首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used optical tweezers to analyze the effect of jasplakinolide and cyclodextrin on the force exerted by lamellipodia from developing growth cones (GCs) of isolated dorsal root ganglia (DRG) neurons. We found that 25 nM of jasplakinolide, which is known to inhibit actin filament turnover, reduced both the maximal exerted force and maximal velocity during lamellipodia leading-edge protrusion. By using atomic force microscopy, we verified that cyclodextrin, which is known to remove cholesterol from membranes, decreased the membrane stiffness of DRG neurons. Lamellipodia treated with 2.5 mM of cyclodextrin exerted a larger force, and their leading edge could advance with a higher velocity. Neither jasplakinolide nor cyclodextrin affected force or velocity during lamellipodia retraction. The amplitude and frequency of elementary jumps underlying force generation were reduced by jasplakinolide but not by cyclodextrin. The action of both drugs at the used concentration was fully reversible. These results support the notion that membrane stiffness provides a selective pressure that shapes force generation, and confirm the pivotal role of actin turnover during protrusion.  相似文献   

2.
Filopodia are actin-rich finger-like cytoplasmic projections extending from the leading edge of cells. Unconventional myosin-X is involved in the protrusion of filopodia. However, the underlying mechanism of myosin-X-induced filopodia formation is obscure. Here, we studied the movements of myosin-X during filopodia protrusion using a total internal reflection microscope to clarify the mechanism of myosin-X-induced filopodia formation. Myosin-X was recruited to the discrete site at the leading edge where it assembles with exponential kinetics before the filopodia extension. The myosin-X-induced filopodia showed repeated extension-retraction cycles with each extension of 2.4 μm, which was critical to produce long filopodia. Myosin-X, lacking the FERM domain, could move to the tip as does the wild type. However, it was transported toward the cell body during filopodia retraction, did not undergo multiple extension-retraction cycles, and failed to produce long filopodia. During the filopodia protrusion, the single molecules of full-length myosin-X moved within filopodia. The majority of the fluorescence spots showed two-step photobleaching, suggesting that the moving myosin-X is a dimer. Deletion of the FERM domain did not change the movement at the single molecule level with the same velocity of ∼600 nm/s as wild-type, suggesting that the myosin-X in filopodia moves without interaction with the attached membrane via the FERM domain. Based upon these results, we have proposed a model of myosin-X-induced filopodia protrusion.  相似文献   

3.
4.
Actin polymerization often occurs at the plasma membrane to drive the protrusion of lamellipodia and filopodia at the leading edge of migrating cells. A role for actin polymerization in another cellular process that involves the reshaping of the plasma membrane--namely endocytosis--has recently been established. Live-cell imaging studies are shedding light on the order and timing of the molecular events and mechanisms of actin function during endocytosis.  相似文献   

5.
Productive cell migration requires the spatiotemporal coordination of cell adhesion, membrane protrusion, and actomyosin-mediated contraction. Integrins, engaged by the extracellular matrix (ECM), nucleate the formation of adhesive contacts at the cell''s leading edge(s), and maturation of nascent adhesions to form stable focal adhesions constitutes a functional switch between protrusive and contractile activities. To shed additional light on the coupling between integrin-mediated adhesion and membrane protrusion, we have formulated a quantitative model of leading edge dynamics combining mechanistic and phenomenological elements and studied its features through classical bifurcation analysis and stochastic simulation. The model describes in mathematical terms the feedback loops driving, on the one hand, Rac-mediated membrane protrusion and rapid turnover of nascent adhesions, and on the other, myosin-dependent maturation of adhesions that inhibit protrusion at high ECM density. Our results show that the qualitative behavior of the model is most sensitive to parameters characterizing the influence of stable adhesions and myosin. The major predictions of the model, which we subsequently confirmed, are that persistent leading edge protrusion is optimal at an intermediate ECM density, whereas depletion of myosin IIA relieves the repression of protrusion at higher ECM density.  相似文献   

6.
Large scale changes to lipid bilayer shapes are well represented by the Helfrich model. However, there are membrane processes that take place at smaller length scales that this model cannot address. In this work, we present a one-dimensional continuum model that captures the mechanics of the lipid bilayer membrane at the length scale of the lipids themselves. The model is developed using the Cosserat theory of surfaces with lipid orientation, or ‘tilt’, as the fundamental degree of freedom. The Helfrich model can be recovered as a special case when the curvatures are small and the lipid tilt is everywhere zero. We use the tilt model to study local membrane deformations in response to a protein inclusion. Parameter estimates and boundary conditions are obtained from a coarse-grained molecular model using dissipative particle dynamics (DPD) to capture the same phenomenon. The continuum model is able to reproduce the membrane bending, stretch and lipid tilt as seen in the DPD model. The lipid tilt angle relaxes to the bulk tilt angle within 5–6 nm from the protein inclusion. Importantly, for large tilt gradients induced by the proteins, the tilt energy contribution is larger than the bending energy contribution. Thus, the continuum model of tilt accurately captures behaviors at length scales shorter than the membrane thickness.  相似文献   

