首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conservation of forest genetic resources requires intensive knowledge of the spatial arrangement of genetic diversity. In this study, we used four natural Prunus avium stands in Germany with contrasting for densities to understand patterns of spatial genetic structure. To this end, we genotyped adults and saplings at eight microsatellite markers, 54 AFLP loci and at the gametophytic incompatibility locus. We estimated levels of clonal propagation, spatial genetic structure and gene dispersal. High mortality occurred among young clonal individuals, as depicted by the lower clonal diversity in saplings. Contrasting levels of spatial genetic structure were observed among markers, ontogenic stages and populations. AFLP were more efficient for detecting spatial autocorrelation but did not allow us to differentiate low and high density populations, while high density populations showed substantially stronger spatial genetic structure at microsatellite loci. Furthermore, kinship decreased with tree age only in low density stands. We discuss the present results in terms of population history, pollen and seed dispersal and population density. Although conspecific density seems to be an interesting indicator of genetic diversity for conservation programmes, we still need to disentangle the relative influence of clonal propagation and density on the strength of spatial genetic structure. Simulation studies are needed to further address this question.  相似文献   

2.
Owing to the reduction of population density and/or the environmental changes it induces, selective logging could affect the demography, reproductive biology and evolutionary potential of forest trees. This is particularly relevant in tropical forests where natural population densities can be low and isolated trees may be subject to outcross pollen limitation and/or produce low-quality selfed seeds that exhibit inbreeding depression. Comparing reproductive biology processes and genetic diversity of populations at different densities can provide indirect evidence of the potential impacts of logging. Here, we analysed patterns of genetic diversity, mating system and gene flow in three Central African populations of the self-compatible legume timber species Erythrophleum suaveolens with contrasting densities (0.11, 0.68 and 1.72 adults per ha). The comparison of inbreeding levels among cohorts suggests that selfing is detrimental as inbred individuals are eliminated between seedling and adult stages. Levels of genetic diversity, selfing rates (∼16%) and patterns of spatial genetic structure (Sp ∼0.006) were similar in all three populations. However, the extent of gene dispersal differed markedly among populations: the average distance of pollen dispersal increased with decreasing density (from 200 m in the high-density population to 1000 m in the low-density one). Overall, our results suggest that the reproductive biology and genetic diversity of the species are not affected by current logging practices. However, further investigations need to be conducted in low-density populations to evaluate (1) whether pollen limitation may reduce seed production and (2) the regeneration potential of the species.  相似文献   

3.
Habitat fragmentation, i.e., the reduction of populations into small isolated remnants, is expected to increase spatial genetic structure (SGS) in plant populations through nonrandom mating, lower population densities and potential aggregation of reproductive individuals. We investigated the effects of population size reduction and genetic isolation on SGS in maritime pine ( Pinus pinaster Aiton) using a combined experimental and simulation approach. Maritime pine is a wind-pollinated conifer which has a scattered distribution in the Iberian Peninsula as a result of forest fires and habitat fragmentation. Five highly polymorphic nuclear microsatellites were genotyped in a total of 394 individuals from two population pairs from the Iberian Peninsula, formed by one continuous and one fragmented population each. In agreement with predictions, SGS was significant and stronger in fragments ( Sp  = 0.020 and Sp  = 0.026) than in continuous populations, where significant SGS was detected for one population only ( Sp  = 0.010). Simulations suggested that under fat-tailed dispersal, small population size is a stronger determinant of SGS than genetic isolation, while under normal dispersal, genetic isolation has a stronger effect. SGS was always stronger in real populations than in simulations, except if unrealistically narrow dispersal and/or high variance of reproductive success were modelled (even when accounting for potential overestimation of SGS in real populations as a result of short-distance sampling). This suggests that factors such as nonrandom mating or selection not considered in the simulations were additionally operating on SGS in Iberian maritime pine populations.  相似文献   

