首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrotonic couplings (i.e., electrical synapses or gap junctions) are fundamental to neuronal synchronization, and thus essential for many physiological functions and pathological disorders. Interneuron electrical synapses have been studied intensively. Although studies on electrotonic couplings between pyramidal cells (PCs) are emerging, particularly in the hippocampus, evidence is still rare in the neocortex. The electrotonic coupling of PCs in the neocortex is therefore largely unknown in terms of electrophysiological, anatomical and synaptological properties. Using multiple patch-clamp recording with differential interference contrast infrared videomicroscopy (IR-DIC) visualization, histochemical staining, and 3D-computer reconstruction, electrotonic coupling was recorded between close PCs, mainly in the medial prefrontal cortex as well as in the visual cortical regions of ferrets and rats. Compared with interneuron gap junctions, these electrotonic couplings were characterized by several special features. The recording probability of an electrotonic coupling between PCs is extremely low; but the junctional conductance is notably high, permitting the direct transmission of action potentials (APs) and even tonic firing between coupled neurons. AP firing is therefore perfectly synchronized between coupled PCs; Postjunctional APs and spikelets alternate following slight changes of membrane potentials; Postjunctional spikelets, especially at high frequencies, are summated and ultimately reach AP-threshold to fire. These properties of pyramidal electrotonic couplings largely fill the needs, as predicted by simulation studies, for the synchronization of a neuronal assembly. It is therefore suggested that the electrotonic coupling of PCs plays a unique role in the generation of neuronal synchronization in the neocortex.  相似文献   

2.
The possibility of current flow between epithelial cells (MDCK) has been evaluated using intracellular electrophysiological techniques. We report here that a significant electrotonic coupling was found in this material at all ages of culture. This observation contrasts with previous reports that confluent MDCK are not ionically coupled and lack gap junctions. Alternative mechanisms for such coupling are considered, with emphasis on the role of tight junctions, should the absence of gap junctions be confirmed.  相似文献   

3.
Although transmural heterogeneity of action potential duration (APD) is established in single cells isolated from different tissue layers, the extent to which it produces transmural gradients of repolarization in electrotonically coupled ventricular myocardium remains controversial. The purpose of this study was to examine the relative contribution of intrinsic cellular gradients of APD and electrotonic influences to transmural repolarization in rabbit ventricular myocardium. Transmural optical mapping was performed in left ventricular wedge preparations from eight rabbits. Transmural patterns of activation, repolarization, and APD were recorded during endocardial and epicardial stimulation. Experimental results were compared with modeled data during variations in electrotonic coupling. A transmural gradient of APD was evident during endocardial stimulation, which reflected differences previously seen in isolated cells, with the longest APD at the endocardium and the shortest at the epicardium (endo: 165 ± 5 vs. epi: 147 ± 4 ms; P < 0.05). During epicardial stimulation, this gradient reversed (epi: 162 ± 4 vs. endo: 148 ± 6 ms; P < 0.05). In both activation sequences, transmural repolarization followed activation and APD shortened along the activation path such that significant transmural gradients of repolarization did not occur. This correlation between transmural activation time and APD was recapitulated in simulations and varied with changes in intercellular coupling, confirming that it is mediated by electrotonic current flow between cells. These data suggest that electrotonic influences are important in determining the transmural repolarization sequence in rabbit ventricular myocardium and that they are sufficient to overcome intrinsic differences in the electrophysiological properties of the cells across the ventricular wall.  相似文献   

4.
Although coupling between cardiomyocytes and myofibroblasts is well known to affect the physiology and pathophysiology of cardiac tissues across species, relating these observations to humans is challenging because the effect of this coupling varies across species and because the sources of these effects are not known. To identify the sources of cross-species variation, we built upon previous mathematical models of myofibroblast electrophysiology and developed a mechanoelectrical model of cardiomyocyte-myofibroblast interactions as mediated by electrotonic coupling and transforming growth factor-β1. The model, as verified by experimental data from the literature, predicted that both electrotonic coupling and transforming growth factor-β1 interaction between myocytes and myofibroblast prolonged action potential in rat myocytes but shortened action potential in human myocytes. This variance could be explained by differences in the transient outward K+ current associated with differential Kv4.2 gene expression across species. Results are useful for efforts to extrapolate the results of animal models to the predicted effects in humans and point to potential therapeutic targets for fibrotic cardiomyopathy.  相似文献   