7.
Coupling of cytoskeleton functions for fibroblast locomotion   总被引:1,自引:0,他引:1  
Using a chick cell phenotype specialised for locomotion with morphometric measurements made possible by modern instrumentation technology, we have reinvestigated motile functions in fibroblast locomotion. Quantitative analysis of rapid fluctuations in cell form and organelle distribution during locomotion showed many significant correlations between different parts of the cell despite much irregularity in individual displacements over the time scale of the order of one second. These broke down when external perturbations caused changes in shape or direction. Partial energy deprivation caused the cells to lose control of shape and organelle distribution even though forward protrusion continued unaffected. Cytoplasmic displacements shown by marker mitochondria correlated with adjacent fluctuations at the leading edge, and drug treatments which increased the amplitude of mitochondrial movements caused visible protrusions in projected positions at the leading edge. We conclude that fibroblast locomotion may be driven coordinately by a common set of motility mechanisms and that this coordination may be lost as a result of physical or pharmacological disturbance. Taking our evidence with results from other Laboratories, we propose the following cytoskeleton functions. (i) Protrusive activity, probably based on solation--gelation cycles of the actin based cytoskeleton and membrane recycling which provides cellular and membrane components for streaming through the cell body to the leading edge; this is Ca++ sensitive but relatively energy insensitive. (ii) Constraining activity on the cell membrane and on certain organelles to maintain shape and so facilitate directionality and the drawing along of the trailing body; this is Ca++ insensitive but relatively energy sensitive. (iii) Channeling function of microtubules to direct the flow towards multiple foci on the leading edge, and so determine cell polarity. Such a mechanism of locomotion for fibroblasts has many features consistent with evidence for other cell types, especially amoebae and leukocytes.  相似文献   

8.
Cell movement is a complex phenomenon primarily driven by the actin network beneath the cell membrane, and can be divided into three general components: protrusion of the leading edge of the cell, adhesion of the leading edge and deadhesion at the cell body and rear, and cytoskeletal contraction to pull the cell forward. Each of these steps is driven by physical forces generated by unique segments of the cytoskeleton. This review examines the specific physics underlying these phases of cell movement and the origins of the forces that drive locomotion.  相似文献   

9.
Border cells in the Drosophila ovary originate within an epithelium, detach from it, invade neighboring nurse cells, and migrate as a coherent cluster. This migration has served as a useful genetic model for understanding epithelial cell motility. The prevailing model of growth factor-mediated chemotaxis in general, and of border cells in particular, posits that receptor activation promotes cellular protrusion at the leading edge. Here we report the time-lapse video imaging of border cell migration, allowing us to test this model. Reducing the activities of the guidance receptors EGFR and PVR did not result in the expected inhibition of protrusion, but instead resulted in protrusion in all directions. In contrast, reduction in Notch activity resulted in failure of the cells to detach from the epithelium without affecting direction sensing. These observations provide new insight into the cellular dynamics and molecular mechanisms of cell migration in vivo.  相似文献   

10.
Crawling of eukaryotic cells on flat surfaces is underlain by the protrusion of the actin network, the contractile activity of myosin II motors, and graded adhesion to the substrate regulated by complex biochemical networks. Some crawling cells, such as fish keratocytes, maintain a roughly constant shape and velocity. Here we use moving-boundary simulations to explore four different minimal mechanisms for cell locomotion: 1), a biophysical model for myosin contraction-driven motility; 2), a G-actin transport-limited motility model; 3), a simple model for Rac/Rho-regulated motility; and 4), a model that assumes that microtubule-based transport of vesicles to the leading edge limits the rate of protrusion. We show that all of these models, alone or in combination, are sufficient to produce half-moon steady shapes and movements that are characteristic of keratocytes, suggesting that these mechanisms may serve redundant and complementary roles in driving cell motility. Moving-boundary simulations demonstrate local and global stability of the motile cell shapes and make testable predictions regarding the dependence of shape and speed on mechanical and biochemical parameters. The models shed light on the roles of membrane-mediated area conservation and the coupling of mechanical and biochemical mechanisms in stabilizing motile cells.  相似文献   