4.
Some studies have found that dispersal rates and distances increase with density, indicating that density‐dependent dispersal likely affects spatial genetic structure. In an 11‐year mark–recapture study on a passerine, the dark‐eyed junco, we tested whether density affected dispersal distance and/or fine‐scale spatial genetic structure. Contrary to expectations, we found no effect of predispersal density on dispersal distance or the proportion of locally produced juveniles returning to the population from which they hatched. However, even though density did not affect dispersal distance or natal return rates, we found that density still did affect spatial genetic structure. We found significant positive spatial genetic structure at low densities of (postdispersal) adults but not at high densities. In years with high postdispersal (adult) densities that also had high predispersal (juvenile) densities in the previous year, we found negative spatial genetic structure, indicating high levels of dispersal. We found that density also affected fitness of recruits, and fitness of immigrants, potentially linking these population parameters with the spatial genetic structure detected. Immigrants and recruits rarely nested in low postdispersal density years. In contrast, in years with high postdispersal density, recruits were common and immigrants had equal success to local birds, so novel genotypes diluted the gene pool and effectively eliminated positive spatial genetic structure. In relation to fine‐scale spatial genetic structure, fitness of immigrants and new recruits is poorly understood compared to dispersal movements, but we conclude that it can have implications for the spatial distribution of genotypes in populations.  相似文献   

5.
Arabidopsis halleri, a close wild relative of A. thaliana, is a clonal, insect-pollinated herb tolerant to heavy metals (Zn, Pd, Cd) and a hyperaccumulator of Zn and Cd. It is of particular interest in the study of evolutionary processes and phytoremediation. However, little is known about its population gene flow patterns and the structure of its genetic diversity. We used five microsatellite loci to investigate the genetic structure at a fine spatial scale (10 cm to 500 m) in a metallicolous population of A. halleri. We also studied the contributions made by clonal propagation and sexual reproduction (seed and pollen dispersal) to the genetic patterns. Clonal diversity was high (D(G) > 0.9). Clonal spread occurs only at short distances (< 1 m). Both clonal spread and limited dispersal, associated with sexual reproduction, contribute to the significant spatial genetic structure revealed by spatial autocorrelation analysis. The shape of the autocorrelogram suggests that seed dispersal is restricted and pollen flow extensive, which may be related to intense activity by insect pollinators. Clonal spread was more extensive in the lowly polluted zone than in the highly polluted zone. This cannot be interpreted as a strategy for promoting the propagation of adapted genotypes under the harshest ecological constraints (highest heavy metal concentrations). The higher fine-scale spatial genetic structure found in the lowly polluted zone can be ascribed to plant densities that were lower than in the highly polluted zone. No evidence of genetic divergence due to spatial heavy metal heterogeneity was found between lowly and highly polluted zones.  相似文献   

6.
We studied the population genetic and clonal structure of the endangered long-lived perennial plant Narcissus pseudonarcissus using random amplified polymorphic markers. Estimates for mean gene diversity within 15 populations of N. pseudonarcissus of three neighbouring geographical regions were high in comparison to other long-lived perennials (H eN = 0.33). The genetic diversity of the two smallest populations (<200 plants) was significantly reduced, indicating loss of genetic variability due to drift. The analysis of the population genetic structure revealed a significant genetic differentiation both between regions (ΦST = 0.06) and between populations within regions (ΦST = 0.20). However, there was incomplete correspondence between geographical regions and the population genetic structure. In order to preserve the overall genetic variation in wild populations of N. pseudonarcissus, management measures should thus aim to protect many populations in each region. The spatial genetic structure within populations of N. pseudonarcissus was in agreement with an isolation by distance model indicating limited gene flow due to pollinator behaviour and restricted seed dispersal. The very restricted spatial extent of clonal growth (<5 cm) and the high level of clonal diversity indicate that clonal growth in N. pseudonarcissus is not an important mode of propagation and that management measures should favour sexual reproduction in order to avoid further reductions in the size and number of populations.  相似文献   

7.
Aims The dispersal of pollen and seeds is spatially restricted and may vary among plant populations because of varying biotic interactions, population histories or abiotic conditions. Because gene dispersal is spatially restricted, it will eventually result in the development of spatial genetic structure (SGS), which in turn can allow insights into gene dispersal processes. Here, we assessed the effect of habitat characteristics like population density and community structure on small-scale SGS and estimate historical gene dispersal at different spatial scales.Methods In a set of 12 populations of the subtropical understory shrub Ardisia crenata, we assessed genetic variation at 7 microsatellite loci within and among populations. We investigated small-scale genetic structure with spatial genetic autocorrelation statistics and heterogeneity tests and estimated gene dispersal distances based on population differentiation and on within-population SGS. SGS was related to habitat characteristics by multiple regression.Important findings The populations showed high genetic diversity (H e = 0.64) within populations and rather strong genetic differentiation (F ′ ST = 0.208) among populations, following an isolation-by-distance pattern, which suggests that populations are in gene flow–drift equilibrium. Significant SGS was present within populations (mean Sp = 0.027). Population density and species diversity had a joint effect on SGS with low population density and high species diversity leading to stronger small-scale SGS. Estimates of historical gene dispersal from between-population differentiation and from within-population SGS resulted in similar values between 4.8 and 22.9 m. The results indicate that local-ranged pollen dispersal and inefficient long-distance seed dispersal, both affected by population density and species diversity, contributed to the genetic population structure of the species. We suggest that SGS in shrubs is more similar to that of herbs than to trees and that in communities with high species diversity gene flow is more restricted than at low species diversity. This may represent a process that retards the development of a positive species diversity–genetic diversity relationship.  相似文献   

