首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A taste bud is a sensory organ and consists of 50-100 spindle-shaped cells. The cells function as taste acceptors. They have characteristics of both epithelial and neuronal cells. A taste bud contains four types of cells, type I, type II, type III cells, and basal cells. Taste buds were isolated from a tongue of a p53-deficient mouse at day 12, and 11 clonal taste bud (TBD) cell lines were established. In immunochemical analysis, all cell lines expressed cytokeratin 18, gustducin, T1R3, and neural cellular adhesion molecule, but not GLAST. In RT-PCR analysis, shh was not expressed in any of the cell lines. Further analysis with RT-PCR was conducted on four cell lines. They expressed G protein-coupled taste receptors; T1R3, T2R8 for sweet, bitter, umami. And they also expressed α-ENaC for salty taste. While, a candidate for sour receptor HCN4 was expressed in TBD-a1 and TBD-a7 lines. And another candidate for sour receptor PKD1L3 was slightly expressed in TBD-a1 and TBD-c1.  相似文献   

3.
4.
5.
D2 ions produced in collisions of D ions with relative energies of 2.5–9.2 eV were detected for the first time. It is shown that the effective cross section for this reaction is no less than 1.5 × 10−14 cm2. Along with the theoretically predicted short-lived state of negative molecular deuterium ions, a state existing for more than 1 μs was observed.  相似文献   

6.
The ability of an ecosystem to retain anthropogenic nitrogen (N) deposition is dependent upon plant and soil sinks for N, the strengths of which may be altered by chronic atmospheric N deposition. Sugar maple (Acer saccharum Marsh.), the dominant overstory tree in northern hardwood forests of the Lake States region, has a limited capacity to take up and assimilate NO3. However, it is uncertain whether long-term exposure to NO3 deposition might induce NO3 uptake by this ecologically important overstory tree. Here, we investigate whether 10 years of experimental NO3deposition (30 kg N ha−1 y−1) could induce NO3 uptake and assimilation in overstory sugar maple (approximately 90 years old), which would enable this species to function as a direct sink for atmospheric NO3 deposition. Kinetic parameters for NH4+ and NO3 uptake in fine roots, as well as leaf and root NO3 reductase activity, were measured under conditions of ambient and experimental NO3 deposition in four sugar maple-dominated stands spanning the geographic distribution of northern hardwood forests in the Upper Lake States. Chronic NO3 deposition did not alter the V max or K m for NO3 and NH4+ uptake nor did it influence NO3 reductase activity in leaves and fine roots. Moreover, the mean V max for NH4+ uptake (5.15 μmol 15N g−1 h−1) was eight times greater than the V max for NO3 uptake (0.63 μmol 15N g−1 h−1), indicating a much greater physiological capacity for NH4+ uptake in this species. Additionally, NO3 reductase activity was lower than most values for woody plants previously reported in the literature, further indicating a low physiological potential for NO3 assimilation in sugar maple. Our results demonstrate that chronic NO3 deposition has not induced the physiological capacity for NO3 uptake and assimilation by sugar maple, making this dominant species an unlikely direct sink for anthropogenic NO3 deposition.  相似文献   

7.
A confined aquifer in the Malm Karst of the Franconian Alb, South Germany was investigated in order to understand the role of the vadose zone in denitrifiaction processes. The concentrations of chemical tracers Sr2+ and Cl and concentrations of stable isotope 18O were measured in spring water and precipitation during storm events. Based on these measurements a conceptual model for runoff was constructed. The results indicate that pre-event water, already stored in the system at the beginning of the event, flows downslope on vertical and lateral preferential flow paths. Chemical tracers used in a mixing model for hydrograph separation have shown that the pre-event water contribution is up to 30%. Applying this information to a conceptual runoff generation model, the values of 15N and 18O in nitrate could be calculated. Field observations showed the occurence of significant microbial denitrification processes above the soil/bedrock interface before nitrate percolates through to the deeper horizon of the vadose zone. The source of nitrate could be determined and denitrification processes were calculated. Assuming that the nitrate reduction follows a Rayleigh process one could approximate a nitrate input concentration of about 170 mg/l and a residual nitrate concentration of only about 15%. The results of the chemical and isotopic tracers postulate fertilizers as nitrate source with some influence of atmospheric nitrate. The combined application of hydrograph separation and determination of isotope values in 15N and 18O of nitrate lead to an improved understanding of microbial processes (nitrification, denitrification) in dynamic systems.  相似文献   

