首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

In recent years, many immunoregulatory functions have been ascribed to soluble HLA-G (sHLA-G). Since chemotaxis is crucial for an efficient immune response, we have investigated for the first time the effects of sHLA-G on chemokine receptor expression and function in different human T cell populations.

Methodology/Principal Findings

T cell populations isolated from peripheral blood were stimulated in the presence or absence of sHLA-G. Chemokine receptors expression was evaluated by flow cytometry. sHLA-G downregulated expression of i) CCR2, CXCR3 and CXCR5 in CD4+ T cells, ii) CXCR3 in CD8+ T cells, iii) CXCR3 in Th1 clones iv) CXCR3 in TCR Vδ2γ9 T cells, and upregulated CXCR4 expression in TCR Vδ2γ9 T cells. sHLA-G inhibited in vitro chemotaxis of i) CD4+ T cells towards CCL2, CCL8, CXCL10 and CXCL11, ii) CD8+ T cells towards CXCL10 and CXCL11, iii) Th1 clones towards CXCL10, and iv) TCR Vδ2γ9 T cells towards CXCL10 and CXCL11. Downregulation of CXCR3 expression on CD4+ T cells by sHLA-G was partially reverted by adding a blocking antibody against ILT2/CD85j, a receptor for sHLA-G, suggesting that sHLA-G downregulated chemokine receptor expression mainly through the interaction with ILT2/CD85j. Follicular helper T cells (TFH) were isolated from human tonsils and stimulated as described above. sHLA-G impaired CXCR5 expression in TFH and chemotaxis of the latter cells towards CXCL13. Moreover, sHLA-G expression was detected in tonsils by immunohistochemistry, suggesting a role of sHLA-G in local control of TFH cell chemotaxis. Intracellular pathways were investigated by Western Blot analysis on total extracts from CD4+ T cells. Phosphorylation of Stat5, p70 s6k, β-arrestin and SHP2 was modulated by sHLA-G treatment.

Conclusions/Significance

Our data demonstrated that sHLA-G impairs expression and functionality of different chemokine receptors in T cells. These findings delineate a novel mechanism whereby sHLA-G modulates T cell recruitment in physiological and pathological conditions.  相似文献   

2.

Introduction

C-X-C motif chemokine 10 (CXCL10) is a chemokine that plays a critical role in the infiltration of T cells in autoimmune diseases and is reported to be expressed in muscle tissue of polymyositis. To determine the therapeutic efficacy of CXCL10 blockade, we investigated the role of CXCL10 and the effect of anti-CXCL10 antibody treatment in C protein-induced myositis (CIM), an animal model of polymyositis.

Methods

CIM was induced with human skeletal muscle C protein fragment in female C57BL/6 mice. Immunohistochemistry of CXCL10 and C-X-C motif chemokine receptor 3 (CXCR3) and measurement of serum CXCL10 were performed. Cell surface markers and interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) in CIM lymph node cells was investigated by flow cytometry. Mice with CIM were treated with anti-CXCL10 antibody or control antibody (anti-RVG1) and the inflammation in muscle tissue was assessed.

Results

Immunohistochemistry showed increased expression of CXCL10 and CXCR3 in the inflammatory lesions of muscle in CIM. Especially, CD8+ T cells invading myofiber expressed CXCR3. Serum level of CXCL10 was increased in CIM compared to the level in normal mice (normal mouse, 14.3 ± 5.3 pg/ml vs. CIM, 368.5 ± 135.6 pg/ml, P < 0.001). CXCR3 positivity in CD8+ T cells was increased compared to that of CD4+ T cells in the lymph node cells of CIM (CXCR3+ among CD8+ T cell, 65.9 ± 2.1% vs. CXCR3+ among CD4+ T cell, 23.5 ± 4.7%, P <0.001). Moreover, IFN-γ+ cells were increased among CXCR3+CD8+ T cells compared to CXCR3–CD8+ T cells (CXCR3+CD8+ T cell, 28.0 ± 4.2% vs. CXCR3-CD8+ T cell, 9.5 ± 1.5%, P = 0.016). Migration of lymph node cells was increased in response to CXCL10 (chemotactic index was 1.91 ± 0.45). CIM mice treated with anti-CXCL10 antibody showed a lower inflammation score in muscles than those with anti-RVG1 (median, anti-CXCL10 treatment group, 0.625 vs. anti-RVG1 treatment group, 1.25, P = 0.007).

