首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several studies suggest that exercise is associated with elevated oxidative stress which diminishes NO bioavailability. The aim of the present study was to investigate a potential link between NO synthesis and bioavailability and oxidative stress in the circulation of subjects performing high-intensive endurance exercise. Twenty-two male healthy subjects cycled at 80% of their maximal workload. Cubital venous blood was taken before, during and after exercise, and heparinized plasma was generated. Plasma concentrations of nitrite and nitrate were quantified by GC–MS and of the oxidative stress biomarker 15(S)-8-iso-PGF by GC–MS/MS. pH and pCO2 fell and HbO2 increased upon exercise. The duration of the 80% phase (d80) was 740 ± 210 s. Subjects cycled at 89.2 ± 3.3% of their peak oxygen uptake. Plasma concentration of nitrite (P < 0.01) and 15(S)-8-iso-PGF (P < 0.05) decreased significantly during exercise. At the end of exercise, plasma nitrite concentration correlated positively with d80 and performed work (w80) (each P < 0.05). Changes in nitrate concentration also correlated positively with d80 (P < 0.05) and w80/kg (P < 0.01). These findings provide evidence of a favorable effect of nitrite on high-intensive endurance exercise. The lack of association between 15(S)-8-iso-PGF and NO bioavailability (nitrite concentration) and NO biosynthesis (nitrate concentration) suggest that oxidative stress, notably lipid peroxidation, is not linked to the l-arginine/NO pathway in healthy male subjects being on endurance exercise.  相似文献   

2.
After intense physical activity animals generally experience a rise in metabolic rate, which is associated with a proliferation of pro-oxidants. If unchecked, these pro-oxidants can cause damage to DNA and peroxidation of lipids in cell walls. Two factors are thought to ameliorate post-exercise oxidative damage, at least in mammals: dietary antioxidants and exercise training. So far it is unknown whether birds benefit similarly from exercise training, although a positive effect of dietary antioxidants on take-off flight has been indicated. In this experiment, we maintained captive wildtype budgerigars Melopsittacus undulatus on enhanced (EQ) or reduced quality (RQ) diets differing in levels of the dietary antioxidants retinol, vitamin C and α-tocopherol for 12 months. Birds were then regularly trained to perform take-off escape flights, a strenuous and biologically relevant form of exercise. For these adult budgerigars, regular exercise training improved escape flight performance, particularly in males on the EQ diet. In terms of oxidative damage, post-exercise levels of malondialdehyde (MDA), a by-product of lipid peroxidation, were significantly decreased after 9 weeks of flight training than after a single exercise session. Thus, individuals achieved faster escape flights with lower oxidative damage, after training. Also, birds that were fatter for their skeletal size initially had higher post-exercise MDA levels than thinner birds, but this relationship was broken by 9 weeks of flight training. Interestingly, there was no impact of diet quality on levels of MDA, suggesting that improved protection against oxidative damage for all birds was due to an up-regulation of endogenous antioxidant systems. Given their diversity, bird species provide rich research opportunities for investigating the interactions between exercise training, pro-oxidants production and antioxidant defences.  相似文献   

3.
The aim of the present study was to test the hypothesis that the sweating during graded exercise until exhaustion in a temperate environment would be greater after heat acclimation. Six healthy young males performed an exercise–heat stress acclimation protocol during 9 days. Before (PRE) and after (POS) the acclimation protocol they performed a graded exercise until exhaustion and the sweat loss during exercise increased after acclimation (3.94±1.10, PRE, and 4.86±1.70 g m−2 min−1, POS; p<0.05). The results showed that daily prolonged exposures to exercise-heat stress increased sweating during a graded and short duration exercise in a temperate environment.  相似文献   