8.
In two mountain ecosystems at the Alptal research site in central Switzerland, pulses of 15NO3 and 15NH4 were separately applied to trace deposited inorganic N. One forested and one litter meadow catchment, each approximately 1600 m2, were delimited by trenches in the Gleysols. K15NO3 was applied weekly or fortnightly over one year with a backpack sprayer, thus labelling the atmospheric nitrate deposition. After the sampling and a one-year break, 15NH4Cl was applied as a second one-year pulse, followed by a second sampling campaign. Trees (needles, branches and bole wood), ground vegetation, litter layer and soil (LF, A and B horizon) were sampled at the end of each labelling period. Extractable inorganic N, microbial N, and immobilised soil N were analysed in the LF and A horizons. During the whole labelling period, the runoff water was sampled as well. Most of the added tracer remained in both ecosystems. More NO3 than NH4+ tracer was retained, especially in the forest. The highest recovery was in the soil, mainly in the organic horizon, and in the ground vegetation, especially in the mosses. Event-based runoff analyses showed an immediate response of 15NO3 in runoff, with sharp 15N peaks corresponding to discharge peaks. NO3 leaching showed a clear seasonal pattern, being highest in spring during snowmelt. The high capacity of N retention in these ecosystems leads to the assumption that deposited N accumulates in the soil organic matter, causing a progressive decline of its C:N ratio.  相似文献   

9.
The structures and stabilities of eleven N13 + and N13 isomers have been investigated with second-order Møller–Plesset (MP2) and density functional theory (DFT) methods. Five N13 + isomers and six N13 isomers are all reasonable local minima on their potential energy hypersurfaces. The most stable N13 + cation is structure C-2 with C2v symmetry, which contains a pentazole ring and two N4 open chains. It is different from those of the N7 + and N9 + clusters, but similar to the N11 + cluster. Meanwhile, the most stable N13 structure A-2 is composed of a pentazole ring and a six-membered ring connected by two nitrogen atoms. It is not only different from those of the N7 and N9 clusters, but also from the N11 cluster. The decomposition pathways of structures C-2 and A-2 were investigated at the B3LYP/(aug)-cc-pVDZ level. From the barrier heights of the structures C-2 and A-2 decomposition processes, it is suggested that C-2 is difficult to observe experimentally and A-2 may be observed as a short-lived species. Figure Optimized geometrical parameters of N13 + isomer C-2   相似文献   

10.
Signal transduction via phospholipids is mediated by phospholipases such as phospholipase C (PLC) and D (PLD), which catalyze hydrolysis of plasma membrane structural phospholipids. Phospholipid signaling is also involved in plant responses to phytohormones such as salicylic acid (SA). The relationships between phospholipid signaling, SA, and secondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether phospholipid signaling modulates SA-induced vanillin production through the activation of phenylalanine ammonia lyase (PAL), a key enzyme in the biosynthetic pathway. Salicylic acid was found to elicit PAL activity and consequently vanillin production, which was diminished or reversed upon exposure to the phosphoinositide-phospholipase C (PI-PLC) signaling inhibitors neomycin and U73122. Exposure to the phosphatidic acid inhibitor 1-butanol altered PLD activity and prevented SA-induced vanillin production. Our results suggest that PLC and PLD-generated secondary messengers may be modulating SA-induced vanillin production through the activation of key biosynthetic pathway enzymes.  相似文献   