Conclusions

CXCL10/CXCR3 expression was increased in the inflammation of CIM model and its blockade suppressed inflammation in muscle.  相似文献   

3.
4.

Introduction  

Systemic sclerosis (SSc) is characterized by fibrosis and microvascular abnormalities including dysregulated angiogenesis. Chemokines, in addition to their chemoattractant properties, have the ability to modulate angiogenesis. Chemokines lacking the enzyme-linked receptor (ELR) motif, such as monokine induced by interferon-γ (IFN-γ) (MIG/CXCL9) and IFN-inducible protein 10 (IP-10/CXCL10), inhibit angiogenesis by binding CXCR3. In addition, CXCL16 promotes angiogenesis by binding its unique receptor CXCR6. In this study, we determined the expression of these chemokines and receptors in SSc skin and serum.  相似文献   

5.
6.

Purpose  

The CXCR4/CXCL12 chemokine axis may play a critical role in guiding CXCR4+ circulating malignant cells to organ specific locations that actively secrete its ligand CXCL12 (SDF-1) such as bone, brain, liver, and lungs. We sought to characterize the presence of the CXCR4/CXCL12 axis in five uveal melanoma (UM) cell lines in vitro. The ability of TN14003, a synthetic peptide inhibitor that targets the CXCR4 receptor complex, to inhibit this axis was also assessed.  相似文献   

7.
The accumulation of T cells in the synovial membrane is the crucial step in the pathophysiology of the inflammatory processes characterizing juvenile idiopathic arthritis (JIA). In this study, we evaluated the expression and the pathogenetic role in oligoarticular JIA of a CXC chemokine involved in the directional migration of activated T cells, i.e. IFNγ-inducible protein 10 (CXCL10) and its receptor, CXCR3. Immunochemistry with an antihuman CXCL10 showed that synovial macrophages, epithelial cells, and endothelial cells bear the chemokine. By flow cytometry and immunochemistry, it has been shown that CXCR3 is expressed at high density by virtually all T lymphocytes isolated from synovial fluid (SF) and infiltrating the synovial membrane. Particularly strongly stained CXCR3+ T cells can be observed close to the luminal space and in the perivascular area. Furthermore, densitometric analysis has revealed that the mRNA levels for CXCR3 are significantly higher in JIA patients than in controls. T cells purified from SF exhibit a definite migratory capability in response to CXCL10. Furthermore, SF exerts significant chemotactic activity on the CXCR3+ T-cell line, and this activity is inhibited by the addition of an anti-CXCL10 neutralizing antibody. Taken together, these data suggest that CXCR3/CXCL10 interactions are involved in the pathophysiology of JIA-associated inflammatory processes, regulating both the activation of T cells and their recruitment into the inflamed synovium.  相似文献   

8.
In patients with rheumatoid arthritis (RA), chemokine and chemokine receptor interactions play a central role in the recruitment of leukocytes into inflamed joints. This study was undertaken to characterize the expression of chemokine receptors in the synovial tissue of RA and non-RA patients. RA synovia (n = 8) were obtained from knee joint replacement operations and control non-RA synovia (n = 9) were obtained from arthroscopic knee biopsies sampled from patients with recent meniscal or articular cartilage damage or degeneration. The mRNA expression of chemokine receptors and their ligands was determined using gene microarrays and PCR. The protein expression of these genes was demonstrated by single-label and double-label immunohistochemistry. Microarray analysis showed the mRNA for CXCR5 to be more abundant in RA than non-RA synovial tissue, and of the chemokine receptors studied CXCR5 showed the greatest upregulation. PCR experiments confirmed the differential expression of CXCR5. By immunohistochemistry we were able to detect CXCR5 in all RA and non-RA samples. In the RA samples the presence of CXCR5 was observed on B cells and T cells in the infiltrates but also on macrophages and endothelial cells. In the non-RA samples the presence of CXCR5 was limited to macrophages and endothelial cells. CXCR5 expression in synovial fluid macrophages and peripheral blood monocytes from RA patients was confirmed by PCR. The present study shows that CXCR5 is upregulated in RA synovial tissue and is expressed in a variety of cell types. This receptor may be involved in the recruitment and positioning of B cells, T cells and monocytes/macrophages in the RA synovium. More importantly, the increased level of CXCR5, a homeostatic chemokine receptor, in the RA synovium suggests that non-inflammatory receptor–ligand pairs might play an important role in the pathogenesis of RA.  相似文献   