5.
The aim of this review is to present the electrophysiological data, obtained in the mammalian central nervous system, which show that depolarisations recorded intracellularly, under certain experimental conditions can be interpreted in terms of electrotonic coupling. The results were obtained from very different structures: primary sensory nuclei, sensori-motor integration centres and motor nuclei. The association of the phenomenon of electrotonic transmission with a known ultrastructural substrate--the "gap junction"--has been defined by the term electrotonic coupling. In the cases where it has not been possible to link depolarisations with the presence of gap junctions, other possible morphological correlates have been envisaged. The functional significance of electrotonic interactions are discussed on the basis of information obtained from different experimental approaches.  相似文献   

6.
Summary In many cell systems, the permeability of membrane junctions is modulated by the cytoplasmic level of free Ca++. To examine whether the calcium-dependent regulatory protein calmodulin is involved in this process, the ability of anticalmodulin drugs to influence the cell-to-cell passage of injected current and an organic tracer was tested using standard intracellular glass microelectrode techniques. Several antipsychotics and local anesthetics were found to block junctional communication in the epidermis of the beetleTenebrio molitor. Treatment of the epidermis with chlorpromazine (0.25 mM) raised intercellular resistance two- to threefold within 20 to 25 min; cell-to-cell passage of electrical current was abolished within 41±5 min. Loss of electrotonic coupling was accompanied by a block in the cell-to-cell movement of the organic tracer carboxyfluorescein. The reaction is fully reversible, with normal electrotonic coupling being restored within 2 to 4 hr. Other antipsychotics and local anesthetics had similar effects on cell coupling. The order of potency found was: trifluoperazine>thioridazine> d-butaclamol>chlorprothixine=chlorpromazine> l-butaclamol> dibucaine>tetracaine. The relative uncoupling potencies of these drugs correlate well with their known ability to inhibit calmodulin-dependent phosphodiesterase activity. Other anesthetic compounds, procaine and pentobarbital, did not block cell-to-cell communication. Altering the extracellular Ca++ concentration did not affect the rate of uncoupling by antipsychotics, while chelation of extracellular Ca++ with EGTA raised electrotonic coupling. The effect of three metabolic inhibitors on coupling was also examined. Iodoacetate uncoupled the epidermal cells while DNP and cyanide did not. These results are discussed in terms of possible mechanisms by which calmodulin may control junctional communication in this tissue.  相似文献   

7.
Stimulation of the cercal nerve of the female American cockroach evokes a short-latency action potential in one giant axon in the ipsilateral connective of the ventral nerve cord. Neither procion yellow nor cobalt passes from the nerve cord into the cercal nerve, and the short-latency response disappears several weeks after removal of the cercus. Therefore, the short-latency spike is not due to a branch of the giant interneuron extending into the cercal nerve, but is presumably due to electrotonic coupling of cercal afferents to the giant. Responses of the presumed electrotonic junction to drugs, varied ionic concentrations and tonicity, and to cold are described. These responses and the impermeability of the junction to procion yellow suggest that the coupling is not by means of a gap junction. There is evidence for electrotonic coupling to another giant axon in the female, but this junction does not ordinarily transmit a spike. Electrotonic coupling is rare in males. In some females action potentials in giant interneurons excite cercal afferents electrically, and the afferents then re-excite the giants chemically. Electrotonic coupling may reduce fatigue and habituation of chemical synapses by depolarizing presynaptic terminals whenever the giants are active.  相似文献   

8.
Electrical coupling and uncoupling of exocrine acinar cells   总被引:3,自引:1,他引:2       下载免费PDF全文
The electrical communication network in the mouse pancreatic acinar tissue has been investigated using simultaneous intracellular recording with two separate microelectrodes and direct microscopical control of the localizations of the microelectrode tips. All cells within one acinus were electrically coupled, and the coupling coefficient (the electrotonic potential change in a cell neighboring to the cell into which current is injected [V2] divided by the electrotonic potential change in the cell of current injection [V1]) between two cells near each other (less than 50 micron) was always close to 1. Cells farther apart (50-100 micron) were, in some cases, coupled; in other cases, there was no coupling at all. Coupling coefficients varied between 0 and 1. There was rarely electrical coupling over distances of more than 110 micron. Using microiontophoretic acetylcholine (ACh) application, it was possible to evoke almost complete electrical uncoupling of two previously coupled pancreatic or lacrimal acinar cells from different acini or within one acinus. The effects were fully and quickly reversible. While the ACh-evoked uncoupling in the pancreas was associated with membrane depolarization, ACh caused hyperpolarization in the lacrimal acinar cells. The uncoupling was associated with a very marked reduction in electrical time constant, indicating a reduction in input capacitance (effective surface cell membrane area). The concentrations of stimulants needed to evoke reduction in pancreatic cell-to-cell coupling were 1 micron for ACh, 0.14 nM for caerulein, and 3 nM for bombesin. These concentrations are smaller than those required to evoke maximal enzyme secretion.  相似文献   

