首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The water temperature of aquacultures is a primary factor of fish welfare, reproductive patterns, and immunity. To elucidate the molecular and biological processes of the temperature modulation of reproduction and immunity, female Nile tilapia (190 ± 10g) were allocated into five groups following acclimatization (150 females, three replicates, each n = 10). Each group was subjected to various temperatures (28 °C, 30 °C, 32 °C, 34 °C, and 37 °C), the group at 28 °C representing the control. Their serum levels of estradiol, cortisol, and vitellogenin were measured as well as serum triiodothyronine (T3) hormone, thyroxine (T4) hormone, and non-specific immunity (phagocytic and lysozyme activity). In addition, steroidogenic acute regulatory protein (STAR), vitellogenin gene receptor, and heat shock protein 70 (HSP70) gene expression were evaluated. The serum levels of estradiol, cortisol, and vitellogenin markedly declined (P < 0.05) in fish group at higher temperatures. In addition to T3, T4 was significantly affected (P < 0.05) in the control group. The expressions of the STAR gene (steroidogenesis) and vitellogenin receptors were also considerably down-regulated. The histopathological photomicrograph of fish subjected to high water temperature revealed injuries in ovary tissues, demonstrating its harmful effects. The experimental results verified the possible role of water temperature as a main stressor on Nile tilapia’ physiology through modulation of steroidogenesis-related gene expression and immunity.  相似文献   

2.
Gonadal development and sexual maturation of fish are often related to photic conditions. We attempted to utilise the direct application of melatonin to elicit similar effects in the absence of photoperiod manipulation. We found no significant differences in somatic growth between melatonin-treated groups and controls, indicating that melatonin administration did not negatively affect the growth of the experimental fish. Treatment with low-dose melatonin (0.3 mg/kg BW) resulted in a decrease in spawning frequency, number of spawned eggs and gonadosomatic index in female tilapia. In male tilapia, low-dose melatonin was associated with a decrease in sperm count, spermatocrit and spermatozoa activity index, implying that exogenous melatonin might mimic the effects of shortened light photoperiod, which suppresses reproductive activity in this species. These results suggest the possibility that an optimised dose of melatonin treatment could be used to control the spawning behaviour of this species.  相似文献   

3.
This study was carried out to evaluate the effects of dietary lipid sources on growth performance, fatty acids composition and cold tolerance of Nile tilapia (Oreochromis niloticus) fingerlings (7.00 ± 0.50 g/fish). The fish were fed four isonitrogenous (28% crude protein), isocaloric (500 kcal/100 g) diets containing four lipid sources; fish oil (FO), corn oil (CO), coconut oil (COCO) or fish oil/ corn oil mixture (1:1 ratio) (oil mix). The diets were offered to the fish at a daily rate of 3% of their body weights (BW), twice a day for two months. After the feeding trial, the fish were exposed to decreasing water temperature from 25 °C until the appearance of death symptoms. The results revealed that FO-based diets (FO and oil mix) produced the best growth rates and feed efficiency, followed by corn oil diet, while COCO resulted in the lowest performance. Fish fed on CO and oil mix showed higher body unsaturated fatty acids (UFA) and lower lethal temperature than those fed on FO- or COCO-based diets. These results indicate that cold shock can modify the lipid metabolism in Nile tilapia by lowering total body saturated fatty acids and raising n-6 and n-3 UFA. This finding suggests that the inclusion of high levels of plant oils in Nile tilapia feeds can enhance their cold tolerance.  相似文献   