4.
Heat acclimation over consecutive days has been shown to improve aerobic-based performance. Recently, it has been suggested that heat training can improve performance in a temperate environment. However, due to the multifactorial training demands of athletes, consecutive-day heat training may not be suitable. The current study aimed to investigate the effect of brief (8×30 min) intermittent (every 3–4 days) supplemental heat training on the second lactate threshold point (LT2) in temperate and hot conditions. 21 participants undertook eight intermittent-day mixed-intensity treadmill exercise training sessions in hot (30 °C; 50% relative humidity [RH]) or temperate (18 °C; 30% RH) conditions. A pre- and post-incremental exercise test occurred in temperate (18 °C; 30% RH) and hot conditions (30 °C; 50% RH) to determine the change in LT2. The heat training protocol did not improve LT2 in temperate (Effect Size [ES]±90 confidence interval=0.10±0.16) or hot (ES=0.26±0.26) conditions. The primary finding was that although the intervention group had a change greater than the SWC, no statistically significant improvements were observed following an intermittent eight day supplemental heat training protocol comparable to a control group training only in temperate conditions. This is likely due to the brief length of each heat training session and/or the long duration between each heat exposure.  相似文献   

5.
This study analyzed the variation and relationship of several trace elements, metabolic substrates and stress hormones activated by exercise during incremental exercise. Seventeen well-trained endurance athletes performed a cycle ergometer test: after a warm-up of 10 min at 2.0 W kg−1, the workload was increased by 0.5 W kg−1 every 10 min until exhaustion. Prior diet, activity patterns, and levels of exercise training were controlled, and tests timed to minimize variations due to the circadian rhythm. Oxygen uptake, blood lactate concentration, plasma ions (Zn, Se, Mn and Co), serum glucose, non-esterified fatty acids (NEFAs) and several hormones were measured at rest, at the end of each stage and 3, 5 and 7 min post-exercise. Urine specific gravity was measured before and after the test, and participants drank water ad libitum.Significant differences were found in plasma Zn and Se levels as a function of exercise intensity. Zn was significantly correlated with epinephrine, norepinephrine and cortisol (r = 0.884, P < 0.01; r = 0.871, P < 0.01; and r = 0.808, P = 0.05); and Se showed significant positive correlations whit epinephrine and cortisol (r = 0.743, P < 0.05; and r = 0.776, P < 0.05). Neither Zn nor Se levels were associated with insulin or glucagon, and neither Mn nor Co levels were associated with any of the hormones or substrate metabolites studied. Further, while Zn levels were found to be associated only with lactate, plasma Se was significantly correlated with lactate and glucose (respectively for Zn: r = 0.891, P < 0.01; and for Se: r = 0.743, P < 0.05; r = 0.831, P < 0.05).In conclusion, our data suggest that there is a positive correlation between the increases in plasma Zn or Se and stress hormones variations induced by exercise along different submaximal intensities in well-hydrated well-trained endurance athletes.  相似文献   

6.
Due to the important interactions of proenkephalin fragments (e.g., proenkephalin [107–140] Peptide F) to enhance activation of immune cells and potentially combat pain associated with exercise-induced muscle tissue damage, we examined the differential plasma responses of Peptide F to different exercise training programs. Participants were tested pre-training (T1), and after 8 weeks (T2) of training. Fifty-nine healthy women were matched and then randomly assigned to one of four groups: heavy resistance strength training (STR, n = 18), high intensity endurance training (END, n = 14), combined strength and endurance training (CMB, n = 17), or control (CON, n = 10). Blood was collected using a cannula inserted into a superficial vein in the antecubital fossa with samples collected at rest and immediately after an acute bout of 6 X 10 RM in a squat resistance exercise before training and after training. Prior to any training, no significant differences were observed for any of the groups before or after acute exercise. With training, significant (P  0.95) elevations were observed with acute exercise in each of the exercise training groups and this effect was significantly greater in the CMB group. These data indicate that in untrained women exercise training will not change resting of plasma Peptide F concentrations unless both forms of exercise are performed but will result in significant increases in the immediate post-exercise responses. Such findings appear to indicate adrenal medullary adaptations opioid production significantly altered with exercise training.  相似文献   