8.
Local genetic structure in a clonal dioecious angiosperm   总被引:6,自引:0,他引:6  
We used seven microsatellite loci to characterize genetic structure and clonal architecture at three different spatial scales (from meters to centimetres) of a Cymodocea nodosa population. C. nodosa exhibits both sexual reproduction and vegetative propagation by rhizome elongation. Seeds remain buried in the sediment nearby the mother plant in a dormant stage until germination. Seed dispersal potential is therefore expected to be extremely restricted. High clonal diversity (up to 67% of distinct genotypes) and a highly intermingled configuration of genets at different spatial scales were found. No significant differences in genetic structure were found among the three spatial scales, indicating that genetic diversity is evenly distributed along the meadow. Autocorrelation analyses of kinship estimates confirmed the absence of spatial clumping of genets at small spatial scale and the expectations of a very restricted seed dispersal (observed dispersal range 1-21 m) in this species.  相似文献   

9.
We studied the within-population genetic structure and the clonality extent of Viola calaminaria, a rare endemic species of calamine soils, by means of RAPD markers in two populations (one recent and one ancient) with expected harsh and heterogeneous heavy-metal stress. At a very local scale (0.2-3 m), clonal propagation was detected in both populations, but the levels of clonal diversity were high (number of genets/number of ramets sampled = 0.9 [recent] and 0.76 [ancient]) and the maximal observed extension of the clones was 0.4 m. This indicated that clonality is not, for the species, an important mode of propagation and that clonal growth cannot be interpreted as a strategy for propagating or perpetuating adapted genotypes under harsh ecological constraints. Spatial autocorrelations revealed a significant (P < 0.001) negative value of correlogram slope in the two populations even when a single individual per clone was considered (i.e., analysis at the genet level). We conclude that spatial genetic structure at a very local scale reflects limited gene flow due to restricted seed dispersal rather than variation in clonal pattern in response to environmental heterogeneity. At a larger scale (2-30 m), spatial autocorrelations revealed a positive (P < 0.001) correlation at < 3 m and a random pattern at larger distances for the two populations. This suggested a patchy distribution of the genetically linked individuals associated with a disrupted pattern at a longer distance probably due to gene flow by pollen dispersal and a seed bank effect. The implications for the conservation of V. calaminaria are discussed.  相似文献   

10.
Rutidosis leptorrynchoides is a perennial forb endemic to grasslands and grassy woodlands in southeastern Australia. Studies of seed dispersal, spatial genetic structure and clonality were carried out in four populations around the Canberra region that varied in levels of correlated paternity to examine: (1) whether R. leptorrhynchoides populations exhibit fine-scale spatial genetic structure and whether this varies between populations as a function of correlated paternity; (2) whether there is a correlation between seed dispersal distance and genetic relatedness within populations; and (3) whether clonal reproduction occurs in this species and to what degree this could account for the observed spatial genetic structure. The results show that there is variation in the magnitude and extent of spatial genetic structure between R. leptorrhynchoides populations. The three larger populations, with low to moderate full-sib proportions, showed significant patterns of coancestry between plants over scales of up to one metre, whereas the smallest population, with a high full-sib proportion, had erratically high but non-significant coancestry values. The observed patterns of genetic clumping could be explained by a combination of limited seed dispersal and correlated mating owing to limited mate availability resulting from the species' sporophytic self-incompatibility system. Clonality does not appear to be an important factor contributing to genetic structure in this species.  相似文献   