4.
5.
Sexual maturation and gonadal development of fish is greatly influenced by photic information, an external environmental factor, and melatonin mediates this information to regulate gonadotropin (GTH) secretion and gonadal activation. The relationship between gonadotropin inhibiting hormone (GnIH) and melatonin in fish, however, has not been studied to date. Here, the GnIH expression pattern and daily change of melatonin levels were compared to each other in mature tilapia (body length 16.1 ± 0.2 cm, body weight 77.7 ± 3.43 g), and the effect of melatonin injection on GnIH gene expression was investigated. GnIH gene expression increased at night when the secretion of melatonin increased, whereas gene expression decreased during the day when melatonin secretion decreased. Injecting tilapia intraperitoneally with melatonin increased GnIH gene expression and decreased the expression of gonadotropin releasing hormone (GnRH) and GTH. Furthermore, the injection decreased the 11-KT concentration in male tilapia. These results indicate that melatonin is likely to suppress the hypothalamus-pituitary-gonad (HPG) axis via the action of GnIH in this species.  相似文献   

6.
East African cichlids have evolved feeding apparatus morphologies adapted to their diverse feeding behaviors. The evolution of the oral jaw morphologies is accomplished by the diversity of bone formation during development. To further understand this evolutionary process, we examined the skeletal elements of the jaw and their temporal and sequential emergence, categorized by developmental stages, using the Nile tilapia Oreochromis niloticus as a model cichlid. We found that chondrogenesis started in Stage 17. The deposition of osteoid for the dermal bones commenced in Stage 18. The uptake of calcium dramatically shifted from the surface of larvae to the gills in Stage 20. The bone mineralization of the skeleton began in Stage 25. These data provide important information regarding the sequential events of craniofacial development in East African cichlids and lay the groundwork for studying the molecular mechanisms underlying adaptation of jaw structure to feeding behavior.  相似文献   

7.
Currently, microRNAs (miRNAs) are known to regulate cellular processes such as apoptosis, differentiation, cell cycle, and immune functions, and their expression can be altered by distinct stress conditions, such as oxidative stress. In immune systems of fish, vitamin E (VE) has a defined role as an antioxidant. In order to understand the molecular mechanism of vitamin E defending from oxidative stress, three groups of juvenile Nile tilapia (Oreochromis niloticus) (initial weight 3.25 ± 0.02 g) were fed to satiation with 3 semi-purified diets containing VE (dl-α-tocopherol acetate) of 0, 50, and 2500 mg/kg supplementation, respectively, with the expressions of eight miRNAs (miR-21, miR-223, miR-146a, miR-125b, miR-181a, miR-16, miR-155 and miR-122) in the liver of tilapia subsequently detected after 8-week growth experiment. Results showed that VE-deficient (0 mg/kg supplementation) decreased the activity of superoxide dismutase (SOD), and decreased the expressions of miR-223, miR-146a, miR-16 and miR-122, while excessive supplementation of VE (2500 mg/kg) decreased SOD activity and increased the expressions of all the eight miRNAs. The targets of the eight miRNAs were further predicated with bioinformatic approach and the possible regulating mechanisms of VE via miRNAs were analyzed. The present study confirmed that the differences in dietary VE affected expression of hepatic miRNAs which may partly demonstrate the molecular mechanism of VE, and the new idea of introducing miRNAs into research will provide the basic data for researches of molecular nutrition.  相似文献   

8.
This study evaluated how water temperature (26, 28, and 30°C), number of meals per day (one or two meals), and protein percent in diet (20, 25 and 30%) impact growth performance, biometric indices, and feeding behavior of Nile tilapia, Oreochromis niloticus. Fish were randomly allocated into 18 equal replicate groups. Higher final body weight was observed in fish reared at 30°C and fed one meal per day containing 30% crude protein. Better weight gain, weight gain %, feed conversion ratio, specific growth rate, and condition factor were recorded in fish reared at 26°C and fed one meal per day containing 30% protein. The best length weight relationship was obtained in fish reared at 26°C and fed one meal per day containing 30% crude protein. Shorter feeding duration and duration of appetite inhibition latency were recorded in fish reared at 30°C, fed one meal per day, and given a diet containing 30% protein. The highest proactivity was recorded in fish reared at 30°C, received one meal per day, and with 25% crude protein in their diet. Conclusively, rearing Nile tilapia at 26–30°C with a lower feeding frequency (one meal/day) and a 30% crude protein diet achieved better performance and feeding behavior.  相似文献   

