首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glial glutamate transporter-1 (GLT-1) is the predominant subtype of glutamate transporters which are responsible for the homeostasis of extracellular glutamate. Our previous studies have shown that up-regulation in GLT-1 protein expression matches brain ischemic tolerance induced by cerebral ischemic preconditioning (CIP). To specify the role of functional changes of GLT-1 in the induction of brain ischemic tolerance by CIP, the present study was undertaken to examine changes in the binding properties of GLT-1 (including maximum binding and affinity for glutamate) and in GLT-1 mediated glutamate uptake, using L-3H-glutamate assay in the rat hippocampus. The results indicated that CIP was able to increase the maximum binding and affinity, and uptake of GLT-1 for glutamate in hippocampal CA1 subfield either with or without the presence of the subsequent severe brain ischemic insult. Simultaneously, accompanied with the above changes, CIP significantly reduced the delayed neuronal death (DND) in this region induced by lethal global cerebral ischemia. It could be concluded that up-regulation in the maximum binding and affinity and glutamate uptake of GLT-1 contributed to the neuronal protection of CIP against global cerebral ischemic insult.  相似文献   

2.
Ceftriaxone(Cef) selectively increases the expression of glial glutamate transporter‐1 (GLT‐1), which was thought to be neuroprotective in some circumstances. However, the effect of Cef on glutamate uptake of GLT‐1 was mostly assayed using in vitro studies such as primary neuron/astrocyte cultures or brain slices. In addition, the effect of Cef on neurons in different ischemic models was still discrepant. Therefore, this study was undertaken to observe the effect of Cef on neurons in global brain ischemia in rats, and especially to provide direct evidence of the up‐regulation of GLT‐1 uptake for glutamate contributing to the neuronal protection of Cef against brain ischemia. Neuropathological evaluation indicated that administration of Cef, especially pre‐treatment protocols, significantly prevented delayed neuronal death in hippocampal CA1 subregion normally induced by global brain ischemia. Simultaneously, pre‐administration of Cef significantly up‐regulated the expression of GLT‐1. Particularly, GLT‐1 uptake assay with 3H‐glutamate in living cells from adult rats showed that up‐regulation in glutamate uptake accompanied up‐regulated GLT‐1 expression. Inhibition of GLT‐1 by antisense oligodeoxynucleotides or dihydrokainate significantly inhibited the Cef‐induced up‐regulation in GLT‐1 uptake and the neuroprotective effect against global ischemia. Thus, we may conclude that Cef protects neurons against global brain ischemia via up‐regulation of the expression and glutamate uptake of GLT‐1.

  相似文献   


3.
It is well known that neurons in the CA3 and dentate gyrus (DG) subfields of the hippocampus are resistant to short period of ischemia which is usually lethal to pyramidal neurons in hippocampal CA1 subfield. The present study was undertaken to clarify whether the inherent higher resistance of neurons in CA3 and DG to ischemia is associated with glial glutamate transporter-1 (GLT-1) in rats. Western blot analysis and immunohistochemistry assay showed that the basal expressions of GLT-1 in both CA3 and DG were much higher than that in CA1 subfield. Mild global brain ischemia for 8 min induced delayed death of almost all CA1 pyramidal neurons and marked GLT-1 down-regulation in the CA1 subfield, but it was not lethal to the neurons in either CA3 or DG and induced GLT-1 up-regulation and astrocyte activation showed normal soma and aplenty slender processes in the both areas. When the global brain ischemia was prolonged to 25 min, neuronal death was clearly observed in CA3 and DG accompanied with down-regulation of GLT-1 expression and abnormal astrocytes represented with hypertrophic somas, but shortened processes. After down-regulating of GLT-1 expression and function by its antisense oligodeoxynucleotides or inhibiting GLT-1 function by dihydrokainate, an inhibitor of GLT-1, the mild global brain ischemia for 8 min, which usually was not lethal to CA3 and DG neurons, induced the neuronal death in CA3 and DG subfields. Taken together, the higher expression of GLT-1 in the CA3 and DG contributes to their inherent resistance to ischemia.  相似文献   

