首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Previous studies have shown that disruption of GABA signaling in mice via mutations in the Gad1, Gabrb3 or Viaat genes leads to the development of non-neural developmental defects such as cleft palate. Studies of the Gabrb3 and Gad1 mutant mice have suggested that GABA function could be required either in the central nervous system or in the palate itself for normal palatogenesis.

Methodology/Principal Findings

To further examine the role of GABA signaling in palatogenesis we used three independent experimental approaches to test whether Gad1 or Viaat function is required in the fetal CNS for normal palate development. We used oral explant cultures to demonstrate that the Gad1 and Viaat mutant palates were able to undergo palatogenesis in culture, suggesting that there is no defect in the palate tissue itself in these mice. In a second series of experiments we found that the GABAA receptor agonist muscimol could rescue the cleft palate phenotype in Gad1 and Viaat mutant embryos. This suggested that normal multimeric GABAA receptors in the CNS were necessary for normal palatogenesis. In addition, we showed that CNS-specific inactivation of Gad1 was sufficient to disrupt palate development.

Conclusions/Significance

Our results are consistent with a role for Gad1 and Viaat in the central nervous system for normal development of the palate. We suggest that the alterations in GABA signaling lead to non-neural defects such as cleft palate as a secondary effect due to alterations in or elimination of fetal movements.  相似文献   

2.
Inductive expression of early growth response 1 (Egr-1) in neurons is associated with many forms of neuronal activity. However, only a few Egr-1 target genes are known in the brain. The results of this study demonstrate that Egr-1 knockout (KO) mice display impaired contextual extinction learning and normal fear acquisition relative to wild-type (WT) control animals. Genome-wide microarray experiments revealed 368 differentially expressed genes in the hippocampus of Egr-1 WT exposed to different phases of a fear conditioning paradigm compared to gene expression profiles in the hippocampus of KO mice. Some of genes, such as serotonin receptor 2C (Htr2c), neuropeptide B (Npb), neuronal PAS domain protein 4 (Npas4), NPY receptor Y1 (Npy1r), fatty acid binding protein 7 (Fabp7), and neuropeptide Y (Npy) are known to regulate processing of fearful memories, and promoter analyses demonstrated that several of these genes contained Egr-1 binding sites. This study provides a useful list of potential Egr-1 target genes which may be regulated during fear memory processing.  相似文献   

3.
该研究旨在探讨外源性Runx2过表达对小鼠成釉细胞Runx2敲除导致的釉质缺陷的挽救作用。采用免疫组化验证Runx2在Runx2条件性敲除且人源性Runx2过表达小鼠成釉细胞中的表达。HE染色观察成熟期成釉细胞形态及釉质基质蛋白残余。用体视显微镜和扫描电镜观察小鼠牙齿表面形态和釉柱结构。结果显示,RUNX2蛋白在出生后10天龄Tg;cKO小鼠成熟早期成釉细胞中成功表达。15天龄Tg;cKO小鼠与cKO小鼠相比,成熟晚期成釉细胞形态及排列未见明显改善,但釉质基质蛋白残余量明显减少。3月龄Tg;cKO小鼠与cKO小鼠相比,釉质磨耗减轻,釉柱间孔隙减少,釉柱排列更规则。该研究结果表明,人源性Runx2过表达可部分挽救小鼠成釉细胞Runx2敲除导致的釉质缺陷。  相似文献   

4.
5.
The snapdragon (Antirrhinum majus) centroradialis mutant (cen) is characterized by the development of a terminal flower, thereby replacing the normally open inflorescence by a closed inflorescence. In contrast to its Arabidopsis counterpart, terminal flower1, the cen-null mutant displays an almost constant number of lateral flowers below the terminal flower. Some partial revertants of an X-radiation-induced cen mutant showed a delayed formation of the terminal flower, resulting in a variable number of lateral flowers. The number of lateral flowers formed was shown to be environmentally controlled, with the fewer flowers formed under the stronger flower-inducing conditions. Plants displaying this "Delayed terminal flower" phenotype were found to be heterozygous for a mutant allele carrying a transposon in the coding region and an allele from which the transposon excised, leaving behind a 3-bp duplication as footprint. As a consequence, an iso-leucine is inserted between Asp148 and Gly149 in the CENTRORADIALIS protein. It is proposed that this mutation results in a low level of functional CEN activity, generating a phenotype that is more similar to the Arabidopsis Terminal flower phenotype.  相似文献   