9.
Chen WB  Wang X  Zhou YL  Dong HY  Lin HR  Li WS 《动物学研究》2011,32(3):285-292
该文采用RT-PCR和cDNA末端快速扩增技术(rapid-amplification of cDNA ends,RACE)的方法,从尼罗罗非鱼(Oreochromis niloticus)下丘脑总RNA中获得了尼罗罗非鱼Orexin前体基因的cDNA全长序列。该cDNA全长648bp,其中开放阅读框的长423bp,编码Orexin前体蛋白为140个氨基酸,包括37个氨基酸的信号肽、43个氨基酸的Orexin-A、28个氨基酸的Orexin-B和末尾32个氨基酸组成的功能不详的多肽。采用Real-time PCR技术对尼罗罗非鱼Orexin前体基因的组织表达模式以及在摄食前后、饥饿和再投喂状态下的表达量变化进行了研究。结果显示,在脑部和外周等18个组织中都检测到了Orexin前体基因的表达,其中在下丘脑中表达量最高;在摄食前后,尼罗罗非鱼Orexin前体基因的表达量显著低于在摄食状态中;饥饿2、4、6和8d后,Orexin前体基因在下丘脑中的表达量与正常投喂组相比均显著升高,饥饿4d再投喂后,表达量又恢复至正常水平。这些结果表明,Orexin在尼罗罗非鱼摄食中可能有着重要的调节作用。  相似文献   

10.
The mosquito Culex pipiens is the most widely distributed dipteran species in all regions of Egypt and the principal vector of Wuchereria bancrofti and certain arboviruses in human beings. For controlling C. pipiens vector, biological tools (e.g., larvivorous fish and bioinsecticides) are more potent and safer options to the environment, human beings, and beneficial organisms than chemical pesticides. The efficiency of O. niloticus juveniles as predatory fish species and two bioinsecticides, spinosad 24% and spinetoram 12%, was investigated against the C. pipiens developmental stages in the laboratory. The first trial evaluated the predatory efficacy of small-sized O. niloticus (2.1–2.6 cm; 250–315 mg) and large-sized O. niloticus (2.5–3.2 cm; 250–315 mg) against the 3rd larvae and pupae of C. pipiens. This is the first report in Egypt confirming the predation potential of O. niloticus as efficient predatory fish against the immature C. pipiens. Large-sized O. niloticus predated a greater number of 3rd of C. pipiens larvae and pupae than the small-sized ones. Furthermore, the daily consumption of C. pipiens larvae by small- and large-sized O. niloticus was significantly higher than the pupae. The second trial assessed the toxicity efficacy of spinosad 24% and spinetoram 12% against C. pipiens larvae and pupae. The results confirmed that the tested bioinsecticides showed higher potency toward C. pipiens larvae than pupae after exposure for 24 h and 48 h. Spinosad was more toxic toward 3rd C. pipiens larvae (LC50 = 0.013 and 0.003 mg/L) and pupae (LC50 = 320.69 and 44.28 mg/L) than spinetoram after 24 and 48 h. Herein, O. niloticus juveniles (as promising native predatory fish) and spinosyns bioinsecticides were more effective against C. pipiens in the larval stage than in the pupal stage. In conclusion, Nile tilapia juveniles and biorational compounds, spinosad 24% and spinetoram 12%, might be considered as promising and favorable environmental biological agents for controlling C. pipiens in Egypt. However, further trials are needed to investigate the potential of these agents in the control of this mosquito vector under field conditions.  相似文献   