7.
The purpose of this study was to assess the effect of relative exercise intensity on various plasma trace elements in euhydrated endurance athletes.Twenty-seven well-trained endurance athletes performed a cycloergometer test: after a warm-up of 10 min at 2.0 W kg−1, workload increased by 0.5 W kg−1 every 10 min until exhaustion. Oxygen uptake, blood lactate concentration ([La]b), and plasma ions (Zn, Se, Mn and Co) were measured at rest, at the end of each stage, and 3, 5 and 7 min post-exercise. Urine specific gravity (USG) was measured before and after the test, and subjects drank water ad libitum. Fat oxidation (FATOXR), carbohydrate oxidation (CHOOXR), energy expenditure from fat (EEFAT), from carbohydrates (EECHO) and total EE (EET) were estimated using stoichiometric equations. A repeated measure (ANOVA) was used to compare plasma ion levels at each exercise intensity level. The significance level was set at P < 0.05.No significant differences were found in USG between, before, and after the test (1.014 ± 0.004 vs. 1.014 ± 0.004 g cm−3) or in any plasma ion level as a function of intensity. There were weak significant correlations of Zn (r = 0.332, P < 0.001) and Se (r = 0.242, P < 0.01) with [La]b, but no relationships were established between [La]b, VO2, FATOXR, CHOOXR, EEFAT, EECHO, or EET and plasma ion levels.Acute exercise at different submaximal intensities in euhydrated well-trained endurance athletes does not provoke a change in plasma trace element levels, suggesting that plasma volume plays an important role in the homeostasis of these elements during exercise.  相似文献   

8.
We aimed to determine the oxidative stress and antioxidant status in preeclamptic placenta. Also, we investigated the apoptotic index of villous trophoblast and proliferation index of cytotrophoblasts. The study included 32 pregnant with preeclampsia and 31 normotensive healthy pregnant women. Malondialdehyde (MDA) and total antioxidant status (TAS) levels were measured in the placenta. For detection of apoptosis and proliferation in trophoblast, apoptosis protease activating factor 1 (APAF-1) and Ki-67 were used. Placental MDA levels in preeclamptic women were significantly higher than normal pregnancies (p = 0.002). There was no significant difference between the groups in the TAS levels of placenta (p = 0.773). Also, the apoptotic index in villous trophoblasts increased (p < 0.001), but proliferation index did not change in preeclampsia (p = 0.850). Increased oxidative stress and apoptosis in pathological placenta are not balanced by antioxidant systems and proliferation mechanisms.  相似文献   

9.
Background: There is a growing body of evidence that physical training exerts its potential benefits on the individual health status by modulating the immune system and the whole body metabolism. A better knowledge of the physiologic immune response to exercise may help to understand the benefits of physical exercise in healthy individuals and elite athletes. Aims: This study aims to analyse cardiotrophin-1 (CT-1) and Tumor Necrosis Factor-α (TNF-α) plasma levels at rest and during exercise in elite athletes and healthy controls. Methods: We studied 20 triathletes (TA) and 20 matched controls (CG). Chambers dimensions, left ventricular mass and left ventricular mass index were analysed by echocardiography. VO2 peak and VE/VCO2 were calculated by metabolic stress test. Blood samples were collected before the exercise session, at the exercise peak, and after the end of exercise. ELISA assays were used to measure CT-1 and TNF-α plasma levels. Results:Among TA and CG, no significant differences were found for CT-1 (0.25 ± 0.14 vs 0.20 ± 0.14 fm/l; p = 0.29) and TNF-α (10.8 ± 2.7 vs 9.7 ± 4.0 pm/l; p = 0.29) basal levels. In the TA, plasma levels of CT-1 were significantly different at rest and during exercise (basal 0.25 ± 0.13 pm/l; peak 1.07 ± 1.5 pm/l; post-exercise 0.67 ± 0.77 pm/l; p = 0.04). Conversely, no significant differences were found between basal, peak and post-exercise plasma values of TNF-α (basal 10.8 ± 2.7 pm/l; peak 11.7 ± 2.1 pm/l; post-exercise 11.4 ± 2.5 pm/l; p = 0.78) in TA. Conclusions: This study gives novel insights on the behavior of inflammatory cytokines during physical exercise in athletes and healthy individuals.  相似文献   

