首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We studied plasmonic dipole, quadrupole, and sextupole modes of Ag nanoshell (NS) excited by a pair of aligned radial electric dipoles (bi-dipole) in symmetric and antisymmetric configurations by using dyadic Green’s functions. The mutual excitation rate and the radiative and nonradiative powers of bi-dipole in the presence of Ag NS were analyzed. Our results show that these modes are in accordance with the surface plasmon resonances of Ag NS irradiated by a polarized plane wave. In addition, the mutual excitation rate retains local maxima at these modes. Moreover, the quadrupole and octupole modes are only excited in the cases of the symmetric radial bi-dipole, while the dipole and sextupole modes are only excited in the cases of the antisymmetric ones. The dipole mode is broadband, while the other higher-order modes are narrowband. Moreover, all of these plasmonic modes are red-shifted as the ratio of the core radius to the shell thickness increases.  相似文献   

2.
We propose a universal plasmonic polarization state analyzer consisting of rectangular holes arranged along an Archimedes spiral in silver film. The analyzer can detect different polarization states of light including linear, circular, radial and azimuthal polarizations. The theoretical analysis of its transmitted field is performed on the basis of the dipole radiations, and the analytic expressions of the electric field distributions under different polarized illuminations are provided. The numerical simulations of the near-field transmissions are also conducted to verify the analytic results. The significant differences between the field distributions predict the practicability of the universal plasmonic polarization state analyzer in determining the incident light polarization states.  相似文献   

3.
Surface plasmon polaritons (SPPs) have appealing features such as tighter spatial confinement and higher local field intensity. Manipulation of surface plasmon polaritons on metal/dielectric interface is an important aspect in the achievement of integrated plasmonic circuit beyond the diffraction limit. Here, we introduce a design of pin cushion structure and a holographic groove pattern structure for tunable multi-port SPPs excitation and focusing. Free space light is coupled into SPPs through momentum matching conditions. Both nanostructures are capable of tunably controlling of SPPs depending on the incident polarizations, while the holographic method provides more flexibility of wavelength-dependent excitations. Furthermore, a quantitative method is applied to calculate the efficiencies of excitation for both nanostructures under different conditions, including radially polarized incident beams. These results can work as a guidance and be helpful to further choice of the suitable design strategies for variable plasmonic applications such as beam splitter, on-chip spectroscopy, and plasmonic detectors.  相似文献   

4.

Although spiral plasmonic lens has been proposed as circular polarization analyzer, there is no such plasmonic nanostructure available for linear polarization. In the current work, we have designed nano-corral slits (NCS) plasmonic lens, which focuses the x- and y-polarized light into spatially distinguished plasmonic fields. We have calculated analytically and numerically the electric field intensity and phase of the emission from nano-corral slits plasmonic lens with different pitch lengths under various polarizations of the illumination. It has been shown that one can control the wave front of the output beam of these plasmonic lenses by manipulating the illumination of both circular and linear polarization. Our theoretical study in correlation with FDTD simulation has shown that NCS plasmonic lens with pitch length equal to λspp produces scalar vortex beam having optical complex fields with helical wave front and optical singularity at the center under circular polarization of light. When NCS lens (pitch = λspp) is illuminated with linearly polarized light, it exhibits binary distribution of phase with same electric field intensity around the center. However, with pitch length of 0.5λspp, NCS shows linear dichroism under linearly polarized illumination unlike spiral plasmonic lens (SPL) eliminating the use of circularly polarized light. Optical complex fields produced by these NCS plasmonic lenses may find applications for faster quantum computing, data storage, and telecommunications.