11.
Social fish raised in farms are usually kept in groups of similar-sized individuals. However, social animals of similar size typically have similar fighting ability, which increases aggressive interaction for social rank establishment, as well as social stress. We compared Thai strain Nile tilapia fish, Oreochromis niloticus (L.), held under two treatments: (1) The Homogeneous one, with five adult male fish of similar size and (2) the Heterogeneous treatment with five adult males of different sizes. We recorded the frequency of aggressive interactions and checked social stability and stress levels (cortisol) after five days in the groups. Grouping similar sized Thai Nile tilapia increased the aggressive interactions and delayed rank stability with increased body injuries as a consequence. Homogeneous-sized individuals showed a similar level of stress while heterogeneous-sized individuals showed different stress levels with dominants being more stressed than subordinates. The data indicate that the practice of selecting fish of similar size in aquaculture management could reduce the welfare of social fish and that the effect is observed in different lineages.  相似文献   

12.
Four domesticated strains of Nile tilapia (Oreochromis niloticus L.) were genetically characterized using 14 microsatellite markers and 64 animals per strain. Two strains, Chitralada (AIT) and International Development Research Centers (IDRC) were obtained from the AIT institute, Bangkok, Thailand. The GIFT strain (5th generation) came from NAGRI, Thailand, and the GÖTT strain was supplied by the University of Göttingen, Germany. The average numbers of alleles per marker were 5.0 (GÖTT), 5.4 (AIT), 5.6 (IDRC) and 7.5 (GIFT). Private alleles were found at all markers with the exception of two. No fixation of alleles was found at any marker. Population differentiation, FST, was 0.178 (great genetic differentiation) and confirmed grouping of the animals in strains. The expected level of heterozygosity ranged from 0.624 to 0.711, but the observed level of heterozygosity significantly deviated from the expected level in three strains. This was probably because of small population size. Moderate to great genetic differentiation was found between strains. A phylogenetic tree reflected the strains known histories. Application of the Weitzman approach showed that all strains have added value for the total genetic diversity and thus should be retained.  相似文献   

13.
The strictly aquatic breathing Nile tilapia, Oreochromis niloticus is an extremely hypoxia-tolerant fish. To augment our understanding of the effects of hypoxia on anaerobic glycolysis in the Nile tilapia, we studied the effect of short-term for 1 day (trial 1) and long-term for 30 days (trial 2) hypoxia on a selected glycolytic enzymes activity and mRNA expression in liver and white muscle. The hypoxic oxygen concentrations used in the two trials were 2, 1, and 0.5 mg O2 L?1 for comparison with a control normoxic group 8 mg O2 L?1. The activity of phosphofructokinase (PFK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) in liver and white muscle except liver LDH decreased in trial 1 and increased in trial 2. Assessments of mRNA levels in trial 1 revealed that PFK was downregulated and LDH was upregulated in liver and white muscle, while PK fluctuated between upregulation in liver and downregulation in white muscle. Meanwhile, PK and LDH were upregulated while PFK was similar to control values in both tissues in trial 2. Comet assay results demonstrated an increase in DNA damage that was directly proportional to increasing hypoxic concentrations. This damage was more pronounced in trial 1. This suggests that the Nile tilapia cope better with long-term hypoxic conditions, possibly as an adaptive response.  相似文献   

14.
We described the developmental stages for the embryonic, larval and early juvenile periods of Nile tilapia Oreochromis niloticus to elucidate sequential events of craniofacial development. Craniofacial development of cichlids, especially differentiation and morphogenesis of the pharyngeal skeleton, progresses until about 30 days postfertilization (dpf). Because there is no comprehensive report describing the sequential processes of craniofacial development up to 30 dpf, we newly defined 32 stages using a numbered staging system. For embryonic development, we defined 18 stages (stages 1-18), which were grouped into seven periods named the zygote, cleavage, blastula, gastrula, segmentation, pharyngula and hatching periods. For larval development, we defined seven stages (stages 19-25), which were grouped into two periods, early larval and late larval. For juvenile development until 30 dpf, we defined seven stages (stages 26-32) in the early juvenile period. This developmental staging system for Nile tilapia O. niloticus will benefit researchers investigating skeletogenesis throughout tilapia ontogeny and will also facilitate comparative evolutionary developmental biology studies of haplochromine cichlids, which comprise the species flocks of Lakes Malawi and Victoria.  相似文献   