10.
Arsenic, the environmental toxicant causes oxidative damage to liver and produces hepatic fibrosis. The theme of our study was to evaluate the therapeutic efficacy of liposomal and nanocapsulated herbal polyphenolic antioxidant Quercetin (QC) in combating arsenic induced hepatic oxidative stress, fibrosis associated upregulation of its gene expression and plasma TGF ß (transforming growth factor ß) in rat model.A single dose of Arsenic (sodium arsenite-NaAsO2, 13 mg/kg b.wt) in oral route causes the generation of reactive oxygen species (ROS), arsenic accumulation in liver, hepatotoxicity and decrease in hepatic plasma membrane microviscosity and antioxidant enzyme levels in liver. Arsenic causes fibrosis associated elevation of its gene expression in liver, plasma TGF ß (from normal value 75.2 ± 8.67 ng/ml to 196.2 ± 12.07 ng/ml) and release of cytochrome c in cytoplasm. Among the two vesicular delivery systems formulated with QC, polylactide nanocapsules showed a promising result compared to liposomal delivery system in controlling arsenic induced alteration of those parameters. A single dose of 0.5 ml of nanocapsulated QC suspension (QC 2.71 mg/kg b.wt) when injected to rats 1 h after arsenic administration orally protects liver from arsenic induced deterioration of antioxidant levels as well as oxidative stress associated gene expression of liver. Histopathological examination also confirmed the pathological improvement in liver. Nanocapsulated plant origin flavonoidal compound may be a potent formulation in combating arsenic induced upregulation of gene expression of liver fibrosis through a complete protection against oxidative attack in hepatic cells of rat liver.  相似文献   

11.
Aldosterone and cortisol are useful biomarkers of dehydration and stress, respectively. The aim of this study was to develop an HPLC–tandem mass spectrometric method for the simultaneous measurement of aldosterone and cortisol in human plasma that could be applied to the study of athletes undergoing exercise and rehydration. Samples were prepared and analysed using an on-line sample preparation/HPLC system coupled to a triple quadrupole tandem-mass spectrometer. Samples (200 μL) were pre-treated and extracted on Hysphere C18 HD cartridges (7 μm, Spark Holland). Chromatography was performed on a Sunfire C18 analytical column (50 mm × 3.0 mm, 3 μm, Waters) under isocratic conditions at a flow rate of 0.3 mL/min. The mobile phase consisted of 35% acetonitrile/water. Mass spectrometric detection was by selected reaction monitoring using negative electrospray ionization conditions. The assay had an analytical range of 25–500 pg/mL and 25–500 ng/mL for aldosterone and cortisol, respectively (r2 > 0.992, n = 22). Inter-day accuracy and imprecision for quality control samples was 99.4–106% and <16%, respectively (n = 10). In a study of nine human subjects, both aldosterone and cortisol concentrations reflected the expected physiological responses to dehydration, rehydration and exercise when measured by this method. The reported method is suitable to facilitate the study of athletes undergoing dehydration and rehydration protocols.  相似文献   

12.
A series of novel hybrids has been synthesized by linking coumarin moiety through an appropriate spacer to various substituted heterocyclic amines and evaluated as dual binding site acetylcholinesterase inhibitors for the treatment of cognitive dysfunction caused by increased hydrolysis of acetylcholine and scopolamine induced oxidative stress. Anti-amnesic activity of the compounds was evaluated using Morris water maze model at a dose of 1 mg/kg with reference to the standard, donepezil. Biochemical estimation of oxidative stress markers (lipid peroxidation, superoxide dismutase, and plasma nitrite) was carried out to assess the antioxidant potential of the synthesized molecules. Among all the synthesized compounds (15ai, 16ad, 17ab), compound 15a [4-[3-(4-phenylpiperazin-1-yl)propoxy]-2H-chromen-2-one] displayed significant antiamnesic activity, AChE inhibitory activity (IC50 = 2.42 μM) and antioxidant activity in comparison to donepezil (IC50 = 1.82 μM). Molecular docking study of 15a indicated that it interacts with all the crucial amino acids present at the CAS, mid-gorge and PAS of TcAChE resulting in increased inhibition of AChE enzyme.  相似文献   