11.
The cyclical protrusion and retraction of the leading edge is a hallmark of many migrating cells involved in processes such as development, inflammation and tumorigenesis. The molecular identity of the signalling mechanisms that control these cycles has remained unknown. Here, we used live-cell imaging of biosensors to monitor spontaneous morphodynamic and signalling activities, and employed correlative image analysis to examine the role of cyclic-AMP-activated protein kinase A (PKA) in protrusion regulation. PKA activity at the leading edge is closely synchronized with rapid protrusion and with the activity of RhoA. Ensuing PKA phosphorylation of RhoA and the resulting increased interaction between RhoA and RhoGDI (Rho GDP-dissociation inhibitor) establish a negative feedback mechanism that controls the cycling of RhoA activity at the leading edge. Thus, cooperation between PKA, RhoA and RhoGDI forms a pacemaker that governs the morphodynamic behaviour of migrating cells.  相似文献   

12.
Filopodium, a spike-like actin protrusion at the leading edge of migrating cells, functions as a sensor of the local environment and has a mechanical role in protrusion. We use modeling to examine mechanics and spatial-temporal dynamics of filopodia. We find that >10 actin filaments have to be bundled to overcome the membrane resistance and that the filopodial length is limited by buckling for 10-30 filaments and by G-actin diffusion for >30 filaments. There is an optimal number of bundled filaments, approximately 30, at which the filopodial length can reach a few microns. The model explains characteristic interfilopodial distance of a few microns as a balance of initiation, lateral drift, and merging of the filopodia. The theory suggests that F-actin barbed ends have to be focused and protected from capping (the capping rate has to decrease one order of magnitude) once every hundred seconds per micron of the leading edge to initiate the observed number of filopodia. The model generates testable predictions about how filopodial length, rate of growth, and interfilopodial distance should depend on the number of bundled filaments, membrane resistance, lamellipodial protrusion rate, and G-actin diffusion coefficient.  相似文献   

13.
Persistent cellular migration requires efficient protrusion of the front of the cell, the leading edge where the actin cytoskeleton and cell-substrate adhesions undergo constant rearrangement. Rho family GTPases are essential regulators of the actin cytoskeleton and cell adhesion dynamics. Here, we examined the role of the RhoGEF TEM4, an activator of Rho family GTPases, in regulating cellular migration of endothelial cells. We found that TEM4 promotes the persistence of cellular migration by regulating the architecture of actin stress fibers and cell-substrate adhesions in protruding membranes. Furthermore, we determined that TEM4 regulates cellular migration by signaling to RhoC as suppression of RhoC expression recapitulated the loss-of-TEM4 phenotypes, and RhoC activation was impaired in TEM4-depleted cells. Finally, we showed that TEM4 and RhoC antagonize myosin II-dependent cellular contractility and the suppression of myosin II activity rescued the persistence of cellular migration of TEM4-depleted cells. Our data implicate TEM4 as an essential regulator of the actin cytoskeleton that ensures proper membrane protrusion at the leading edge of migrating cells and efficient cellular migration via suppression of actomyosin contractility.  相似文献   

14.
The major sperm protein (MSP)-based amoeboid motility of Ascaris suum sperm requires coordinated lamellipodial protrusion and cell body retraction. In these cells, protrusion and retraction are tightly coupled to the assembly and disassembly of the cytoskeleton at opposite ends of the lamellipodium. Although polymerization along the leading edge appears to drive protrusion, the behavior of sperm tethered to the substrate showed that an additional force is required to pull the cell body forward. To examine the mechanism of cell body movement, we used pH to uncouple cytoskeletal polymerization and depolymerization. In sperm treated with pH 6.75 buffer, protrusion of the leading edge slowed dramatically while both cytoskeletal disassembly at the base of the lamellipodium and cell body retraction continued. At pH 6.35, the cytoskeleton pulled away from the leading edge and receded through the lamellipodium as its disassembly at the cell body continued. The cytoskeleton disassembled rapidly and completely in cells treated at pH 5.5, but reformed when the cells were washed with physiological buffer. Cytoskeletal reassembly occurred at the lamellipodial margin and caused membrane protrusion, but the cell body did not move until the cytoskeleton was rebuilt and depolymerization resumed. These results indicate that cell body retraction is mediated by tension in the cytoskeleton, correlated with MSP depolymerization at the base of the lamellipodium.  相似文献   