6.
7.
Oxygen sensor prolyl hydroxylases (PHDs) play important roles in the regulation of HIF-α and cell metabolisms. This study was designed to investigate the direct role of PHD2 in high fat-diet (HFD)-induced cardiac dysfunction. In HFD fed mice, PHD2 expression was increased without significant changes in PHD1 and PHD3 levels in the heart. This was accompanied by a significant upregulation of myeloid differentiation factor 88 (MYD88) and NF-κB. To explore the role of PHD2 in HFD-induced cardiac dysfunction, PHD2 conditional knockout mice were fed a HFD for 16 weeks. Intriguingly, knockout of PHD2 significantly reduced MYD88 and NF-κb expression in HFD mouse hearts. Moreover, knockout of PHD2 inhibited TNFα and ICAM-1 expression, and reduced cell apoptosis and macrophage infiltration in HFD mice. This was accompanied by a significant improvement of cardiac function. Most importantly, conditional knockout of PHD2 at late stage in HFD mice significantly improved glucose tolerance and reversed cardiac dysfunction. Our studies demonstrate that PHD2 activity is a critical contributor to the HFD-induced cardiac dysfunction. Inhibition of PHD2 attenuates HFD-induced cardiac dysfunction by a mechanism involving suppression of MYD88/NF-κb pathway and inflammation.  相似文献   

8.
以拟南芥(Arabidopsis thaliana)油菜素内酯受体BRI1为目的基因,利用CRISPR/Cas9基因编辑技术定向编辑拟南芥BRI1,以期获得更多BRI1的突变体,为后续BRI1功能的进一步深入研究奠定基础。通过筛选转基因植株,对编辑后的BRI1进行测序分析,结果显示该突变体中BRI1基因序列由于新碱基的插入导致提前终止。同BRI1强突变体bri1-710一样,相比于野生型对照均对BL处理不敏感,但相比于bri1-710,该突变体植株较大,暗示BRI1 N端可能在BR信号途径中有重要作用。因此该研究可为后续进一步研究拟南芥及其他同源物种的BRI1功能提供可靠的参考依据。  相似文献   

9.
Protein phosphatase inhibitor-1 is a prototypical mediator of cross-talk between protein kinases and protein phosphatases. Activation of cAMP-dependent protein kinase results in phosphorylation of inhibitor-1 at Thr-35, converting it into a potent inhibitor of protein phosphatase-1. Here we report that inhibitor-1 is phosphorylated in vitro at Ser-67 by the proline-directed kinases, Cdk1, Cdk5, and mitogen-activated protein kinase. By using phosphorylation state-specific antibodies and selective protein kinase inhibitors, Cdk5 was found to be the only kinase that phosphorylates inhibitor-1 at Ser-67 in intact striatal brain tissue. In vitro and in vivo studies indicated that phospho-Ser-67 inhibitor-1 was dephosphorylated by protein phosphatases-2A and -2B. The state of phosphorylation of inhibitor-1 at Ser-67 was dynamically regulated in striatal tissue by glutamate-dependent regulation of N-methyl-d-aspartic acid-type channels. Phosphorylation of Ser-67 did not convert inhibitor-1 into an inhibitor of protein phosphatase-1. However, inhibitor-1 phosphorylated at Ser-67 was a less efficient substrate for cAMP-dependent protein kinase. These results demonstrate regulation of a Cdk5-dependent phosphorylation site in inhibitor-1 and suggest a role for this site in modulating the amplitude of signal transduction events that involve cAMP-dependent protein kinase activation.  相似文献   