9.
The role of chemokines in murine hepatitis virus strain 3 (MHV-3) induced fulminant hepatic failure (FHF) is not well defined. In this study, we investigated the role of the CXC chemokine receptor 3 (CXCR3)-associated chemokine [monokine induced by IFN-gamma (Mig/CXCL9) and interferon-gamma-inducible protein 10 (IP-10/CXCL10)] in the recruitment of intrahepatic lymphocytes and subsequent fulminant hepatic failure induced by MHV-3. Balb/cJ mice (6–8 weeks, female) were intraperitioneally injected with 100 PFU MHV-3.The proportions and numbers of T cells and NK cells as well as the expression of CXCR3 on T cells and NK cells in the liver, spleen and blood were analyzed by flow cytometry. The hepatic mRNA level of the CXCR3-associated chemokines (CXCL9 and CXCL10) was detected by realtime PCR. A transwell migration assay was used to assess the chemotactic effect of MHV-3-infected hepatocytes on the splenic lymphocytes. Following MHV-3 infection, the number of hepatic NK cells and T cells and the frequencies of hepatic NK cells and T cells expressing CXCR3 increased markedly; however, in the spleen and peripheral blood, they both decreased significantly. Moreover, the hepatic mRNAs levels of CXCL9 and CXCL10 were significantly elevated post infection. The transwell migration assay demonstrated that MHV-3-infected hepatocytes have the capacity to attract and recruit the splenic NK cells and T cells, and CXCL10 plays a key role in lymphocyte mobilization from the spleen. These results suggest that the CXCR3-associated chemokines (CXCL9 and CXCL10) may play an important role in the recruitment of intrahepatic lymphocytes and subsequent necroinflammation and hepatic failure in MHV-3 infection.  相似文献   

10.

Introduction  

Inflammatory joint destruction in rheumatoid arthritis (RA) may be triggered by autoantibodies, the production of which is supported by autoreactive T cells. Studies on RA and animal models of the disease suggest that T cells recruited in the joints can locally initiate or propagate arthritis. Herein, we investigated the role of joint-homing versus lymphoid organ-homing T cells in the development of proteoglycan-induced arthritis (PGIA), an autoimmune model of RA.  相似文献   

11.

Background

The CXCL12/CXCR4 axis is involved in kidney development by regulating formation of the glomerular tuft. Recently, a second CXCL12 receptor was identified and designated CXCR7. Although it is established that CXCR7 regulates heart and brain development in conjunction with CXCL12 and CXCR4, little is known about the influence of CXCR7 on CXCL12 dependent kidney development.

Methodology/Principal Findings

We provided analysis of CXCR7 expression and function in the developing mouse kidney. Using in situ hybridization, we identified CXCR7 mRNA in epithelial cells including podocytes at all nephron stages up to the mature glomerulus. CXCL12 mRNA showed a striking overlap with CXCR7 mRNA in epithelial structures. In addition, CXCL12 was detected in stromal cells and the glomerular tuft. Expression of CXCR4 was complementary to that of CXCR7 as it occurred in mesenchymal cells, outgrowing ureteric buds and glomerular endothelial cells but not in podocytes. Kidney examination in CXCR7 null mice revealed ballooning of glomerular capillaries as described earlier for CXCR4 null mice. Moreover, we detected a severe reduction of CXCR4 protein but not CXCR4 mRNA within the glomerular tuft and in the condensed mesenchyme. Malformation of the glomerular tuft in CXCR7 null mice was associated with mesangial cell clumping.