  相似文献   

5.
Stallberg  K.  Lilienkamp  G.  Daum  W. 《Plasmonics (Norwell, Mass.)》2019,14(6):1489-1496

The presence of a surrounding medium strongly affects the spectral properties of localized surface plasmons at metallic nanoparticles. Vice versa, plasmonic resonances have large impact on the electric polarization in a surrounding or supporting material. For applications, e.g., in light-converting devices, the coupling of localized surface plasmons with polarizations in semiconducting substrates is of particular importance. Using photoemission electron microscopy with tunable laser excitation, we perform single-particle spectroscopy of silver nanoclusters directly grown on Si(100). Two distinct localized surface plasmon modes are observed as resonances in the two-photon photoemission signals from individual silver clusters. The strengths of these resonances strongly depend on the polarization of the exciting electric field, which allows us to assign them to plasmon modes with polarizations parallel and perpendicular, respectively, to the supporting silicon substrate. Our mode assignment is supported by simulations which provide insight into the mutual interaction of charge oscillations at the particle surface with electric polarizations at the silver/silicon interface.

  相似文献   

6.
We study the cooperative effects between plasmon gap modes and optical cavity modes of a novel triple-layer structure consisting of double continuous gold films separated by a gold nanosphere array. Narrowband near-perfect antireflection of optical field is achieved for the first time due to the strong near-field light–matter interaction within the deep sub-wavelength gaps between adjacent nanospheres combined with the spatial field confinement effects of the optical cavity built by the double gold films. The coexistence cooperation of near-field dipole plasmon resonances and spatial optical field confinement presents more efficient light modification than that of the individual subsystem and may open a new approach to manage light flow. By varying the period of nanosphere array, the diameter of nanospheres, and the distance between the array and the film, optical behaviors of the proposed structure can be tuned in a wide range. High environmental sensitivity and large figure of merit factor are obtained using this structure as the detecting substrate. Furthermore, ultra-compact structure and high conduction suggest the proposed structure being a good candidate for potential applications in highly integrated optoelectronic devices, such as plasmonic filters and sensors.  相似文献   

7.
A novel method is presented for complex structure fabrication, which is capable of breaking the hexagonal symmetry of the conventional colloid sphere lithography via the interferometric illumination of colloid sphere monolayers (IICSM). It is demonstrated that the perfect lateral synchronization of a linear intensity modulation originating from two-beam interference with respect to a hexagonal colloid sphere monolayer makes it possible to tune four complex structure parameters independently. Based on comparative study of hexagonal and rectangular hole doublet-arrays, which can be generated by linearly polarized light via homogeneous illumination and via IICSM, it is shown that the novel IICSM method enables plasmonic spectral engineering with higher degrees of freedom. The unique spectral properties of the complex patterns attainable via IICSM are more precisely tunable by properly selected azimuthal orientation during illumination and by the surrounding medium. It is shown that coupling phenomena between propagating and localized plasmonic modes on appropriately designed complex structures result in unique charge and near-field distribution accompanied by narrow Fano lines. Optimal configurations of complex plasmonic structures consisting of a rectangular array of hole doublets with different geometrical size parameters are presented, which ensure enhanced sensitivity in bio-detection.  相似文献   

8.
We theoretically study mode hybridization and interaction among surface plasmon polariton Bloch wave mode, Fabry–Perot cavity mode, and waveguide mode within a plasmonic cavity composed by two parallel planar bimetallic gratings. Four hybridized modes result from mode hybridization between surface plasmon polariton Bloch wave modes on the two gratings are observed. By changing the dielectric environment, mode hybridization behavior can be manipulated. Importantly, waveguide-plasmon polariton mode due to hybridization between grating supported surface plasmon polariton Bloch wave mode and cavity supported waveguide mode is observed. We demonstrate that surface plasmon polariton Bloch wave mode and Fabry–Perot cavity mode with the same mode symmetry can interact by presenting an anticrossing behavior, which can be controlled by laterally shifting one grating with respect to the other that causes a phase difference shift of the two involving modes. The proposed plasmonic cavity offers potentials for subwavelength lithography, tunable plasmonic filter, and controllable light-matter interaction.  相似文献   

9.
The extraordinary transmission of the subwavelength gold grating has been investigated by the rigorous coupled-wave analysis and verified by the metal–insulator–metal plasmonic waveguide method. The physical mechanisms of the extraordinary transmission are characterized as the excitation of the surface plasmon polariton modes. The subwavelength grating integrated with the distributed Bragg reflector is proposed to modulate the phase to realize spatial mode selection, which is prospected to be applied for transverse mode selection in the vertical cavity surface-emitting laser.  相似文献   