13.
《Process Biochemistry》2014,49(2):195-202
The antioxidant response system of Phanerochaete chrysosporium against menadione-induced oxidative stress was investigated in this study. The superoxide anion radical levels in tested menadione-supplemented conditions generally decreased over the incubation period. The level of hydrogen peroxide and the activities of NAD(P)H oxidase, superoxide dismutase (SOD) and catalase (CAT) were higher than those in the controls at all incubation times. The highest NADH and NADPH oxidase activities were determined to be 4.9- and 5.0-fold higher than those in the control, respectively in cells exposed to 0.75 mM menadione. The SOD and CAT activities increased with increasing menadione, and their highest activities were 5.4- and 5.1-fold higher than those in the control, respectively. In 0.1–0.5 mM menadione exposed cells, the lipid peroxidation levels did not change significantly when compared to each other, except 8th hour of incubation (p > 0.01). Our result shows that although menadione induces the formation of reactive oxygen species, the antioxidant response system of P. Chrysosporium is able to negate menadione-induced oxidative stress up to relatively high menadione concentrations, as 0.75 mM. These results are important to determine the effects of menadione, as a medicine, on the antioxidant response system of eukaryotic models and the resulting level of damage.  相似文献   

14.
In pathological conditions, the balance between reactive oxygen species (ROS) and antioxidants may shift toward a relative increase of ROS, resulting in oxidative stress. Conflicting data are available on antioxidant defenses in human failing heart and they are limited to the left ventricle. Thus, we aimed to investigate and compare the source of oxidant and antioxidant enzyme activities in the right (RV) and left (LV) ventricles of human failing hearts. We found a significant increase in superoxide production only by NADPH oxidase in both failing ventricles, more marked in RV. Despite unchanged mRNA or protein expression, catalase (CAT) and glutathione peroxidase (GPx) activities were increased, and their increases reflected the levels of Tyr phosphorylation of the respective enzyme. Manganese superoxide dismutase (Mn-SOD) activity appeared unchanged. The increase in NADPH oxidase-dependent superoxide production positively correlated with the activation of both CAT and GPx. However, the slope of the linear correlation (m) was steeper in LV than in RV for GPx (LV: m = 2.416; RV: m = 1.485) and CAT (LV: m = 1.007; RV: m = 0.354). Accordingly, malondialdehyde levels, an indirect index of oxidative stress, were significantly higher in the RV than LV. We conclude that in human failing RV and LV, oxidative stress is associated with activation of antioxidant enzyme activity. This activation is likely due to post-translational modifications and more evident in LV. Overall, these findings suggest a reduced protection of RV against oxidative stress and its potential contribution to the progression toward overt heart failure.  相似文献   

15.
In this study an experiment was carried out to study the process of stress adaptation in Groenlandia densa (opposite-leaved pondweed) grown under cadmium stress (0–20 mg L?1 Cd). The results showed that Cd concentrations in plants increased with increasing Cd supply levels and reached a maximum of 0.43 mg kg?1 DW at 0.5 mg L?1 Cd concentrations. The level of photosynthetic pigments and soluble proteins decreased only upon exposure to high Cd concentrations. At the same time, the level of malondialdehyde (MDA) increased with increasing Cd concentration. These results suggested an alleviation of stress that was presumably the result of by antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione S-transferase (GST) as well as ascorbate peroxidase (APX), which increased linearly with increasing Cd levels. Cellular antioxidants levels showed a decline suggesting a defensive mechanism to protect against oxidative stress caused by Cd. In addition, the proline content in G. densa increased with increasing cadmium levels. These findings suggest that G. densa is equipped with an efficient antioxidant mechanism against Cd-induced oxidative stress which protects the plant's photosynthetic machinery from damage.Our present work concluded that G. densa has a high level of Cd tolerance and accumulation. We also found that moderate Cd treatment (0.05–5 mg L?1 Cd) alleviated oxidative stress in plants, while the addition of higher amounts of Cd (10–20 mg L?1) could cause an increasing generation of ROS, which was effectively scavenged by the antioxidative system.  相似文献   