Conclusions/Significance

We established that there is a similar glomerular pathology in CXCR7 and CXCR4 null embryos. Based on the phenotype and the anatomical organization of the CXCL12/CXCR4/CXCR7 system in the forming glomerulus, we propose that CXCR7 fine-tunes CXCL12/CXCR4 mediated signalling between podocytes and glomerular capillaries.  相似文献   

12.
CXCR3 in T cell function   总被引:1,自引:0,他引:1  
CXCR3 is a chemokine receptor that is highly expressed on effector T cells and plays an important role in T cell trafficking and function. CXCR3 is rapidly induced on naïve cells following activation and preferentially remains highly expressed on Th1-type CD4+ T cells and effector CD8+ T cells. CXCR3 is activated by three interferon-inducible ligands CXCL9 (MIG), CXCL10 (IP-10) and CXCL11 (I-TAC). Early studies demonstrated a role for CXCR3 in the trafficking of Th1 and CD8 T cells to peripheral sites of Th1-type inflammation and the establishment of a Th1 amplification loop mediated by IFNγ and the IFNγ-inducible CXCR3 ligands. More recent studies have also suggested that CXCR3 plays a role in the migration of T cells in the microenvironment of the peripheral tissue and lymphoid compartment, facilitating the interaction of T cells with antigen presenting cells leading to the generation of effector and memory cells.  相似文献   

13.
Interferon-gamma-inducible protein-10 (IP-10)/CXCL10 is a CXC chemokine that attracts T lymphocytes and NK cells through activation of CXCR3, the only chemokine receptor identified to date that binds IP-10/CXCL10. We have found that several nonhemopoietic cell types, including epithelial and endothelial cells, have abundant levels of a receptor that binds IP-10/CXCL10 with a Kd of 1-6 nM. Surprisingly, these cells expressed no detectable CXCR3 mRNA. Furthermore, no cell surface expression of CXCR3 was detectable by flow cytometry, and the binding of 125I-labeled IP-10/CXCL10 to these cells was not competed by the other high affinity ligands for CXCR3, monokine induced by IFN-gamma/CXCL9, and I-TAC/CXCL11. Although IP-10/CXCL10 binds to cell surface heparan sulfate glycosaminoglycan (GAG), the receptor expressed by these cells is not GAG, since the affinity of IP-10/CXCL10 for this receptor is much higher than it is for GAG, its binding is not competed by platelet factor 4/CXCL4, and it is present on cells that are genetically incapable of synthesizing GAG. Furthermore, in contrast to IP-10/CXCL10 binding to GAG, IP-10/CXCL10 binding to these cells induces new gene expression and chemotaxis, indicating the ability of this receptor to transduce a signal. These high affinity IP-10/CXCL10-specific receptors on epithelial cells may be involved in cell migration and, perhaps, in the spread of metastatic cells as they exit from the vasculature. (All of the lung cancer cells we examined also expressed CXCR4, which has been shown to play a role in breast cancer metastasis.) CXCR3-negative endothelial cells may also use this receptor to mediate the angiostatic activity of IP-10/CXCL10, which is also expressed by these cells in an autocrine manner.  相似文献   