11.
In Flanders (northern Belgium), the distylous self-incompatible perennial herb Primula veris is common, but mainly occurs in fragmented habitats. Distyly, which favours disassortative mating, is characterized in P. veris by two genetically determined floral morph types (pin or thrum). Using 18 polymorphic loci, we investigated fine-scale spatial genetic structure (SGS) and spatial distribution of the morphs within four populations from two regions that differ in degree of habitat fragmentation. We studied the contributions made by sexual reproduction and clonal propagation and compared the SGS patterns between pin and thrum morph types. Clonal growth was very restricted to a few individuals and to short distances. One population showed a non-random spatial distribution of the morphs. Pin and thrum individuals differed in SGS patterns at a small scale, suggesting intrapin biparental inbreeding, also related to high plant densities. This may be explained by partial self-compatibility of the pin morph combined with restricted seed dispersal and pollinator behaviour. There is an indication of more pronounced SGS when populations occur in highly fragmented habitats. From our findings, we may hypothesize disruption of the gene flow processes if these large populations evolve into patchworks of small remnants, but also a possible risk for long-term population survival if higher intrapin biparental inbreeding leads to inbreeding depression. Our study emphasizes the need for investigating the interactions between the heterostylous breeding system, population demographic and genetic structure for understanding population dynamics in fragmented habitats and for developing sustainable conservation strategies.  相似文献   

12.
Higher levels of genetic diversity of river macrophytes are expected in downstream parts because of potential accumulation of various genotypes from upstream sites. We assessed the clonal diversity and spatial genetic structure of fennel pondweed (Potamogeton pectinatus or Stuckenia pectinata) populations with emphasis on the estimation of dispersal via clonal propagules along a river in connection to upstream ponds. We analysed genetic diversity of 354 plant shoots sampled in 2005 and 2006 at three pond and five river sites in the Woluwe river catchment (Belgium). Nine microsatellite DNA markers revealed 88 genets of which 89% occurred in only one site. Clonal propagule dispersal was detected up to 10 km along the river. Few multilocus genotypes were repeatedly present along a major part of the river indicating vegetative spread. Populations of ponds contained a higher amount of clonal diversity, indicating the importance of local seed recruitment. A fine-scaled spatial genetic structure indicated that most seedling recruitment occurred at a distance <5 m in pond populations whereas clones in river sites were unrelated and showed no spatial autocorrelation. The clonal diversity decreased along the river from upstream to downstream due to establishment of few large clones.  相似文献   

13.
Stenocereus eruca (Cactaceae), a prostrate cactus endemic to the Sonoran Desert, is thought to be highly clonal. We examined its clonal diversity and distribution: (1) at the population level, in four distinct populations along its distribution range; and (2) at a micro scale level, within a single population. Our objective was to evaluate the importance of sexual versus clonal recruitment through the use of RAPD markers. Contrary to previous field observations, clonal diversity was relatively high across the distribution range. This finding suggests that sexual recruitment is an important regeneration mechanism. The proportions of distinguishable genotypes (G/N = 0.83) and genotypic diversity (D = 0.987) were greater than in other clonal cacti, suggesting that clonal propagation is not the major regeneration mechanism. Autocorrelation analyses revealed a spatial genetic structure that may be the result of restricted gene flow (via pollen or seeds) and clonal propagation. A molecular variance analysis (AMOVA) indicated that most of the variation (66.3%) was found within and not across populations. Future studies on pollen and seed dispersal are needed to understand the role of the clonal habit in the mating system of S. eruca.  相似文献   

14.
Ecological genetic studies have demonstrated that spatial patterns of mating dispersal, the dispersal of gametes through mating behaviour, can facilitate inbreeding avoidance and strongly influence the structure of populations, particularly in highly philopatric species. Elements of breeding group dynamics, such as strong structuring and sex-biased dispersal among groups, can also minimize inbreeding and positively influence levels of genetic diversity within populations. Rock-wallabies are highly philopatric mid-sized mammals whose strong dependence on rocky terrain has resulted in series of discreet, small colonies in the landscape. Populations show no signs of inbreeding and maintain high levels of genetic diversity despite strong patterns of limited gene flow within and among colonies. We used this species to investigate the importance of mating dispersal and breeding group structure to inbreeding avoidance within a 'small' population. We examined the spatial patterns of mating dispersal, the extent of kinship within breeding groups, and the degree of relatedness among brush-tailed rock-wallaby breeding pairs within a colony in southeast Queensland. Parentage data revealed remarkably restricted mating dispersal and strong breeding group structuring for a mid-sized mammal. Breeding groups showed significant levels of female kinship with evidence of male dispersal among groups. We found no evidence for inbreeding avoidance through mate choice; however, anecdotal data suggest the importance of life history traits to inbreeding avoidance between first-degree relatives. We suggest that the restricted pattern of mating dispersal and strong breeding group structuring facilitates inbreeding avoidance within colonies. These results provide insight into the population structure and maintenance of genetic diversity within colonies of the threatened brush-tailed rock-wallaby.  相似文献   