16.
Freeze tolerant insects must not only survive extracellular ice formation but also the generation of reactive oxygen species (ROS) during oxygen reperfusion upon thawing. Furthermore, diurnal fluctuations in temperature place temperate insects at risk of being exposed to multiple freeze–thaw cycles, yet few studies have examined metrics of survival and oxidative stress in freeze-tolerant insects subjected to successive freezing events. To address this, we assessed survival in larvae of the goldenrod gall fly Eurosta solidaginis, after being subjected to 0, 5, 10, 20, or 30 diurnally repeated cold exposures (RCE) to −18 °C or a single freeze to −18 °C for 20 days. In addition, we measured indicators of oxidative stress, levels of cryoprotectants, and total aqueous antioxidant capacity in animals exposed to the above treatments at 8, 32, or 80 h after their final thaw. Repeated freezing and thawing, rather than time spent frozen, reduced survival as only 30% of larvae subjected to 20 or 30 RCE successfully pupated, compared to those subjected to fewer RCE or a single 20 d freeze, of which 82% pupated. RCE had little effect on the concentration of the cryoprotectant glycerol (4.26 ± 0.66 μg glycerol·ng protein−1 for all treatments and time points) or sorbitol (18.8 ± 2.9 μg sorbitol·mg protein−1 for all treatments and time points); however, sorbitol concentrations were more than twofold higher than controls (16.3 ± 2.2 μg sorbitol·mg protein−1) initially after a thaw in larvae subjected to a single extended freeze, but levels returned to values similar to controls at 80 h after thaw. Thawing likely produced ROS as total aqueous antioxidant capacities peaked at 1.8-fold higher than controls (14.7 ± 1.6 mmol trolox·ng protein−1) in animals exposed to 5, 10, or 20 RCE. By contrast, aqueous antioxidant capacities were similar to controls in larvae subjected to 30 RCE or the single 20 d freeze regardless of time post final thaw, indicating these animals may have had an impaired ability to produce primary antioxidants. Larvae lacking an antioxidant response also had elevated levels of oxidized proteins, nearly twice that of controls (21.8 ± 3.2 mmol chloramine-T·mg protein−1). Repeated freezing also lead to substantial oxidative damage to lipids that was independent of aqueous antioxidant capacity; peroxides were, on average, 5.6-fold higher in larvae subjected to 10, 20 or 30 RCE compared to controls (29.1 ± 7.3 mmol TMOP·μg protein−1). These data suggest that oxidative stress due to repeated freeze–thaw cycles reduces the capacity of E. solidaginis larvae to survive freezing.  相似文献   

17.
《Cytokine》2015,72(2):397-400
IL-6 plays a mechanistic role in conditions such as metabolic syndrome, chronic fatigue syndrome and clinical depression and also plays a major role in inflammatory and immune responses to exercise. The purpose of this study was to investigate the levels of resting and post exercise IL-6 when measured in venous plasma, saliva and capillary plasma. Five male and five females completed 2 separate exercise trials, both of which involved standardized exercise sessions on a cycle ergometer. Venous blood and saliva samples were taken immediately before and after Trial A, venous and capillary blood samples were taken immediately before and after Trial B. IL-6 values were obtained using a high-sensitivity enzyme-linked immunosorbent assay (ELISA). In Trial A venous plasma IL-6 increased significantly from 0.4 ± 0.14 pg/ml to 0.99 ± 0.29 pg/ml (P < 0.01) while there was no increase in salivary IL-6. Venous plasma and salivary IL-6 responses were not correlated at rest, post exercise or when expressed as an exercise induced change. In Trial B venous and capillary plasma IL-6 increased significantly (venous: 0.22 ± 0.18 to 0.74 ± 0.28 pg/ml (P  0.01); capillary: 0.37 ± 0.22 to 1.08 ± 0.30 pg/ml (P < 0.01). Venous and capillary plasma responses did not correlate at rest (r = 0.59, P = 0.07) but did correlate post exercise (r = 0.79, P  0.001) and when expressed as an exercise induced change (r = 0.71, P = 0.02). Saliva does not appear to reflect systemic IL-6 responses, either at rest or in response to exercise. Conversely, capillary plasma responses are reflective of systemic IL-6 responses to exercise.  相似文献   