14.
IFN-gamma-inducible protein 10/CXCL10 is a chemokine associated with type 1 T cell responses, regulating the migration of activated T cells through binding to the CXCR3 receptor. Expression of both CXCL10 and CXCR3 are observed during immunopathological diseases of the CNS, and this receptor/ligand pair is thought to play a central role in regulating T cell-mediated inflammation in this organ site. In this report, we investigated the role of CXCL10 in regulating CD8(+) T cell-mediated inflammation in the virus-infected brain. This was done through analysis of CXCL10-deficient mice infected intracerebrally with lymphocytic choriomeningitis virus, which in normal immunocompetent mice induces a fatal CD8(+) T cell-mediated meningoencephalitis. We found that a normal antiviral CD8(+) T cell response was generated in CXCL10-deficient mice, and that lack of CXCL10 had no influence on the accumulation of mononuclear cells in the cerebrospinal fluid. However, analysis of the susceptibility of CXCL10-deficient mice to lymphocytic choriomeningitis virus-induced meningitis revealed that these mice just like CXCR3-deficient mice were partially resistant to this disease, whereas wild-type mice invariably died. Furthermore, despite marked up-regulation of the two remaining CXCR3 ligands: CXCL9 and 11, we found a reduced accumulation of CD8(+) T cells in the brain parenchyma around the time point when wild-type mice succumb as a result of CD8(+) T cell-mediated inflammation. Thus, taken together these results indicate a central role for CXCL10 in regulating the accumulation of effector T cells at sites of CNS inflammation, with no apparent compensatory effect of other CXCR3 ligands.  相似文献   

15.

Background

CXCR7 (RDC1), the recently discovered second receptor for CXCL12, is phylogenetically closely related to chemokine receptors, but fails to couple to G-proteins and to induce typical chemokine receptor mediated cellular responses. The function of CXCR7 is controversial. Some studies suggest a signaling activity in mammalian cells and zebrafish embryos, while others indicate a decoy activity in fish. Here we investigated the two propositions in human tissues.

Methodology/Principal Findings

We provide evidence and mechanistic insight that CXCR7 acts as specific scavenger for CXCL12 and CXCL11 mediating effective ligand internalization and targeting of the chemokine cargo for degradation. Consistently, CXCR7 continuously cycles between the plasma membrane and intracellular compartments in the absence and presence of ligand, both in mammalian cells and in zebrafish. In accordance with the proposed activity as a scavenger receptor CXCR7-dependent chemokine degradation does not become saturated with increasing ligand concentrations. Active CXCL12 sequestration by CXCR7 is demonstrated in adult mouse heart valves and human umbilical vein endothelium.

Conclusions/Significance

The finding that CXCR7 specifically scavenges CXCL12 suggests a critical function of the receptor in modulating the activity of the ubiquitously expressed CXCR4 in development and tumor formation. Scavenger activity of CXCR7 might also be important for the fine tuning of the mobility of hematopoietic cells in the bone marrow and lymphoid organs.  相似文献   

16.

Rationale

Inflammatory mechanisms have been suggested to play a role in the development of heart failure (HF), but a role for chemokines is largely unknown. Based on their role in inflammation and matrix remodeling in other tissues, we hypothesized that CXCL13 and CXCR5 could be involved in cardiac remodeling during HF.

Objective

We sought to analyze the role of the chemokine CXCL13 and its receptor CXCR5 in cardiac pathophysiology leading to HF.

Methods and Results

Mice harboring a systemic knockout of the CXCR5 (CXCR5−/−) displayed increased mortality during a follow-up of 80 days after aortic banding (AB). Following three weeks of AB, CXCR5−/− developed significant left ventricular (LV) dilatation compared to wild type (WT) mice. Microarray analysis revealed altered expression of several small leucine-rich proteoglycans (SLRPs) that bind to collagen and modulate fibril assembly. Protein levels of fibromodulin, decorin and lumican (all SLRPs) were significantly reduced in AB CXCR5−/− compared to AB WT mice. Electron microscopy revealed loosely packed extracellular matrix with individual collagen fibers and small networks of proteoglycans in AB CXCR5−/− mice. Addition of CXCL13 to cultured cardiac fibroblasts enhanced the expression of SLRPs. In patients with HF, we observed increased myocardial levels of CXCR5 and SLRPs, which was reversed following LV assist device treatment.

Conclusions

Lack of CXCR5 leads to LV dilatation and increased mortality during pressure overload, possibly via lack of an increase in SLRPs. This study demonstrates a critical role of the chemokine CXCL13 and CXCR5 in survival and maintaining of cardiac structure upon pressure overload, by regulating proteoglycans essential for correct collagen assembly.  相似文献   

17.