9.
Frequency response functions were measured between the cells of Xenopus laevis embryos during the first two cleavage stages. Linear systems theory was then used to produce electronic models which account for the electrical behavior of the systems. Coupling between the cells may be explained by models which have simple resistive elements joining each cell to its neighbors. The vitelline, or fertilization, membrane which surrounds the embryos has no detectable resistance to the passage of electric current. The electrical properties of the four-cell embryo can only be explained by the existence of individual junctions linking each pair of cells. This arrangement suggests that electrotonic coupling is important in the development of the embryos, at least until the four-cell stage.  相似文献   

10.
Close appositions between axonal membranes are present in the septum between adjacent axonal segments of the septate or lateral giant axons of the crayfish Procambarus. In sections the closely apposed membranes appear separated by a space or gap. The use of lanthanum indicates that there may be structures connecting the apposed membranes. The apparent gap is actually a network of channels continuous with the extracellular space. Adjacent axonal segments are electrotonically coupled at the septa. The coupling resistance is increased by mechanical injury of an axon, immersion in low Cl- solutions, and immersion in low Ca++ solutions, followed by a return to normal physiological solution. Septa at which coupling resistance had been measured were examined in the electron microscope. The induced increases in coupling resistance are associated with separation of the junctional membranes (with the exception of the moderate increases during immersion in low Ca++ solutions). Schwann cell processes are present between the separated axonal membranes. When nerve cords in low Cl- solutions are returned to normal physiological solution, coupling, i.e., electrotonic synapses. A model of an electrotonic synapse is proposed in which tween axonal membranes are again found. The association between the morphological and physiological findings provides further evidence that the junctions are the sites of electrotonic coupling, i.e., electrotonic, synapses. A model of an electrotonic synapse is proposed in which intercytoplasmic channels not open to the extracellular space are interlaced with a hexagonal network of extracellular channels between the apposed junctional membranes.  相似文献   

11.
Summary The mechanism of electrical coupling between cells of earlyXenopus embryos has been studied by examination of the nonjunctional membrane resistances and capacitances as a function of cleavage stage, the junctional and nonjunctional membrane resistances as functions of time during the first cleavage, and the electrical properties of the primitive blastocoel. The changes in membrane resitances and capacitances during the first two cleavages may be completely explained by the addition of new membrane, identical in specific resistance and capacitance to the original membrane, at a constant rate to furrows which are electrically connected to the perivitelline space. Microelectrode recording from the primitive blastocoel indicates that there is no electrical difference detectable between it and the perivitelline space. These results are discussed in the context of current theories of the mechanism of intercellular electrotonic coupling.  相似文献   

12.
The sinoatrial node (SAN) is a complex structure that exhibits anatomical and functional heterogeneity which may depend on: 1) The existence of distinct cell populations, 2) electrotonic influences of the surrounding atrium, 3) the presence of a high density of fibroblasts, and 4) atrial cells intermingled within the SAN. Our goal was to utilize a computer model to predict critical determinants and modulators of excitation and conduction in the SAN. We built a theoretical "non-uniform" model composed of distinct central and peripheral SAN cells and a "uniform" model containing only central cells connected to the atrium. We tested the effects of coupling strength between SAN cells in the models, as well as the effects of fibroblasts and interspersed atrial cells. Although we could simulate single cell experimental data supporting the "multiple cell type" hypothesis, 2D "non-uniform" models did not simulate expected tissue behavior, such as central pacemaking. When we considered the atrial effects alone in a simple homogeneous "uniform" model, central pacemaking initiation and impulse propagation in simulations were consistent with experiments. Introduction of fibroblasts in our simulated tissue resulted in various effects depending on the density, distribution, and fibroblast-myocyte coupling strength. Incorporation of atrial cells in our simulated SAN tissue had little effect on SAN electrophysiology. Our tissue model simulations suggest atrial electrotonic effects as plausible to account for SAN heterogeneity, sequence, and rate of propagation. Fibroblasts can act as obstacles, current sinks or shunts to conduction in the SAN depending on their orientation, density, and coupling.  相似文献   