15.
Behavioral rhythms of the Nile tilapia were investigated to better characterize its circadian system. To do so, the locomotor activity patterns of both male and female tilapia reared under a 12:12 h light-dark (LD) cycle were studied, as well as in males the existence of endogenous rhythmicity under free-running conditions (DD and 45 min LD pulses). When exposed to an LD cycle, the daily pattern of activity differed between individuals: some fish were diurnal, some nocturnal, and a few displayed an arrhythmic pattern. This variability would be typical of the plastic circadian system of fish. Moreover, reproductive events clearly affected the behavioral rhythms of female tilapia, a mouth-brooder teleost species. Under DD, 50% (6 of 12) of male fish showed circadian rhythms with an average period (τ) of 24.1±0.2 h, whereas under the 45 min LD pulses, 58% (7 of 12) of the fish exhibited free-running activity rhythms with an average τ of 23.9±0.5 h. However, interestingly in this case, activity was always confined to the dark phase. Furthermore, when the LD cycle was reversed, a third of the fish showed gradual resynchronization to the new phase, taking 7–10 days to be completely re-entrained. Taken together, these results suggest the existence of an endogenous circadian oscillator that controls the expression of locomotor activity rhythms in the Nile tilapia, although its anatomical localization remains unknown.  相似文献   

16.
The present study investigated the effects of lead (Pb) and ascorbic acid (AA) on Nile tilapia Oreochromis niloticus using the micronucleus (MN) and nuclear abnormality (NA) tests for periods of 7, 14 and 21 days. The MN frequencies in the erythrocytes, gill, liver and fin cells were analysed comparatively to evaluate the sensitivity and suitability of these different cell types. The NA shapes in erythrocytes were scored into blebbed nuclei (BL), lobed nuclei (LB), notched nuclei (NT) and binuclei (BN). It was observed that fish showed significant sensitivity to the different treatments. In general, the highest value of both MN and NA cells were significantly increased in the Pb-treated group followed by the combination of the Pb and AA-treated group. On the other hand, the MN and NA frequencies in erythrocytes were the most sensitive to the treatment and could provide more valuable information than those in gill, liver and fin cells. The frequencies of each NA shape in erythrocytes of all treatments were observed in the following ranked order NT > LB > BN > BL. The results demonstrated the efficacy of AA in reducing genotoxicity in fish induced by Pb. They showed the sensitivity and suitability of MN and NA frequencies in erythrocytes as pollution biomarkers.  相似文献   

17.
In vertebrates, the neuropeptide Y (NPY) family peptides have been recognized as key players in food intake regulation. NPY centrally promotes feeding, while peptide YY (PYY) and pancreatic polypeptide (PP) mediate satiety. The teleost tetraploidization is well-known to generate duplicates of both NPY and PYY; however, the functional diversification between the duplicate genes, especially in the regulation of food intake, remains unknown. In this study, we identified the two duplicates of NPY and PYY in Nile tilapia (Oreochromis niloticus). Both NPYa and NPYb were primarily expressed in the central nervous system (CNS), but the mRNA levels of NPYb were markedly lower than those of NPYa. Hypothalamic mRNA expression of NPYa, but not NPYb, decreased after feeding and increased after 7-days of fasting. However, both NPYa and NPYb caused a significant increase in food intake after an intracranial injection of 50 ng/g body weight dose. PYYb, one of the duplicates of PYY, had an extremely high expression in the foregut and midgut, whereas another form of duplicate PYYa showed only moderate expression in the CNS. Both hypothalamic PYYa and foregut PYYb mRNA expression increased after feeding and decreased after 7-days of fasting. Furthermore, the intracranial injection of PYYb decreased food intake, but PYYa had no significant effect. Our results suggested that although the mature peptides of NPYa and NPYb can both stimulate food intake, NPYa is the main endogenous functional NPY for feeding regulation. A functional division has been identified in the duplicates of PYY, which deems PYYb as a gut-derived anorexigenic peptide and PYYa as a CNS-specific PYY in Nile tilapia.  相似文献   