4.
Several studies showed that the up-regulation of glial glutamate transporter-1 (GLT-1) participates in the acquisition of brain ischemic tolerance induced by cerebral ischemic preconditioning or ceftriaxone pretreatment in rats. To explore whether GLT-1 plays a role in the acquisition of brain ischemic tolerance induced by intermittent hypobaric hypoxia (IH) preconditioning (mimicking 5,000?m high-altitude, 6?h per day, once daily for 28?days), immunohistochemistry and western blot were used to observe the changes in the expression of GLT-1 protein in hippocampal CA1 subfield during the induction of brain ischemic tolerance by IH preconditioning, and the effect of dihydrokainate (DHK), an inhibitor of GLT-1, on the acquisition of brain ischemic tolerance in rats. The basal expression of GLT-1 protein in hippocampal CA1 subfield was significantly up-regulated by IH preconditioning, and at the same time astrocytes were activated by IH preconditioning, which appeared normal soma and aplenty slender processes. The GLT-1 expression was decreased at 7?days after 8-min global brain ischemia. When the rats were pretreated with the IH preconditioning before the global brain ischemia, the down-regulation of GLT-1 protein was prevented clearly. Neuropathological evaluation by thionin staining showed that 200?nmol DHK blocked the protective role of IH preconditioning against delayed neuronal death induced normally by 8-min global brain ischemia. Taken together, the up-regulation of GLT-1 protein participates in the acquisition of brain ischemic tolerance induced by IH preconditioning in rats.  相似文献   

5.
Zhao HG  Li WB  Sun XC  Li QJ  Ai J  Li DL 《中国应用生理学杂志》2007,23(1):19-23,I0002
目的:探讨神经途径在肢体缺血预处理(limbi schemic preconditioning,LIP)抗脑缺血/再灌注损伤中的作用。方法:脑缺血采用四血管闭塞模型,重复短暂夹闭放松大鼠双侧股动脉3次作为LIP。将凝闭椎动脉的大鼠随机分为sham组、脑缺血组、股神经切断+脑缺血组、LIP+脑缺血组、股神经切断+LIP+脑缺血组。于Sham手术和脑缺血后7d处死大鼠,硫堇染色观察海马CA1区锥体神经元迟发性死亡的变化。于Sham手术和脑缺血后6h心脏灌注固定大鼠,免疫组化法测定海马CAI区c-Fos表达的变化。结果:硫堇染色结果显示,与sham组比较。脑缺血组和股神经切断+脑缺血组大鼠海马CAI区均有明显组织损伤。LIP+脑缺血组CAI区无明显细胞缺失,神经元密度明显高于脑缺血组(P〈0.01)。而股神经切断+LIP+脑缺血组大鼠海马CA1区明显损伤,锥体细胞缺失较多,与LIP+脑缺血组组比较,神经元密度显著降低(P〈O.01),提示LIP前切断双侧股神经取消了LIP抗脑缺血/再灌注损伤作用。c—Fos免疫组化染色结果显示,Sham组海马CAI区未见明显的c-Fos蛋白表达。脑缺血组海马CAI区偶见c—Fm的阳性表达。LIP+脑缺血组c—Fos表达增强,数量增加,与Sham组和脑缺血组比较。c-Fos阳性细胞数和光密度均明显升高(P〈0.01)。而股神经切断+LIP+脑缺血组c-Fos表达明显减少,仅见少量弱阳性e-Fos表达。结论:LIP可通过神经途径发挥抗脑缺血/再灌注损伤作用,而LIP诱导c—Fos表达增加可能是LIP诱导脑缺血耐受神经途径的一个环节。  相似文献   

6.
Our previous study has shown that cerebral ischemic preconditioning (CIP) can up-regulate the expression of glial glutamate transporter-1 (GLT-1) during the induction of brain ischemic tolerance in rats. The present study was undertaken to further explore the uptake activity of GLT-1 in the process by observing the changes in the concentration of extracellular glutamate with cerebral microdialysis and high-performance liquid chromatography. The results showed that a significant pulse of glutamate concentration reached the peak value of sevenfold of the basal level after lethal ischemic insult, which was associated with delayed neuronal death in the CA1 hippocampus. When the rats were pretreated 2 days before the lethal ischemic insult with CIP which protected the pyramidal neurons against delayed neuronal death, the peak value of glutamate concentration decreased to 3.9 fold of the basal level. Furthermore, pre-administration of dihydrokainate, an inhibitor of GLT-1, prevented the protective effect of CIP on ischemia-induced CA1 cell death. At the same time, compared with the CIP + Ischemia group, the peak value of glutamate concentration significantly increased and reached sixfold of the basal level. These results indicate that CIP induced brain ischemic tolerance via up-regulating GLT-1 uptake activity for glutamate and then decreasing the excitotoxicity of glutamate.  相似文献   

