼、尼罗罗非鱼pi、mu、theta型GST(GSTpi、GSTmu、GSTtheta)基因、鲢鱼GSTmu、GSTtheta基因的cDNA部分序列并推测各自对应的氨基酸序列。氨基酸序列同源性比较和系统进化分析均表明,鲢鱼、草鱼、尼罗罗非鱼与鱼类GST同源性较高,与哺乳类、鸟类、两栖类GST同源性较低,可能与鱼类GST基因在水环境毒素去毒代谢中承担的特殊功能有关。而不同种鱼类GSTtheta的同源性明显要较GSTpi、GSTmu的同源性低,可能与不同淡水鱼类食性及对毒素耐受性不同有关。用实时荧光定量PCR(RT-PCR)检测三种鱼肝脏中三型GST基因组成型表达水平,发现三种鱼各型之间皆有一定差异,尼罗罗非鱼肝脏整体GSTs基因表达很低,GSTtheta显著低于草鱼(P<0.05),GSTmu显著低于鲢鱼(P<0.05)。本研究为从分子水平上研究不同型谷胱甘肽S-转移酶基因在不同食性淡水鱼类体内代谢去毒过程中的作用提供了基础。  相似文献   

9.
    
Aim Species richness of insect herbivores feeding on exotic plants increases with abundance as well as range size of the host in the area of introduction. The formation of these herbivore assemblages requires a certain amount of time, and the richness of insect faunas should also increase with the length of time an exotic plant has been present in the introduced range. Location Central Europe. Methods We analysed the variation in species richness of leaf‐chewing Lepidoptera larvae and sap‐sucking Auchenorrhyncha (Hemiptera) associated with 103 exotic woody plant species in Germany in relation to time since introduction, range size, growth form (trees versus shrubs), biogeographical origin (distance from Central Europe) and taxonomic isolation of the host plant (presence or absence of a native congener in the introduced area). Results Using simple correlation analyses we found for Lepidoptera and Auchenorrhyncha that species richness increased with time since introduction of the host plant. For the Lepidoptera the increase of species richness with time since introduction remained significant even after removing the effects of all other independent variables. Main conclusions Our results provide some evidence that assemblages of insects on exotic plants do not reach saturation within a time scale of few hundred years. This contrasts with previous findings for crop plants.  相似文献   

10.
    
Introduced species have the potential to outperform natives in two primary ways: via increased rates of predation and competition, and via the introduction of new parasites against which native species often lack effective immune defences. To assess the extent to which invasive species' parasites spread to native hosts, we compared the composition of helminth parasites found in introduced black rat ( Rattus rattus ) and endemic deer mouse ( Peromyscus maniculatus ) populations on a subset of the California Channel Islands. Results suggest that the whipworm, Trichuris muris , may have spread from introduced black rats to endemic island deer mice and has continued to thrive in one island population where rats were recently eradicated. These results yield two important conservation messages: (1) although the parasites introduced with invasive species may be few, they should not be ignored as they can spread to native species, and (2) introduced parasites have the potential to remain in a system even after their founding host is extirpated. These findings underscore the importance of parasitological surveys in invasive species research and baseline data for ecosystems where exotic species are likely to invade.  相似文献   

11.
    
Models predict that community invasibility generally declines with species diversity, a prediction confirmed by small‐scale experiments. Large‐scale observations and experiments, however, find that diverse communities tend to be more heavily invaded than simple communities. One hypothesis states that large‐scale environmental heterogeneity, which similarly influences native and invasive species, can cause a positive correlation between diversity and invasibility, overriding the local negative effects of diversity on invasibility. We tested this hypothesis using aquatic microbial communities consisting of protists and rotifers consuming bacteria and nanoflagellates. We constructed a productivity gradient to simulate large‐scale environmental heterogeneity, started communities with the same number of species along this gradient, and subjected equilibrial communities to invasion by non‐resident consumer species. Both invaders and most resident species increased their abundances with resource enrichment, resulting in a positive correlation between diversity and invasibility. Intraspecific interference competition within resident species and the positive effect of enrichment on the number of available resources probably accounted for the higher invasibility with enrichment. Our results provide direct experimental evidence that environmental heterogeneity in productivity can cause a positive diversity–invasibility relationship.  相似文献   

12.
    