10.
In this work, near-field scanning optical microscopy is employed to study a porous Au film and the direct observation of topographic artifacts and surface plasmon influences is revealed. Under tip illumination, topographic artifacts are found to be present in a reflection mode optical image but not in a transmission mode image. A simple algorithm is used for filtering the topographic artifacts and extracting a correct near-field optical image approximately. On the other hand, surface plasmon influences are present in both modes. By using three exciting wavelengths of 488, 647.1, and 520.8 nm, it is confirmed that a suitable wavelength should be chosen for avoiding the surface plasmon interference in a near-field optical investigation of morphological or material dielectric contrast. Finally, plasmonic or nonplasmonic regions on the porous Au film can be identified from the observed optical intensity variation in the optical images obtained at incident polarizations of 0°, 90°, and 45°.  相似文献   

11.
A plasmonic lens with variant periods was investigated for optical behavior at near-field by means of numerical computational method. To study influence of incident light on different polarization modes, we considered linear polarization, circular polarization, elliptical polarization, radial polarization (RP), and azimuthally polarization in our computational analyses. A finite difference and time domain algorithm is employed in the numerical study. Our computational numerical calculation results demonstrate that focusing performance for the plasmonic lens illuminated under radial polarization is best in comparison to that of the illumination with the other four polarization states. The plasmonic lens with RP illumination can realize superfocusing with ultra-long depth of focus. It is possible to be used as an optical probe or a type of plasmonic lens for imaging with high resolution in the near future.  相似文献   

12.
By microinjecting rhodamine-conjugated pig brain tubulin into living pea stem epidermal cells it has been possible to follow cortical microtubules beneath the outer tangential wall (OTW) as they re-orientate from a transverse to a longitudinal alignment. Earlier immunofluorescence studies on fixed material have shown that parallel cortical microtubules circumnavigate the cell forming apparently continuous arrays which are transverse, oblique or longitudinal to the cell's long axis. If the array re-orientates as a whole then microtubules along the radial walls would be expected to share the alignment of those on the tangential walls. There are, however, reports that microtubules beneath the outer tangential wall have a different orientation from microtubules at the radial cell walls, raising important questions about the construction and behaviour of the array. Using computer-rotated stacks of optical sections collected by confocal scanning laser microscopy it has been possible to display the microtubules along radial as well as tangential walls of the same microinjected cells. These observations demonstrate for living epidermal cells that when microtubules are aligned longitudinally at the outer epidermal wall they remain oblique or transverse at the radial walls. The array may not therefore re-orientate as a whole but seems to undergo re-organization on only one cell face. However, despite the differing angles between the OTW and radial walls microtubules still form patterns which at the level of the confocal microscope are continuous from one cell face to another, around the cell.
It is concluded that some organizing principle attempts to establish overall organization at the cellular level but that this can be perturbed by local re-organization of dynamic microtubules in subcellular domains. This study emphasizes the importance of the outer epidermal wall and its associated cytoskeleton in initiating changes in the direction of cell expansion.  相似文献   

13.
The centrosome is normally thought to determine the cell center and to dictate the formation of a radial array of microtubules that defines the spatial organization of cytoplasm. However, experiments indicate the existence of a mechanism for organization of a centered microtubule array that is independent of the centrosome. Here, we formulate a model of treadmilling dynamics of non-centrosomal microtubules that predicts a spontaneously established, polarized distribution of microtubule orientation. Based on this model, we propose that the autonomous ability of non-centrosomal microtubules to form a polarized array arises from their treadmilling within the space constrained by the cell boundary.  相似文献   

14.
Tuning effect of different polarization states was presented in this paper. It can be realized by a plasmonic lens constructed with elliptical pinholes ranging from submicron to nanoscales distributed in variant period along radial direction. Propagation properties of the lens illuminated under four different polarization states: linear, elliptical, radial, and cylindrical vector beam, were calculated and analyzed combining with finite-difference time-domain algorithm. Different focusing performances of the lens were illustrated while the polarized light passes through the pinholes. Our calculation results demonstrate that polarization effect of the elliptical pinholes-based plasmonic lens can generate high transmission intensity and sharp focusing for our proposed specific structures. Beam focal region, position, and transmission intensity distribution can be tailored by the four polarization states.  相似文献   