7.
Abnormal function of the neuroendocrine stress system has been implicated in the behavioral impairments observed following brain ischemia. The current study examined long-term changes in stress signal regulation 30 days following global cerebral ischemia. Experiment 1 investigated changes in the expression of corticotropin releasing hormone (CRH) and its subtype 1 receptor (CRHR1), glucocorticoid receptors (GR) in the paraventricular nucleus of the hypothalamus (PVN), the central nucleus of the amygdala (CeA), and the CA1 subfield of the hippocampus. Tyrosine hydroxylase (TH) was determined at the locus coeruleus (LC). Experiment 2 investigated the role of central CRHR1 activation on corticosterone (CORT) secretion at multiple time intervals following global ischemia after exposure to an acute stressor. Findings from Experiment 1 demonstrated a persistent increase in GR, CRH and CRHR1 immunoreactivity (ir) at the PVN, reduced GR and CRHR1 expression in pyramidal CA1 neurons, and increased LC TH expression in ischemic rats displaying working memory errors in the radial arm Maze. Findings from Experiment 2 revealed increased CORT secretion up to 7 days, but no longer present 14 and 21 days post ischemia. However upon an acute restraint stress induced 27 days following reperfusion, ischemic rats had increased plasma CORT secretions compared to sham-operated animals, suggesting HPA axis hypersensitivity. Antalarmin (2 μg/2 μl) pretreatment significantly attenuated post ischemic elevation of basal and stress-induced CORT secretion. These findings support persistent neuroendocrine dysfunctions following brain ischemia likely to contribute to emotional and cognitive impairments observed in survivors of cardiac arrest and stroke.  相似文献   

8.
Transient global ischemia induces delayed neuronal death in certain cell types and brain regions while sparing cells in other areas. A key process through which oxygen-glucose deprivation triggers cell death is the excessive accumulation of the neurotransmitter glutamate leading to over excitation of neurons. In certain neurons this increase in glutamate will potentiate the NMDA type of glutamate receptor, which can then initiate cell death. This review provides an update of the neurophysiological, cellular and molecular mechanisms inducing post-ischemic plasticity of NMDA receptors, focusing on the sensitive CA1 pyramidal neurons in the hippocampus as compared to the relatively resistant neighboring CA3 neurons. Both a change in the equilibrium between protein tyrosine kinases/phosphatases and an increased density of surface NMDA receptors in response to ischemia may explain the selective vulnerability of specific cell types. Implications for the treatment of stroke and reasons for the failures of human clinical trials utilizing NMDA receptor antagonists are also discussed.  相似文献   

9.
兴奋性氨基酸转运体(excitatory amino acid transporters,EAATs)是摄取细胞外液谷氨酸、保持细胞外谷氨酸低浓度的主要机制,已发现了五种EAATs,其中胶质细胞谷氨酸转运体在终止谷氨酸能神经传递、维持细胞外液谷氨酸浓度处于低水平方面发挥更重要作用。胶质细胞谷氨酸转运体的表达和功能受谷氨酸及其受体、垂体腺苷酸环化酶激活多肽、生长因子、内皮素、一氧化氮等许多因素的影响,其表达减少及功能降低与脑缺血损害的发生和发展密切相关,脑缺血预适应可通过调控其表达或改善其功能而诱导脑缺血耐受。  相似文献   

10.
Glutamate is the main excitatory transmitter in the brain stem, regulating many vital sensory and visceral processes. Taurine is inhibitory and functions as a neuromodulator and regulator of cell volumes in the brain, being especially important in the developing brain. Taurine release is markedly enhanced under ischemic conditions in many brain areas, providing protection against excitotoxicity. The involvement of glutamate receptors in the release of preloaded [3H]taurine was now characterized under ischemic conditions in slices prepared from the mouse brain stem from developing (7-day-old) and young adult (3-month-old) mice. The ionotropic glutamate receptor agonists N-methyl-d-aspartate, kainate, and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate had no effect on ischemic taurine release in the immature brain stem, whereas in adults the release was enhanced in a receptor-mediated manner. The metabotropic receptor agonists of group I, (1±)-1-aminocyclopentane-trans-1,3-dicarboxylate and (S)-3,5-dihydroxyphenylglycine, potentiated both basal and K+-stimulated release in both age groups. The group III agonist l(+)-2-amino-4-phosphonobutyrate also enhanced the release. In both cases the effects were receptor-mediated, being reduced by the respective antagonists. The results show that activation of glutamate receptors in the ischemic brain stem generally enhances the release of taurine. This is beneficial to neurons in ischemia, offering protection against excitotoxicity and preventing neuronal damage.  相似文献   