Introduction  

Chemokines and their receptors are potential therapeutic targets in rheumatoid arthritis (RA). Among these, several studies suggested the involvement of CXC chemokine 4 (CXCR4) and its ligand CXC ligand 12 (SDF-1) in RA pathogenesis. However, the role of these molecules in T-cell function is not known completely because of embryonic lethality of Cxcr4- and Cxcl12- deficient mice. In this report, we generated T cell-specific Cxcr4 -deficient mice and showed that the CXCR4 in T cells is important for the development of collagen-induced arthritis (CIA).  相似文献   

18.
19.

Background

Chronic Chagas cardiomyopathy (CCC), a life-threatening inflammatory dilated cardiomyopathy, affects 30% of the approximately 8 million patients infected by Trypanosoma cruzi. Even though the Th1 T cell-rich myocarditis plays a pivotal role in CCC pathogenesis, little is known about the factors controlling inflammatory cell migration to CCC myocardium.

Methods and Results

Using confocal immunofluorescence and quantitative PCR, we studied cell surface staining and gene expression of the CXCR3, CCR4, CCR5, CCR7, CCR8 receptors and their chemokine ligands in myocardial samples from end-stage CCC patients. CCR5+, CXCR3+, CCR4+, CCL5+ and CXCL9+ mononuclear cells were observed in CCC myocardium. mRNA expression of the chemokines CCL5, CXCL9, CXCL10, CCL17, CCL19 and their receptors was upregulated in CCC myocardium. CXCL9 mRNA expression directly correlated with the intensity of myocarditis, as well as with mRNA expression of CXCR3, CCR4, CCR5, CCR7, CCR8 and their ligands. We also analyzed single-nucleotide polymorphisms for genes encoding the most highly expressed chemokines and receptors in a cohort of Chagas disease patients. CCC patients with ventricular dysfunction displayed reduced genotypic frequencies of CXCL9 rs10336 CC, CXCL10 rs3921 GG, and increased CCR5 rs1799988CC as compared to those without dysfunction. Significantly, myocardial samples from CCC patients carrying the CXCL9/CXCL10 genotypes associated to a lower risk displayed a 2–6 fold reduction in mRNA expression of CXCL9, CXCL10, and other chemokines and receptors, along with reduced intensity of myocarditis, as compared to those with other CXCL9/CXCL10 genotypes.

Conclusions

Results may indicate that genotypes associated to reduced risk in closely linked CXCL9 and CXCL10 genes may modulate local expression of the chemokines themselves, and simultaneously affect myocardial expression of other key chemokines as well as intensity of myocarditis. Taken together our results may suggest that CXCL9 and CXCL10 are master regulators of myocardial inflammatory cell migration, perhaps affecting clinical progression to the life-threatening form of CCC.  相似文献   

20.
CXCL11 is thought to play a critical role in allograft rejection. To clarify the role of CXCL11 in the rat transplantation model, we cloned CXCL11 cDNA from rat liver tissue and used it to study CXCL11 structure, function and expression. The rat CXCL11 gene encodes a protein of 100 amino acids and spans approximately a 2.8 kb DNA segment containing 4 exons in the protein coding region. Tissue distribution of rat CXCL11 was analyzed by quantitative RT-PCR and showed that rat CXCL11 mRNA is expressed in various tissues and, in particular, at high levels in the spleen and lymph nodes. COS-1 cells were transfected with a plasmid vector encoding rat CXCL11 and used to study CXCL11 effects on cell migration and internalization of CXCR3, the CXCL11 receptor. The recombinant CXCL11 showed chemotactic properties and induced CXCR3 internalization in CD4+ T cells. Expression of CXCL11 mRNA also was measured in rat acute (ACI to LEW) and chronic (LEW to F344) heart transplant rejection models. CXCL11 mRNA expression in allografts increased in both models, compared with controls, and was primarily observed in infiltrating macrophages and donor endothelial cells. These results indicate that, like the other CXCR3 chemokines, rat CXCL11 seems to have a role in the homing of CD4+ T cells in both acute and chronic rejection models of heart allotransplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号