15.
Seagrass are under great stress in the tropical coast of Asia, where Enhalus acoroides is frequently the dominant species with a large food web. Here, we investigate the question of the fine‐scale genetic structure of this ecologically important foundation species, subject to severe anthropogenic disturbance in China. The genetic structure will illuminate potential mechanisms for population dynamics and sustainability, which are critical for preservation of biodiversity and for decision‐making in management and restoration. We evaluated the fine‐scale spatial genetic structure (SGS) and flowering output of E. acoroides, and indirectly estimated the relative importance of sexual versus asexual reproduction for population persistence using spatial autocorrelation analysis. Results reveal high clonal diversity for this species, as predicted from its high sexual reproduction output. The stronger Sp statistic at the ramet‐level compared with genet‐level indicates that clonality increases the SGS pattern for E. acoroides. Significant SGS at the genet‐level may be explained by the aggregated dispersal of seed/pollen cohorts. The estimated gene dispersal variance suggests that dispersal mediated by sexual reproduction is more important than clonal growth in this study area. The ongoing anthropogenic disturbance will negatively affect the mating pattern and the SGS patterns in the future due to massive death of shoots, and less frequency of sexual reproduction.  相似文献   

16.
The balance between clonal propagation and sexual reproduction varies among species. Although theory predicts an impact of clonal growth on both‐ within‐ and between population genetic structure, most empirical evidence available to date does not reveal sharp differences between sexually reproducing and clonal species. This has been attributed mainly to the fact that even low levels of sexual recruitment can maintain high levels of genetic diversity. Here we study the effects of prolonged clonal growth and very low rates of sexual recruitment on the genetic structure of the perennial Maianthemum bifolium, an outcrossing understorey species of temperate forests. Average genotypic diversity (0.37) of the populations, as revealed by AFLP, was above the average values reported for species of similar characteristics, but some populations were extremely poor in genotypes. Fruiting success was positively correlated with genotypic diversity, probably as a result of shortage in mating types and compatible pollen in populations poor in genotypes. This was confirmed by a pollination experiment. Fruiting success increased by a factor three when individuals were hand‐pollinated with pollen from a nearby population compared to hand‐pollinations with pollen from the own population. Furthermore, the fruiting success after natural pollination (control individuals) was positively related to number of nearby populations which could act as pollen sources. Given the limited colonization capacity of the species (no seed flow), and the long time since fragmentation of the forest fragments studied, between‐population genetic differentiation was relatively low (Φst=0.14). Lack of genetic drift due to long generation times and very limited sexual recruitment is probably responsible for this. Our results show that prolonged clonal growth and lack of sexual recruitment may affect within‐ and between‐ population genetic structure and the capability for sexual reproduction.  相似文献   

17.
Despite extensive research into the mechanisms underlying population cyclicity, we have little understanding of the impacts of numerical fluctuations on the genetic variation of cycling populations. Thus, the potential implications of natural and anthropogenically‐driven variation in population cycle dynamics on the diversity and evolutionary potential of cyclic populations is unclear. Here, we use Canada lynx Lynx canadensis matrix population models, set up in a linear stepping‐stone, to generate demographic replicates of biologically realistic cycling populations. Overall, increasing cycle amplitude predictably reduced genetic diversity and increased genetic differentiation, with cyclic effects increased by population synchrony. Modest dispersal rates (1–3% of the population) between high and low amplitude cyclic populations did not diminish these effects suggesting that spatial variation in cyclic amplitude should be reflected in patterns of genetic diversity and differentiation at these rates. At high dispersal rates (6%) groups containing only high amplitude cyclic populations had higher diversity and lower differentiation than those mixed with low amplitude cyclic populations. Negative density‐dependent dispersal did not impact genetic diversity, but did homogenize populations by reducing differentiation and patterns of isolation by distance. Surprisingly, temporal changes in diversity and differentiation throughout a cycle were not always consistent with population size. In particular, negative density‐dependent dispersal simultaneously decreased differences in genetic diversity while increasing differences in genetic differentiation between numerical peaks and nadirs. Combined, our findings suggest demographic changes at fine temporal scales can impact genetic variation of interacting populations and provide testable predictions relating population cyclicty to genetic variation. Further, our results suggest that including realistic demographic and dispersal parameters in population genetic models and using information from temporal changes in genetic variation could help to discern complex demographic scenarios and illuminate population dynamics at fine temporal scales.  相似文献   