Shipping has contributed strongly to biological invasions in coastal ecosystems, transferring species in ballast tanks and on exposed underwater surfaces (hulls). A long history exists that documents biota associated with ships’ hulls, including some recent analyses of modern ships, but relatively little is known about the associated risks of invasion. In general, the likelihood of invasion is expected to increase with increasing propagule supply, which suggests that high‐density transfers on hulls may pose a relatively high invasion risk. Obsolete vessels are expected to be at an extreme end of the spectrum for biofouling, since they sit at anchorage for long periods and are towed at relatively slow speeds when moved, but this remains largely unexplored. In this paper, we quantified the biofouling communities of two obsolete vessels, one stationary for one decade and the other for two decades, before and after their final transit from California to Texas. Pre‐departure biofouling surveys across both vessels detected 22 species of macroinvertebrates. The biomass was dominated by the introduced bryozoan Conopeum chesapeakensis, which occurred in 98% of samples and created a three‐dimensional structure (2–5 cm thick). Mobile species, inhabiting the vertical biofouling matrix, were more numerous than sessile ones. Interestingly, the non‐native Asian clam Corbula amurensis, not previously associated with hull fouling assemblages, was recorded in 9% of samples. During the 43‐day voyage, organisms encountered salinity variation that ranged between zero (Panama Canal) and at least 37 parts per thousand (Brownsville, Texas) and temperatures that varied between 9.9 °C and 31.6 °C. Upon arrival in Texas, we measured an expected decrease in biofouling extent across both vessels but also a surprising increase in species richness (57 species were recorded), with small compositional differences between ships that did not exist prior to departure. Several species were recorded alive upon arrival, including non‐natives that are not known to be established in Texas waters. The physiological tolerance and associated risk of colonization have not yet been evaluated for these organisms, or for the broader species pool associated with a standing fleet (n > 200 ships) that may undergo similar movements. Nonetheless, a compelling case exists for vector management based on organism flux alone, to reduce the risk of coastwise and inter‐oceanic invasions.  相似文献   

13.
    
Aim We examine the regional dominance of California as a beachhead for marine biological invasions in western North America and assess the relative contribution of different transfer mechanisms to invasions over time. Location Western North America (California to Alaska, excluding Mexico). Methods We undertook extensive analysis of literature and collections records to characterize the invasion history of non‐native species (invertebrates, microalgae and microorganisms) with established populations in coastal marine (tidal) waters of western North America through 2006. Using these data, we estimated (1) the proportion of first regional records of non‐native species that occurred in California and (2) the relative contribution of transfer mechanisms to California invasions (or vector strength) over time. Results Excluding vascular plants and vertebrates, we identified 290 non‐native marine species with established populations in western North America, and 79% had first regional records from California. Many (40–64%) of the non‐native species in adjacent states and provinces were first reported in California, suggesting northward spread. California also drives the increasing regional rate of detected invasions. Of 257 non‐native species established in California, 59% had first regional records in San Francisco Bay; 57% are known from multiple estuaries, suggesting secondary spread; and a majority were attributed to vessels (ballast water or hull fouling) or oysters, in some combination, but their relative contributions are not clear. For California, more than one vector was possible for 56% of species, and the potential contribution of ballast water, hull fouling and live trade increased over time, unlike other vectors. Main conclusions California, especially San Francisco Bay, plays a pivotal role for marine invasion dynamics for western North America, providing an entry point from which many species spread. This pattern is associated historically with high propagule supply and salinity. Any effective strategies to minimize new invasions throughout this region must (1) focus attention on California and (2) address current uncertainty and future shifts in vector strength.  相似文献   

14.
15.
  总被引:1,自引:0,他引:1  
Aim  Introduced macroalgae are widespread in the world's oceans and, despite increasing awareness and attempts to limit the phenomenon, the number of species introductions in coastal waters has increased exponentially over time. Little is known about the rates and mechanisms of spread, even among species that have received the most attention. We compare patterns of range expansion for nine species of invasive algae across eight geographic regions.
Location  World-wide.
Methods  We compiled records of introduced algae from the scientific literature, herbaria, and by contacting experts to reconstruct chronologies for 22 algal invasions. These were used to map patterns of spread at a regional scale (thousands of km).
Results  Range size tended to increase linearly with time, often after an initial lag. Range expansion occurred at rates of tens to hundreds of kilometres per year, often with large infrequent increases. Rates of range expansion differed significantly between species within the same region, and between regions for the same species.
Main conclusions  Our results suggest that anthropogenic vectors likely play a key role in the spread of introduced macroalgae at a regional scale, although natural long-distance dispersal also may be important for some species. The lack of consistency in the rates within individual species and regions suggests that multiple interacting factors (e.g. algal traits, characteristics of invaded communities, environmental conditions and anthropogenic activities) determine where propagules of introduced algae are delivered and whether they become established.  相似文献   

16.
    