11.
Recent evidence suggests that limb ischemic preconditioning (LIP) protects neurons against cerebral ischemia-reperfusion injury. However, the mechanisms of LIP are not well understood. Neuroglobin (Ngb) is a recently discovered globin that affords protection against hypoxic/ischemic brain injury. This study was performed to investigate the role of Ngb in the neuroprotection of LIP against brain ischemia and the involvements of mitochondria in the process. The rat global brain ischemic model was used, and the CA1 hippocampus was selected as the observational target. Ngb expression was investigated by RT-PCR and Western blot. Neuropathological evaluation was performed by thionin staining. Mitochondrial membrane potential (Δψm), Na+-K+-ATPase activity, and ultrastructure were examined by flow cytometry, spectrophotometry, and transmission electron microscopy, respectively. We also used Ngb antisense oligodeoxynucleotides (AS-ODNs) and Ngb inducer hemin to inhibit or mimic the effect of LIP. We found that LIP significantly up-regulated Ngb expression and protected neurons against ischemia. Furthermore, LIP effectively improved deterioration in the Δψm, mitochondrial Na+-K+-ATPase activity, and ultrastructure induced by cerebral ischemia. These effects of LIP were inhibited partly by Ngb AS-ODNs and mimicked by hemin. It could be concluded that up-regulation of Ngb expression played an important role in the neuroprotection induced by LIP, and the Ngb-mediated neuroprotection of LIP was, at least partly, associated with mitochondria.  相似文献   

12.
Brain ischemia occurs when the blood supply to the brain is interrupted, leading to oxygen and glucose deprivation (OGD). This triggers a cascade of events causing a synaptic accumulation of glutamate. Excessive activation of glutamate receptors results in excitotoxicity and delayed cell death in vulnerable neurons. Following global cerebral ischemia, hippocampal CA1 pyramidal neurons are more vulnerable to injury than their cortical counterparts. The mechanisms that underlie this difference are unclear. Cultured hippocampal neurons respond to OGD with a rapid internalization of AMPA receptor (AMPAR) subunit GluA2, resulting in a switch from GluA2-containing Ca2+-impermeable receptors to GluA2-lacking Ca2+-permeable subtypes (CP-AMPARs). GluA2 internalization is a critical component of OGD-induced cell death in hippocampal neurons. It is unknown how AMPAR trafficking is affected in cortical neurons following OGD. Here, we show that cultured cortical neurons are resistant to an OGD insult that causes cell death in hippocampal neurons. GluA1 is inserted at the plasma membrane in both cortical and hippocampal neurons in response to OGD. In contrast, OGD causes a rapid endocytosis of GluA2 in hippocampal neurons, which is absent in cortical neurons. These data demonstrate that populations of neurons with different vulnerabilities to OGD recruit distinct cell biological mechanisms in response to insult, and that a crucial aspect of the mechanism leading to OGD-induced cell death is absent in cortical neurons. This strongly suggests that the absence of OGD-induced GluA2 trafficking contributes to the relatively low vulnerability of cortical neurons to ischemia.  相似文献   

13.
Lacosamide is a new antiepileptic drug which is widely used to treat partial-onset seizures. In this study, we examined the neuroprotective effect of lacosamide against transient ischemic damage and expressions of antioxidant enzymes such as Zn-superoxide dismutase (SOD1), Mn-superoxide dismutase (SOD2), catalase (CAT) and glutathione peroxidase (GPX) in the hippocampal cornu ammonis 1 (CA1) region following 5 min of transient global cerebral ischemia in gerbils. We found that pre-treatment with 25 mg/kg lacosamide protected CA1 pyramidal neurons from transient global cerebral ischemic insult using hematoxylin–eosin staining and neuronal nuclear antigen immunohistochemistry. Transient ischemia dramatically changed expressions of SOD1, SOD2 and GPX, not CAT, in the CA1 pyramidal neurons. Lacosamide pre-treatment increased expressions of CAT and GPX, not SOD1 and 2, in the CA1 pyramidal neurons compared with controls, and their expressions induced by lacosamide pre-treatment were maintained after transient cerebral ischemia. In brief, pre-treatment with lacosamide protected hippocampal CA1 pyramidal neurons from ischemic damage induced by transient global cerebral ischemia, and the lacosamide-mediated neuroprotection may be closely related to increases of CAT and GPX expressions by lacosamide pre-treatment.  相似文献   