18.
We have investigated the local and regional scale genetic structure of Siberian primrose (Primula nutans) populations in Northern Europe. The genetic diversity and structure of fifteen populations sampled from the Bothnian Bay in Finland, the Barents Sea in Norway and the White Sea in Russia were assessed using eleven microsatellite markers. We investigated the distribution of genetic variation within and between populations, and studied the local genetic structure using spatial autocorrelation analysis. We found very low genetic and allelic diversity in the Bothnian Bay and Barents Sea populations, and only slightly higher in the White Sea population. The level of genetic differentiation between the regions was very high, whereas differentiation between the populations within the regions was moderate. We found no spatial structuring of populations in any region suggesting efficient dispersal on a local scale. Clonal reproduction seemed to have no effect on genetic structure.  相似文献   

19.
Aims Forest fragmentation and reduced tree population densities can potentially have negative impacts on mating patterns, offspring genetic diversity and reproductive performance. The aim of the present study is to test these hypotheses comparing an extremely fragmented, low tree density (~0.02 trees/ha) holm oak (Quercus ilex L.) stand from Central Spain with a nearby high tree density stand (~50 trees/ha).Methods We genotyped adult trees and seeds from the low-density stand (436 seeds from 15 families) and the high-density stand (404 seeds from 11 families) using nine microsatellite markers. With these data, we performed paternity analyses, determined pollen flow, mating patterns and pollen pool structure, and estimated progeny genetic diversity in both stands. We also studied seed set and production and performed a pollen supplementation experiment to determine whether reduced tree density has limited foreign pollen availability.Important findings We have found extensive pollen immigration (>75%) into the low tree density stand and Monte Carlo simulations revealed that pollen moves larger distances than expected from null models of random dispersal. Mating patterns and differentiation of pollen pools were similar in the high-density stand and the low-density stand but we found higher inter-annual differentiation of pollen pools in the former. Progeny genetic diversity and self-fertilization rates did not differ between the low-density stand and the high-density stand. Seed set rates were significantly lower in the low-density stand than in the high-density stand and experimental cross-pollen supplementation evidenced that foreign pollen availability is indeed a limiting factor in the former. However, seed crops did not differ between the low-density stand and the high-density stand, indicating that limitation of foreign pollen is not likely to be of great concern in terms of reduced seed production and potential recruitment. Poor forest regeneration due to other ecological and human factors is probably a more important threat for the persistence of fragmented and low tree density stands than reduced pollen flow and only extremely small and isolated tree populations would be expected to suffer severe loss of genetic diversity in the long term.  相似文献   

20.
In order to gain a better understanding of the consequences of population density cycles and landscape structure for the genetic composition in time and space of vole populations, we analyzed the multiannual genetic structure of the two numerically dominant, sympatric small rodent species of northernmost Fennoscandia. Red voles Myodes rutilus and grey-sided voles M. rufocanus were trapped in the subarctic birch forest along three fjords over five years. Along each fjord, there were four or five altitudinal transects each with five trapping stations. Spring and fall population densities were estimated from mark–recapture data. Grey-sided voles exhibited higher amplitude density fluctuations than red voles. Polymorphism at eight or nine microsatellite loci, determined in 1228 voles, was used to estimate local genetic diversity and differentiation among samples. Genetic diversity was higher in grey-sided voles than in red voles. Spring densities had no effect on local genetic diversity or on differentiation. The amplitude of density fluctuations and the extent of favorable habitat (sub-arctic birch forest) surrounding each site had a positive effect on genetic diversity, and the amplitude of density fluctuations had a negative effect on differentiation in red voles, for which fluctuating populations were compared with more stable populations. The harmonic mean of densities, reflecting average population sizes, had a negative effect on genetic diversity in red voles, but a positive effect in grey-sided voles, for which only fluctuating populations were compared. No other effects were significant for grey-sided voles. A temporal assignment test showed that the spatial structure was more stable in time for populations with more stable population dynamics. Altogether our results suggest that high amplitude density fluctuations lead to more gene flow and higher genetic diversity in vole populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号