10.
11.
Transient receptor potential cation channel, subfamily A, member 1 (TRPA1), is activated by a broad range of noxious stimuli. Cdk5, a member of the Cdk family, has recently been identified as a modulator of pain signaling pathways. In the current study, we investigated the extent to which Cdk5 modulates TRPA1 activity. Cdk5 inhibition was found to attenuate TRPA1 response to agonist in mouse DRG sensory neurons. Additionally, the presence of active Cdk5 was associated with increased TRPA1 phosphorylation in transfected HEK293 cells that was roscovitine-sensitive and absent in the mouse mutant S449A full-length channel. Immunopurified Cdk5 was observed to phosphorylate human TRPA1 peptide substrate at S448A in vitro. Our results point to a role for Cdk5 in modulating TRPA1 activity.  相似文献   

12.
Transgenic mice expressing human non-steroidal anti-inflammatory drug activated gene 1 (NAG-1) have less adipose tissue, improved insulin sensitivity, lower insulin levels and are resistant to dietary induced obesity. The hNAG-1 expressing mice are more metabolically active with a higher energy expenditure. This study investigates female reproduction in the hNAG-1 transgenic mice and finds the female mice are fertile but have reduced pup survival after birth. Examination of the mammary glands in these mice suggests that hNAG-1 expressing mice have altered mammary epithelial development during pregnancy, including reduced occupancy of the fat pad and increased apoptosis via TUNEL positive cells on lactation day 2. Pups nursing from hNAG-1 expressing dams have reduced milk spots compared to pups nursing from WT dams. When CD-1 pups were cross-fostered with hNAG-1 or WT dams; reduced milk volume was observed in pups nursing from hNAG-1 dams compared to pups nursing from WT dams in a lactation challenge study. Milk was isolated from WT and hNAG-1 dams, and the milk was found to have secreted NAG-1 protein (approximately 25 ng/mL) from hNAG-1 dams. The WT dams had no detectable hNAG-1 in the milk. A decrease in non-esterified free fatty acids in the milk of hNAG-1 dams was observed. Altered milk composition suggests that the pups were receiving inadequate nutrients during perinatal development. To examine this hypothesis serum was isolated from pups and clinical chemistry points were measured. Male and female pups nursing from hNAG-1 dams had reduced serum triglyceride concentrations. Microarray analysis revealed that genes involved in lipid metabolism are differentially expressed in hNAG-1 mammary glands. Furthermore, the expression of Cidea/CIDEA that has been shown to regulate milk lipid secretion in the mammary gland was reduced in hNAG-1 mammary glands. This study suggests that expression of hNAG-1 in mice leads to impaired lactation and reduces pup survival due to altered milk quality and quantity.  相似文献   

13.
Apoptosis-associated tyrosine kinase 1 (AATYK1), a novel serine/threonine kinase that is highly expressed in the brain, is involved in neurite extension and apoptosis of cerebellar granule neurons; however, its precise function remains unknown. In this study, we investigated the interaction of AATYK1A with Cyclin-dependent kinase 5 (Cdk5)/p35, a proline-directed protein kinase that is predominantly expressed in neurons. AATYK1A bound to the p35 activation subunit of Cdk5 in cultured cells and in mouse brains and colocalized with p35 on endosomes in COS-7 cells. AATYK1A was phosphorylated at Ser34 by Cdk5/p35 in vitro, in cultured neurons and in mouse brain. In PC12D cells, Ser34 phosphorylation increased after treatment with nerve growth factor and phosphorylated AATYK1A accumulated in growth cones of PC12D cells. Ser34 phosphorylation suppressed the tyrosine phosphorylation of AATYK1A by Src family kinases. These results suggest a possibility that AATYK1A plays a role in early to recycling endosomes and its function is regulated by phosphorylation with Cdk5 or Src-family kinases.  相似文献   

14.
15.
In order to evaluate the functional role of P-glycoprotein (P-gp) in cerebral ischemia, both multidrug resistance 1a knockout (KO) mice and wild-type mice were subjected to transient focal ischemia under a constant body and brain temperature about 37°C. The results showed that the volume of brain infarction induced by middle cerebral artery occlusion in KO mice was significantly smaller than that seen in wild-type mice, although there were no significant differences in cerebral blood flow, physiological data and on anatomical analysis of cerebrovasculature between both groups. We suggest that multidrug resistance 1a P-gp plays a role for adjusting the expressions of endogenous neuronal cell modulating substances, such as cytokines, neuronal peptides, and others, in the brain, which is consistent with a previous paper (Bobrov et al. Neurosci Lett 24: 6–11, 2008).  相似文献   