15.
We present detailed experimental and numerical studies of plasmonic properties of gold nanoring (NR) arrays with different slab thicknesses from 15 to 125 nm. The hybrid plasmon resonances for the bonding and antibonding modes in gold NRs exhibit a high slab thickness dependence behavior in optical properties. For the thinner slab thickness below 50 nm, both hybrid modes show large spectral tunabilities by varying the slab thickness. Furthermore, for such hollow NR structure, the enhancements of electric field intensities at the inner and outer ring surfaces when reducing the slab thickness are investigated. We observe a significant transition of field distributions for the antibonding mode. All these features can be understood by surface charge distributions from our simulations. The results of this study offer a potential strategy to design a composite plasmonic nanostructure with large field enhancement for numerous applications.  相似文献   

16.
Archimedean nanospirals exhibit many far-field resonances that result from the lack of symmetry and strong intra-spiral plasmonic interactions. Here, we present a computational study, with corroborating experimental results, on the plasmonic response of the 4π Archimedean spiral as a function of incident polarization, for spirals in which the largest linear dimension is less than 550 nm. We discuss the modulation of the near-field structure for linearly and circularly polarized light in typical nanospiral configurations. Computational studies of the near-field distributions excited by circularly polarized light illustrate the effects of chirality on plasmonic mechanisms, while rotation of linearly polarized light provides a detailed view of the effects of broken symmetry on nanospiral fields in any given direction in the plane of the spiral. The rotational geometry exhibits a preference for circular polarization that increases near-field enhancement compared to excitation with linearly polarized light and exchanges near-field configurations and resonant modes. By analyzing the effects of polarization and wavelength on the near-field configurations, we also show how the nanospiral could be deployed in applications such as tunable near-field enhancement of nonlinear optical signals from chiral molecules.  相似文献   

17.
Coupling between physical modes can trigger some new physical phenomena such as frequency shift, new mode, and Rabi splitting. Resonant modes in graphene-based metamaterials provide a new platform for the research of coupling. In this work, we demonstrate that the plasmonic coupling of split ring resonator (SRR) dimer in graphene-based metamaterials can be easily manipulated. This magnetoinductive coupling can switch on/off the dark modes easily, which is usually done by symmetry-breaking structure previously. Furthermore, the dark mode can also be activated by Fermi energy as well as carrier concentration changing with either physical or chemical methods conveniently. In addition, different graphene-based SRR dimer configurations present different coupling strengths, which benefits the designing and optimizing of graphene-based metamaterials. The demonstration could enhance the versatility of both coupling studies in terahertz (THz) region and graphene-based metamaterials for THz devices.  相似文献   

18.
A polarization-controlled tunable plasmonic lens which can generate different multi-focal combinations with exciting sources of left and right circular polarizations is proposed in this paper. Both position and intensity of each focal point can be adjusted by modulating the structure of the plasmonic lens. It is believed that the polarization-controlled tunable plasmonic multi-focal lens can be potentially used for optical switches and multi-channel couplers in future logic photonic and plasmonic systems.  相似文献   

19.
In this paper, we investigate the focusing properties of a plasmonic lens with multiple-turn spiral nano-structures, and analyze its field enhancement effect based on the phase matching theory and finite-difference time-domain simulation. The simulation result demonstrates that a left-hand spiral plasmonic lens can concentrate an incident right-hand circular polarization light into a focal spot with a high focal depth. The intensity of the focal spot could be controlled by altering the number of turns, the radius and the width of the spiral slot. And the focal spot is smaller and has a higher intensity compared to the incident linearly polarized light. This design can also eliminate the requirement of centering the incident beam to the plasmonic lens, making it possible to be used in plasmonic lens array, optical data storage, detection, and other applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号