11.
A method for determining the lifetime of unstable ions is described. The method is based on measuring the decrease in the ion beam current onto a fixed detector with increasing path length of the ion beam from the ion source to the detector. The measurements performed for D? 2 and HD? molecular ions have shown that their lifetimes are 3.5 ± 0.1 and 4.4 ± 0.1 μs, respectively.  相似文献   

12.
Arginine side-chains are often key for enzyme catalysis, protein–ligand and protein–protein interactions. The importance of arginine stems from the ability of the terminal guanidinium group to form many key interactions, such as hydrogen bonds and salt bridges, as well as its perpetual positive charge. We present here an arginine 13Cζ-detected NMR experiment in which a double-quantum coherence involving the two 15Nη nuclei is evolved during the indirect chemical shift evolution period. As the precession frequency of the double-quantum coherence is insensitive to exchange of the two 15Nη; this new approach is shown to eliminate the previously deleterious line broadenings of 15Nη resonances caused by the partially restricted rotation about the Cζ–Nε bond. Consequently, sharp and well-resolved 15Nη resonances can be observed. The utility of the presented method is demonstrated on the L99A mutant of the 19 kDa protein T4 lysozyme, where the measurement of small chemical shift perturbations, such as one-bond deuterium isotope shifts, of the arginine amine 15Nη nuclei becomes possible using the double-quantum experiment.  相似文献   

13.
Ab initio (RHF, MP2) and Density Functional Theory (DFT) methods have been used to examine six isomers of the N15m cluster with the 6-31+G* basis set. Different from the known odd-numbered anionic N7m, N9m, and N11m clusters, in which the open-chain structures are the most stable species, the most stable N15m isomer is structure 1 (C1), which may be considered as a complex between the fragments cyclic N5m (D5h) and staggered N10 (D2d). The decomposition pathways of structure 2 (CS), containing two aromatic N5 rings connected by a N5 chain, and the open-chain structure 3 (C2v) were studied at the B3LYP/6-31+G* level of theory. Relative energies were refined at the level of B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G*+ZPE (B3LYP/6-31+G*). The barriers for N2 and N5m (D5h) fission reactions for structure 2 are predicted to be 18.2 and 14.2 kcal x mol(-1), respectively. The corresponding N2+N3m fission barrier for structure 3 is predicted to be 11.2 kcal x mol(-1). Supplementary material is available for this article if you access the article at http://dx.doi.org/10.1007/s00894-003-0118-0. A link in the frame on the left on that page takes you directly to the supplementary material. Figure Structure 1 of the N15m cluster, showing bond distances in A and bond angles in degrees  相似文献   

14.
15.
The influence of the industrial process on the properties of probiotics, administered as complex manufactured products, has been poorly investigated. In the present study, we comparatively assessed the cell wall characteristics of the probiotic strain Lactobacillus rhamnosus Lcr35® together with three of its commercial formulations with intestinal applications. Putative secreted and transmembrane-protein-encoding genes were initially searched in silico in the genome of L. rhamnosus Lcr35®. A total of 369 candidate genes were identified which expressions were followed using a custom Lactobacillus DNA chip. Among them, 60 or 67 genes had their expression either upregulated or downregulated in the Lcr Restituo® packet or capsule formulations, compared to the native Lcr35® strain. Moreover, our data showed that the probiotic formulations (Lcr Lenio®, Lcr restituo® capsule and packet) showed a better capacity to adhere to intestinal epithelial Caco-2 cells than the native Lcr35® strain. Microbial (MATS) tests showed that the probiotic was an electron donor and that they were more hydrophilic than the native strain. The enhanced adhesion capacity of the active pharmaceutical ingredients (APIs) to epithelial Caco-2 cells and their antipathogen effect could be due to this greater surface hydrophilic character. These findings suggest that the manufacturing process influences the protein composition and the chemical properties of the cell wall. It is therefore likely that the antipathogen effect of the formulation is modulated by the industrial process. Screening of the manufactured products’ properties would therefore represent an essential step in evaluating the effects of probiotic strains.  相似文献   