18.
Juvenile Nile tilapia (Oreochromis niloticus) are omnivorous, and the question asked in this study is how they affect on their environment? Do they mainly act as predators on the cladoceran zooplankton or do they compete with the cladocerans for phytoplankton? This problem was studied in three ponds with and three ponds without small tilapia (3–5 cm). The fish growth rate, the succession of plankton species and the changes in abiotic conditions, were monitored over a period of 67 days. The fish biomass was kept low and the mean was approximately constant (12.6 g m?2) during the experiment. Phosphate was added to avoid phytoplankton nutrient limitation. Although the diet of Nile tilapia contained both phytoplankton and zooplankton, the fish affected the ecosystem in a similar way as zooplanktivorous fish. The fish ponds got more phytoplankton due to increase of Chlorophyta. Effects on the other phytoplankton groups Euglenophyta, Bacillariophyta, Cryptophyta and Cyanophyta could not be registered. The ponds without fish had higher densities of Daphnia lumholtzi and D. barbata. The other Cladocerans seemed less influenced by fish presence. The relative fish growth rate was most positively correlated with the density of Daphnia lumholtzi, Diaphanosmoa excisum and Bosmina longirostris. Tilapia seemes to have two feeding modes: (1) preying on large zooplankton and (2) unselective filtration of small planktonic organisms such as phytoplankton. In our experiment the first feeding mode affected the ecosystem more than the second.  相似文献   

19.
A Foxl2 cDNA was cloned from the Nile tilapia ovary by RT-PCR and subsequent RACE. Alignment of known Foxl2 sequences from vertebrates confirmed the conservation of the Foxl2 open reading frame and protein sequences, especially the forkhead domain and C-terminal region, while some homopolymeric runs of amino acids are found only in mammals but not in non-mammalian vertebrates. RT-PCR revealed that Foxl2 is expressed in the tilapia brain (B), pituitary (P), gill, and gonads (G), with the highest level of expression in the ovary, reflecting the involvement of Foxl2 in B-P-G axis. Northern blotting and in situ hybridization also revealed an evident sexual dimorphic expression pattern in the gonads. Foxl2 mRNA was mainly detected in the granulosa cells surrounding the oocytes. The ovarian expression of Foxl2 in tilapia begins early during the differentiation of the gonads and persists until adulthood, implying the involvement of Foxl2 in fish gonad differentiation and the maintenance of ovarian function.  相似文献   

20.
Bisphenol A (BPA) is one of the industrial chemical compound which is used in the production of polycarbonate plastics and epoxy resins. BPA is used throughout the world and it could enter the aquatic ecosystems causing serious problems. To evaluate the potential effects of BPA toxicity on Nile tilapia, Oreochromis niloticus (L.) performance, its lethal concentration (LC50) was determined and it was 13.13 µg/L. After that, fish (33.9 ± 0.55 g/fish) were exposed to 0.0, 1.64, or 3.28 µg/L of BPA for 6 weeks after which growth performance, biochemical variables, and oxidative defense system were assessed. The results showed that fish growth and feed intake were significantly reduced as BPA levels increased with no significant difference in fish survival. Total protein, albumin, globulin, and acetylcholine esterase decreased significantly; meanwhile, aspartate transferase, alanine transferase, alkaline phosphatase, uric acid, and creatinine increased significantly with exposure to BPA in a dose dependent manner. Furthermore, malondialdehyde value and the activities of superoxide dismutase and catalase increased significantly; while glutathione peroxidase and glutathione S‐transferase decreased significantly as BPA levels increased. In conclusion, BPA exposure in aquatic environment deteriorated fish performance and health causing liver and kidney dysfunction. Thus, fish exerted oxidative defense enzymes as a protection tool against BPA toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号