14.
Adenosine is a neuromodulator known to inhibit the synaptic release of neurotransmitters, e.g., glutamate, and to hyperpolarize postsynaptic neurons. The release of adenosine is markedly enhanced under ischemic conditions. It may then act as an endogenous neuroprotectant against cerebral ischemia and excitotoxic neuronal damage. The mechanisms by which adenosine is released from nervous tissue are not fully known, particularly in the immature brain. We now characterized the release of [3H]adenosine from hippocampal slices from developing (7-day-old) and adult (3-month-old) mice using a superfusion system. The properties of the release differed only partially in the immature and mature hippocampus. The K+-evoked release was Ca2+ and Na+ dependent. Anion channels were also involved. Ionotropic glutamate receptor agonists potentiated the release in a receptor-mediated manner. Activation of metabotropic glutamate receptors enhanced the release in developing mice, with group II receptors alone being effective. The evoked adenosine release apparently provides neuroprotective effects against excitotoxicity under cell-damaging conditions. Taurine had no effect on adenosine release in adult mice, but depressed the release concentration dependently in the immature hippocampus.  相似文献   

15.
In order to further analyze the development of glutamatergic pathways in neuronal cells, the expression of excitatory amino acid receptors was studied in a model of neurons in primary culture by measuring the specific binding of L-[3H]glutamate under various incubation conditions in 8-day-old intact living neurons isolated from the embryonic rat forebrain, as well as in membrane preparations from these cultures and from newborn rat forebrain. In addition, the receptor responsiveness to glutamate was assessed by studying the uptake of tetraphenylphosphonium (TPP+) which reflects membrane polarization. In the presence of a potent inhibitor of glutamate uptake, the radioligand bound to a total number of sites of 36.7 pmol/mg protein in intact cells incubated in a Tris buffer containing Na+, Ca2+, and Cl, with a Kd around 2 M. In the absence of the above ions, [3H]glutamate specific binding diminished to 14.2 pmol/mg protein with a Kd-value of 550 nM. Under both of the above conditions, similar Kd were obtained in membranes isolated from cultures and from the newborn brain. However, Bmax-values were significantly lower in culture membranes than in intact cells or newborn membranes. Displacement studies showed that NMDA was the most potent compound to inhibit [3H]glutamate binding in membranes obtained from cultured neurons as well as from the newborn brain, whereas quisqualate, AMPA, kainate andtrans-ACPD were equally effective. According to these data and to the ionic dependence of glutamate binding, it was concluded that cultured neurons from the rat embryo forebrain express various glutamate receptor subtypes, mainly L-AP4 and NMDA receptors, with characteristics close to those in the newborn brain, and which display functional properties since a transient cell exposure to glutamate led to a 70% inhibition of [3H]TPP+ uptake.  相似文献   

16.
已有研究表明在脑缺血期间及再灌流后早期,海马CA1锥体神经元细胞内钙浓度明显升高,这一钙超载被认为是缺血性脑损伤的重要机制之一.电压依赖性钙通道是介导正常CA1神经元钙内流的主要途径.实验观察了脑缺血再灌流后早期海马CA1锥体神经元电压依赖性L型钙通道的变化.以改良的四血管闭塞法制作大鼠15 min前脑缺血模型,在急性分离的海马CA1神经元上,采用膜片钳细胞贴附式记录L型电压依赖性钙通道电流.脑缺血后CA1神经元L型钙通道的总体平均电流明显增大,这是由于通道的开放概率增加所致.进一步分析单通道动力学显示,脑缺血后通道的开放时间变长,通道的开放频率增大.研究结果提示L型钙通道功能活动增强可能参与了缺血后海马CA1锥体神经元的细胞内钙浓度升高.  相似文献   