16.
Wide-compatibility (WC) is one of the most important traits in rice, which can overcome the fertility barrier in the indica/japonica hybrids, and hence to make it possible to utilize the higher yield potential of inter-subspecific hybrids. The S 5 n gene located on chromosome 6 has been previously reported to be responsible for the wide-compatibility in rice. Here we report the precise location of the S 5 n gene. In the first-pass mapping, the S 5 n gene was restricted within a 200 kb region by using a population of 242 isogenic lines in combination with high-density markers developed in the S 5 region. In the fine mapping, the S 5 region was further saturated with newly developed markers and more isogenic lines (549 in total) were investigated. Eventually, the S 5 n gene was mapped within a 50 kb region delimited by the left marker J13 and the right marker J17. One BAC clone screened from the BAC library of the WC rice variety 02428 covered the whole S 5 region. Sequence analysis of the 50 kb region revealed two candidate genes, coding an aspartyl protease and a hypothetical protein. This result would greatly accelerate both cloning and marker-assisted selection of this important S 5 n gene. Qing Ji and Jufei Lu have contributed equally to this paper.  相似文献   

17.
Sodium Nitroprusside (SNP) and S-Nitrosoglutathione (GSNO) differently affect mitochondrial H2O2 release at Complex-I. mM SNP increases while GSNO decreases the release induced by succinate alone or added on top of NAD-linked substrates. Stimulation likely depends on Nitric Oxide ( . NO) (released by SNP but not by GSNO) inhibiting cytochrome oxidase and mitochondrial respiration. Preincubations with SNP or high GSNO (10 mM plus DTE to increases its . NO release) induces an inhibition of the succinate dependent H2O2 production consistent with a . NO dependent covalent modification. However maximal inhibition of the succinate dependent H2O2 release is obtained in the presence of low GSNO (20–100 μM), but not with SNP. This inhibition appears independent of . NO release since μM GSNO does not affect mitochondrial respiration, or the H2O2 detection systems and its effect is very rapid. Inhibition may be partly due to an increased removal of O2.− since GSNO chemically competes with NBT and cytochrome C in O2.− detection.  相似文献   

18.
Based on the difference in the CD14 and CD16 expression, two subsets of monocytes were identified in human and other mammalian blood. These subsets have different patterns of adhesion molecules and chemokine receptors that suggests the different mode of their interaction with endothelium and tissue traffic. Here, we investigated the ability of CD14+CD16+ and CD14++CD16 monocytes to adhere to endothelial cell monolayer in presence or absence of pro- and anti-inflammatory cytokines. We demonstrated that CD14+CD16+ monocytes had a higher level of adhesion to intact monolayer of endothelial cells than CD14++CD16 monocytes. Adhesion of CD14++CD16 and CD14+CD16+ monocytes significantly increased in the presence of TNFα or its combination with other cytokines. IFNγ and IL-4 alone did not affect the adhesion of monocytes. These results show that CD14++CD16 and CD14+CD16+ monocytes can be recruited to the inflamed endothelium, but CD14+CD16+ monocytes adhere to endothelial cells without inflammations twice as strongly as CD14++CD16 monocytes.  相似文献   

19.
The limits of resolution that can be obtained in 1H–15N 2D NMR spectroscopy of isotopically enriched nanocrystalline proteins are explored. Combinations of frequency switched Lee–Goldburg (FSLG) decoupling, fast magic angle sample spinning (MAS), and isotopic dilution via deuteration are investigated as methods for narrowing the amide 1H resonances. Heteronuclear decoupling of 15N from the 1H resonances is also studied. Using human ubiquitin as a model system, the best resolution is most easily obtained with uniformly 2H and 15N enriched protein where the amides have been exchanged in normal water, MAS at 20 kHz, and WALTZ-16 decoupling of the 15N nuclei. The combination of these techniques results in average 1H lines of only 0.26 ppm full width at half maximum. Techniques for optimizing instrument stability and 15N decoupling are described for achieving the best possible performance in these experiments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号