16.
Cyclin-dependent kinase 1 (Cdk1) is thought to trigger centrosome separation in late G2 phase by phosphorylating the motor protein Eg5 at Thr927. However, the precise control mechanism of centrosome separation remains to be understood. Here, we report that in G2 phase polo-like kinase 1 (Plk1) can trigger centrosome separation independently of Cdk1. We find that Plk1 is required for both C-Nap1 displacement and for Eg5 localization on the centrosome. Moreover, Cdk2 compensates for Cdk1, and phosphorylates Eg5 at Thr927. Nevertheless, Plk1-driven centrosome separation is slow and staggering, while Cdk1 triggers fast movement of the centrosomes. We find that actin-dependent Eg5-opposing forces slow down separation in G2 phase. Strikingly, actin depolymerization, as well as destabilization of interphase microtubules (MTs), is sufficient to remove this obstruction and to speed up Plk1-dependent separation. Conversely, MT stabilization in mitosis slows down Cdk1-dependent centrosome movement. Our findings implicate the modulation of MT stability in G2 and M phase as a regulatory element in the control of centrosome separation.  相似文献   

17.
18.

Background

Reports indicate that PDLIM5 is involved in mood disorders. The PDLIM5 (PDZ and LIM domain 5) gene has been genetically associated with mood disorders; it’s expression is upregulated in the postmortem brains of patients with bipolar disorder and downregulated in the peripheral lymphocytes of patients with major depression. Acute and chronic methamphetamine (METH) administration may model mania and the evolution of mania into psychotic mania or schizophrenia-like behavioral changes, respectively.

Methods

To address whether the downregulation of PDLIM5 protects against manic symptoms and cause susceptibility to depressive symptoms, we evaluated the effects of reduced Pdlim5 levels on acute and chronic METH-induced locomotor hyperactivity, prepulse inhibition, and forced swimming by using Pdlim5 hetero knockout (KO) mice.

Results

The homozygous KO of Pdlim5 is embryonic lethal. The effects of METH administration on locomotor hyperactivity and the impairment of prepulse inhibition were lower in Pdlim5 hetero KO mice than in wild-type mice. The transient inhibition of PDLIM5 (achieved by blocking the translocation of protein kinase C epsilon before the METH challenge) had a similar effect on behavior. Pdlim5 hetero KO mice showed increased immobility time in the forced swimming test, which was diminished after the chronic administration of imipramine. Chronic METH treatment increased, whereas chronic haloperidol treatment decreased, Pdlim5 mRNA levels in the prefrontal cortex. Imipramine increased Pdlim5 mRNA levels in the hippocampus.

Conclusion

These findings are partially compatible with reported observations in humans, indicating that PDLIM5 is involved in psychiatric disorders, including mood disorders.  相似文献   

19.
20.
Adenylyl cyclase type 5 (AC5) was described as major cardiac AC isoform. The knockout of AC5 (AC5KO) exerted cardioprotective effects in heart failure. Our study explored the impact of AC5KO on mouse heart AC activities and evaluated putative AC5-selective inhibitors. In cardiac membranes from AC5KO mice, basal AC activity was decreased, while AC stimulation was intact. The putative AC5-selective P-site inhibitors SQ22,536 [9-(tetra-hydro-2-furanyl)-9H-purin-6-amine], vidarabine (9-β-D-arabinosyladenine) and NKY80 [2-amino-7-(2-furanyl)-7,8-dihydro-5(6H)-quinazolinone] inhibited recombinant AC5 more potently than AC2 and AC1, but selectivity was only modest (∼4-40-fold). These compounds inhibited cardiac AC from WT and AC5KO mice with similar potencies. In conclusion, AC regulation in AC5KO hearts was unimpaired, questioning the supposed dominant role of AC5 in the heart. Moreover, the AC inhibitors SQ22,536, NKY80 and vidarabine lack adequate selectivity for AC5 and, therefore, do not present suitable tools to study AC5-specific functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号