Aim Determining which traits predispose a species to become invasive is a fundamental question of invasion ecology, but traits affect invasiveness in concert with other factors that need to be controlled for. Here, we explore the relative effects of biological traits of plant species and their distributional characteristics in the native range on invasion success at two stages of invasion. Location Czech Republic (for native species); and the world (for alien species). Methods The source pool of 1218 species of seed plants native to Central Europe was derived from the flora of the Czech Republic, and their occurrence in 706 alien floras all over the world was recorded, distinguishing whether they were listed as an ‘alien’ or a ‘weed’ in the latest version of Randall’s ‘Global compendium of weeds’ database. The latter type of occurrence was considered to indicate species ability to invade and cause economic impact, i.e. a more advanced stage of invasion. Using the statistical technique of regression trees, we tested whether 19 biological traits and five distributional characteristics of the species in their native range can be used to predict species success in two stages of invasion. Results The probability of a species becoming alien outside its native distribution range is determined by the size of its native range, and its tolerance of a wide range of climates acquired in the region of origin. Biological traits play only an indirect role at this stage of invasion via determining the size of the native range. However, the ability of species to become a weed is determined not only by the above characteristics of native distribution, but also directly by biological traits (life form and strategy, early flowering, tall stature, generative reproduction, number of ploidy levels and opportunistic dispersal by a number of vectors). Species phylogenetic relatedness plays only a minor role; it is more important at the lowest taxonomic levels and at the later stage of invasion. Main conclusion The global success of Central European species as ‘weeds’ is determined by their distributional characteristics in the native ranges and by biological traits, but the relative importance of these determinants depends on the stage of invasion. Species which have large native ranges and are common within these ranges should be paid increased attention upon introductions, and the above biological traits should be taken into account in screening systems applied to evaluate deliberate introductions of alien plants to new regions.  相似文献   

17.
18.
    
Aim We tested the hypothesis that construction of lakes and ponds has facilitated both inter‐ and intracontinental invasions of calanoid copepod species. Location North Island, New Zealand. Methods We sampled both natural and constructed lakes, ponds and reservoirs for calanoid copepods in the North Island, New Zealand. Species records were supplemented by examining historically collected samples and literature review. Distributions of non‐indigenous calanoid copepod species were compared between constructed and natural waters. Species distributions of native species were compared with the basement terranes (microplates) of the North Island to determine if they possess ‘natural ranges’, and to assess whether construction of new water bodies had altered these distributions. Results Ten calanoid copepod species have been recorded. At least four, and possibly five, of these species are non‐indigenous and were restricted to constructed water bodies. Occurrences in constructed water bodies were not restricted to dammed valleys, but also included ponds constructed on farms, ornamental ponds, disused quarries and retired mines. Four Boeckella species had distributions in natural waters closely related to the North Island basement terranes, and therefore possess ‘natural ranges’ on the island. One species, Boeckella propinqua, was found in natural lakes over a small geographical range only, but has spread with construction of new water bodies to now be widely distributed over the island. Main conclusions Construction of lakes and ponds has facilitated the invasion of calanoid copepod species at both inter‐ and intracontinental scales. Our findings suggest that resident native calanoid copepod species may reduce the risk of invasion to natural water bodies, as similar‐sized species are commonly unable to co‐occur. Spread of the non‐indigenous representatives from constructed into natural waters is inevitable, with established populations providing local propagule supplies for regular introductions.  相似文献   

19.
    
Allee effects have been applied historically in efforts to understand the low-density population dynamics of rare and endangered species. Many biological invasions likewise experience the phenomenon of decreasing population growth rates at low population densities because most founding populations of introduced nonnative species occur at low densities. In range expansion of established species, the initial colonizers of habitat beyond the organism’s current range are usually at low density, and thus could be subject to Allee dynamics. There has been consistent empirical and theoretical evidence demonstrating, and in some cases quantifying, the role of Allee dynamics in the gypsy moth, Lymantria dispar (L.), invasion of North America. In this review, we examine the potential causes of the Allee effect in the gypsy moth and highlight the importance of mate-finding failure as a primary mechanism behind an Allee effect, while the degree to which generalist predators induce an Allee effect remains unclear. We then explore the role of Allee effects in the establishment and spread dynamics of the gypsy moth system, which conceptually could serve as a model system for understanding how Allee effects manifest themselves in the dynamics of biological invasions.  相似文献   

20.
用RAPD技术对罗非鱼遗传变异的研究及应用(英文)   总被引:2,自引:0,他引:2  
应用随机扩增多态性DNA(RAPD)技术检测了一个奥利亚罗非鱼(au)和湘湖(nx)、美国(nm)、沙市(np)三个尼罗罗非鱼养殖群体(Table1)。在20个引物(Table 2)中筛选到12个引物,它们的扩增产物显示了罗非鱼和尼罗罗非鱼二者在群体内或群体间存在遗传差异。其中(Fig.1), OPZ06、 OPZ16、 OPZ12和 OPZ19四个引物分别有一个扩增片段具有种的特异性。它们的大小分别是900、1500、1700和730bp。可以作为鉴别罗非鱼和尼罗罗非鱼二者的分子遗传标记。湘湖(nx)、美国(nm)和沙市(np)三个尼罗罗非鱼群体内遗传变异相似性指数S分别为 0.798、 0.795和0.824(Table 3)。表明:这三个尼罗罗非鱼群体都保留了较高水平的遗传变异。而奥利亚罗非鱼(au)的群体内遗传变异最小。奥利亚罗非鱼(au)与湘湖(nx)、美国(um)、沙市(up)三个尼罗罗非鱼群体之间的遗传距离分别是0.285、0.262和0.344(Table 3),说明奥利亚罗非鱼(au)和沙市尼罗罗非鱼(np)杂交将可能产生较强的杂种优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号