15.
We previously showed that silencing profilin‐1 (Pfn1) expression increases breast cancer cell motility, but the underlying mechanisms have not been explored. Herein, we demonstrate that loss of Pfn1 expression leads to slower but more stable lamellipodial protrusion thereby enhancing the net protrusion rate and the overall motility of MDA‐MB‐231 breast cancer cells. Interestingly, MDA‐MB‐231 cells showed dramatic enrichment of VASP at their leading edge when Pfn1 expression was downregulated and this observation was also reproducible in other cell types including human mammary epithelial cells and vascular endothelial cells. We further demonstrate that Pfn1 downregulation results in a hyper‐motile phenotype of MDA‐MB‐231 cells in an Ena/VASP‐dependent mechanism. Pfn1‐depleted cells display a strong colocalization of VASP with lamellipodin (Lpd—a PI(3,4)P2‐binding protein that has been previously implicated in lamellipodial targeting of Ena/VASP) at the leading edge. Finally, inhibition of PI3‐kinase (important for generation of PI(3,4)P2) delocalizes VASP from the leading edge. This observation is consistent with a possible involvement of Lpd in enhanced membrane recruitment of VASP that results from loss of Pfn1 expression. Our findings for the first time highlight a possible mechanism of how reduced expression of a pro‐migratory molecule like Pfn1 could actually promote motility of breast cancer cells. J. Cell. Physiol. 219: 354–364, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
17.
Ridley AJ 《Cell》2011,145(7):1012-1022
Cell migration requires sustained forward movement of the plasma membrane at the cell's front or "leading edge." To date, researchers have uncovered four distinct ways of extending the membrane at the leading edge. In lamellipodia and filopodia, actin polymerization directly pushes the plasma membrane forward, whereas in invadopodia, actin polymerization couples with the extracellular delivery of matrix-degrading metalloproteases to clear a path for cells through the extracellular matrix. Membrane blebs drive the plasma membrane forward using a combination of actomyosin-based contractility and reversible detachment of the membrane from the cortical actin cytoskeleton. Each protrusion type requires the coordination of a wide spectrum of signaling molecules and regulators of cytoskeletal dynamics. In addition, these different protrusion methods likely act in concert to move cells through complex environments in?vivo.  相似文献   

18.
Interaction between mitochondrial creatine kinase (MtCK) and adenine nucleotide translocase (ANT) can play an important role in determining energy transfer pathways in the cell. Although the functional coupling between MtCK and ANT has been demonstrated, the precise mechanism of the coupling is not clear. To study the details of the coupling, we turned to molecular dynamics simulations. We introduce a new coarse-grained molecular dynamics model of a patch of the mitochondrial inner membrane containing a transmembrane ANT and an MtCK above the membrane. The membrane model consists of three major types of lipids (phosphatidylcholine, phosphatidylethanolamine, and cardiolipin) in a roughly 2:1:1 molar ratio. A thermodynamics-based coarse-grained force field, termed MARTINI, has been used together with the GROMACS molecular dynamics package for all simulated systems in this work. Several physical properties of the system are reproduced by the model and are in agreement with known data. This includes membrane thickness, dimension of the proteins, and diffusion constants. We have studied the binding of MtCK to the membrane and demonstrated the effect of cardiolipin on the stabilization of the binding. In addition, our simulations predict which part of the MtCK protein sequence interacts with the membrane. Taken together, the model has been verified by dynamical and structural data and can be used as the basis for further studies.  相似文献   

19.
Cell movement begins with a leading edge protrusion, which is stabilized by nascent adhesions and retracted by mature adhesions. The ERK-MAPK (extracellular signal-regulated kinase-mitogen-activated protein kinase) localizes to protrusions and adhesions, but how it regulates motility is not understood. We demonstrate that ERK controls protrusion initiation and protrusion speed. Lamellipodial protrusions are generated via the WRC (WAVE2 regulatory complex), which activates the Arp2/3 actin nucleator for actin assembly. The WRC must be phosphorylated to be activated, but the sites and kinases that regulate its intermolecular changes and membrane recruitment are unknown. We show that ERK colocalizes with the WRC at lamellipodial leading edges and directly phosphorylates two WRC components: WAVE2 and Abi1. The phosphorylations are required for functional WRC interaction with Arp2/3 and actin during cell protrusion. Thus, ERK coordinates adhesion disassembly with WRC activation and actin polymerization to promote productive leading edge advancement during cell migration.  相似文献   

20.
The integrin-dependent migration of myeloid cells requires tight coordination between actin-based cell membrane protrusion and integrin-mediated adhesion to form a stable leading edge. Under this mode of migration, polarised myeloid cells including dendritic cells, macrophages and osteoclasts develop podosomes that sustain the extending leading edge. Podosome integrity and dynamics vary in response to changes in the physical and biochemical properties of the cell environment. In the current article we discuss the role of various factors in initiation and stability of podosomes and the roles of the Wiskott Aldrich Syndrome Protein (WASP) in this process. We discuss recent data indicating that in a cellular context WASP is crucial not only for localised actin polymerisation at the leading edge and in podosome cores but also for coordination of integrin clustering and activation during podosome formation and disassembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号