18.
Dipeptidyl peptidase-4 (DPP-4) is a circulating glycoprotein that impairs insulin-stimulated glucose uptake and is linked to obesity and metabolic syndrome. However, the effect of exercise on plasma DPP-4 in adults with metabolic syndrome is unknown. Therefore, we determined the effect of exercise on DPP-4 and its role in explaining exercise-induced improvements in insulin sensitivity. Fourteen obese adults (67.9 ± 1.2 years, BMI: 34.2 ± 1.1 kg/m2) with metabolic syndrome (ATP III criteria) underwent a 12-week supervised exercise intervention (60 min/day for 5 days/week at ∼85% HRmax). Plasma DPP-4 was analyzed using an enzyme-linked immunosorbent assay. Insulin sensitivity was measured using the euglycemic-hyperinsulinemic clamp (40 mU/m2/min) and estimated by HOMA-IR. Visceral fat (computerized tomography), 2-h glucose levels (75 g oral glucose tolerance), and basal fat oxidation as well as aerobic fitness (indirect calorimetry) were also determined before and after exercise. The intervention reduced visceral fat, lowered blood pressure, glucose and lipids, and increased aerobic fitness (P < 0.05). Exercise improved clamp-derived insulin sensitivity by 75% (P < 0.001) and decreased HOMA-IR by 15% (P < 0.05). Training decreased plasma DPP-4 by 10% (421.8 ± 30.1 vs. 378.3 ± 32.5 ng/ml; P < 0.04), and the decrease in DPP-4 was associated with clamp-derived insulin sensitivity (r = −0.59; P < 0.04), HOMA-IR (r = 0.59; P < 0.04) and fat oxidation (r = −0.54; P < 0.05). Increased fat oxidation also correlated with lower 2-h glucose levels (r = −0.64; P < 0.02). Exercise training reduces plasma DPP-4, which may be linked to elevated insulin sensitivity and fat oxidation. Maintaining low plasma DPP-4 concentrations is a potential mechanism whereby exercise plus weight loss prevents/delays the onset of type 2 diabetes in adults with metabolic syndrome.  相似文献   

19.
Temperature is one of the most important environmental factors, and is responsible for a variety of physiological stress responses in organisms. Induced thermal stress is associated with elevated reactive oxygen species (ROS) generation leading to oxidative damage. The ladybeetle, Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae), is considered a successful natural enemy because of its tolerance to high temperatures in arid and semi-arid areas in China. In this study, we investigated the effect of high temperatures (35, 37, 39, 41 and 43 °C) on the survival and activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidases (POD), glutathione-S-transferases (GST), and total antioxidant capacity (TAC) as well as malondialdehyde (MDA) concentrations in P. japonica adults. The results indicated that P. japonica adults could not survive at 43 °C. CAT, GST and TAC were significantly increased when compared to the control (25 °C), and this played an important role in the process of antioxidant response to thermal stress. SOD and POD activity, as well as MDA, did not differ significantly at 35 and 37 °C compared to the control; however, there were increased levels of SOD, POD and MDA when the temperature was above 37 °C. These results suggest that thermal stress leads to oxidative stress and antioxidant enzymes play important roles in reducing oxidative damage in P. japonica adults. This study represents the first comprehensive report on the antioxidant defense system in predaceous coccinellids (the third trophic level). The findings provide useful information for predicting population dynamics and understanding the potential for P. japonica as a natural enemy to control pest insects under varied environmental conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号