17.
Gene expression plays an important role in determining the fate of neurons after ischemia. To identify additional genes that promote survival or execute programmed cell death in ischemic neurons, a subtractive cDNA library was constructed from hippocampus of rats subjected to global ischemia. With use of a differential screening technique, a cDNA was identified that was up-regulated after ischemia. The cDNA was found to have high homology with human cyclin H at both the nucleotide level (89%) and the amino acid level (93%). Northern blotting detected cyclin H mRNA in nonischemic and ischemic brains. In situ hybridization studies revealed that cyclin H message was found in hippocampal neurons in nonischemic brain. After ischemia, expression was increased primarily in the dentate gyrus and CA3 regions of hippocampus. Expression of cyclin H protein, detected by western blotting of hippocampal tissue, was increased after global ischemia, but expression of cyclins B1 and D1 and other related cell cycle genes (Cdk7 and Cdc2) was not increased. Cyclin H immunoreactivity was found exclusively within neurons. After ischemia, there was increased immunoreactivity within neurons in dentate gyrus, CA3, and cortex. Thus, cyclin H is expressed in normal postmitotic neurons and expression is increased in neurons that are ischemic yet survive. These results suggest that cyclin H may have functions in neurons other than cell cycle regulation, including other known functions such as DNA repair.  相似文献   

18.
19.
Glutamate release and neuronal damage in ischemia.   总被引:54,自引:0,他引:54  
Y Nishizawa 《Life sciences》2001,69(4):369-381
Neuronal injury caused by ischemia after occlusion of cerebral arteries is believed to be mediated by excessive activation of glutamate receptors. In the ischemic brain, extracellular glutamate is elevated rapidly after the onset of ischemia and declines following reperfusion. The mechanisms of the elevation of extracellular glutamate include enhanced efflux of glutamate and the reduction of glutamate uptake. The early efflux of glutamate occurring immediately after the onset of ischemia is mediated by a calcium-dependent process through activation of voltage-dependent calcium channels. The calcium-independent efflux at later stages is thought to be mediated primarily by glutamate transporters operating in the reverse mode owing to the imbalance of sodium ions across plasma membranes. Although high levels of glutamate in the extracellular space are well established to appear rapidly after the onset of ischemia, a direct linkage between the enhanced release of glutamate and the neuronal injury has not been fully established. In cultured neurons, ischemia induces efflux of glutamate into the extracellular space, but subsequent neuronal loss is not solely caused by the high glutamate concentration. In addition, cultured neurons can be rescued by NMDA antagonists added to the medium after exposure to glutamate receptor agonists. Two mechanisms can be proposed for neuroprotection by late NMDA receptor blockade, i.e., blocking of presynaptic release of glutamate after excessive activation of glutamate receptors, and blocking of postsynaptic sensitization of NMDA receptors.  相似文献   

20.
Tanshinone I (TsI) is an important lipophilic diterpene extracted from Danshen (Radix Salvia miltiorrhizae) and has been used in Asia for the treatment of cerebrovascular diseases such as ischemic stroke. In this study, we examined the neuroprotective effect of TsI against ischemic damage and its neuroprotective mechanism in the gerbil hippocampal CA1 region (CA1) induced by 5 min of transient global cerebral ischemia. Pre-treatment with TsI protected pyramidal neurons from ischemic damage in the stratum pyramidale (SP) of the CA1 after ischemia–reperfusion. The pre-treatment with TsI increased the immunoreactivities and protein levels of anti-inflammatory cytokines [interleukin (IL)-4 and IL-13] in the TsI-treated-sham-operated-groups compared with those in the vehicle-treated-sham-operated-groups; however, the treatment did not increase the immunoreactivities and protein levels of pro-inflammatory cytokines (IL-2 and tumor necrosis factor-α). On the other hand, in the TsI-treated-ischemia-operated-groups, the immunoreactivities and protein levels of all the cytokines were maintained in the SP of the CA1 after transient cerebral ischemia. In addition, we examined that IL-4 injection into the lateral ventricle did not protect pyramidal neurons from ischemic damage. In conclusion, these findings indicate that the pre-treatment with TsI can protect against ischemia-induced neuronal death in the CA1 via the increase or maintenance of endogenous inflammatory cytokines, and exogenous IL-4 does not protect against ischemic damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号