13.
The axonal branching pattern of the two cerebral giant neurones (CGCs) of Lymnaea stagnalis was studied with intrasomatically applied horseradish peroxidase. The cells are symmetrical. Each CGC projects to the ipsilateral n. labialis medius and n. arteriae labialis, the subcerebral commissure, and to all ipsi- and contralateral buccal nerves. The contralateral buccal nerves are reached via the ipsilateral cerebro-buccal connective and the buccal commissure. The CGC fire action potentials 1:1 in a driver-follower relationship. Each cell is capable of both driving and following. The relationship depends on the membrane potentials of the somata. In driving CGC spikes are initiated in a cerebral spike trigger zone located near the soma. In following cells spikes are initiated in a distal zone located in the buccal ganglia. The buccal zone is only affected by the partner CGC. CGC are synchronized by three coupling mechanisms: mutual excitatory chemical synapses, electrotonic coupling, and common input. The chemical and electrotonic connections are located in the buccal ganglia. All spikes are relayed to the partner cell via the chemical synapses. The electrotonic coupling improves the efficiency of the chemical synapses. The dual connection selectively synchronizes the CGC-axonal spikes from each side of the buccal mass. Common excitatory input affects the cerebral spike trigger zones and can initiate simultaneous spikes in both cells. This results in bilateral synchrony of spikes in the CGC-axons in both the buccal and the lip nerves.  相似文献   

14.
The level of electrotonic coupling in the inferior olive is extremely high, but its functional role in cerebellar motor control remains elusive. Here, we subjected mice that lack olivary coupling to paradigms that require learning-dependent timing. Cx36-deficient mice showed impaired timing of both locomotion and eye-blink responses that were conditioned to a tone. The latencies of their olivary spike activities in response to the unconditioned stimulus were significantly more variable than those in wild-types. Whole-cell recordings of olivary neurons in vivo showed that these differences in spike timing result at least in part from altered interactions with their subthreshold oscillations. These results, combined with analyses of olivary activities in computer simulations at both the cellular and systems level, suggest that electrotonic coupling among olivary neurons by gap junctions is essential for proper timing of their action potentials and thereby for learning-dependent timing in cerebellar motor control.  相似文献   

15.
'Non-synaptic' mechanisms in seizures and epileptogenesis   总被引:8,自引:0,他引:8  
The role of 'non-synaptic' mechanisms (i.e. those mechanisms that are independent of active chemical synpases) in the synchronization of neuronal activity during seizures and their possible contribution to chronic epileptogenesis are summarized. These 'non-synaptic' mechanisms include electrotonic coupling through gap junctions, electrical field effects (i.e. ephaptic transmission), and ionic interactions (e.g. increases in the extracellular concentration of K(+)). Several lines of evidence indicate that granule cells and pyramidal cells of the hippocampus, and probably other cortical neurons, can generate synchronized electrical activity after active chemical synaptic transmission has been blocked. This synchronized activity is sensitive to alterations in the size of the extracellular space, thus suggesting that electrical field effects and ionic mechanisms contribute to this synchronized activity. Recent studies also indicate that 'non-synaptic' synchronization is quite prominent early in development. Electrophysiological data from hippocampal and neocortical slices have led to a re-interpretation of the fast prepotentials (i.e. partial spikes) recorded in cortical pyramidal cells, suggesting that they may not be due to dendritic spike generation. Improvement in freeze-fracture ultrastructural techniques have led to a re-assessment of previous data on gap junctions in the nervous system and opened new approaches to the quantitative analysis and characterization of gap junctions on glia and neurons. Finally, new methods of dye/tracer coupling have the potential to provide a more rigorous basis for evaluating gap junctions and electrotonic communication between neurons in the mammalian central nervous system. Therefore, recent data continue to suggest that gap junctions and electrotonic coupling play an important role in neural integration, although additional studies using new techniques will be needed to address some of the controversial issues that have arisen over the last several decades.  相似文献   

16.
The effect of intracellular current pulses on the membrane of smooth muscle cells of the guinea pig vas deferens at rest and during transmission was studied. Two main response types were identified: active response cells, in which a spike was initiated in response to depolarizing currents of sufficient strength and duration; passive response cells, in which depolarizing currents gave only electrotonic potential changes. These cells were three times more numerous than the active response cells. During the crest of the active response the input resistance fell by about 25% of the resting value. Comparison of the active response with the action potential due to stimulating the hypogastric nerve showed that the former was smaller in amplitude and had a slower rate of rise and higher threshold. Electrical coupling occurred between the smooth muscle cells during the propagation of the action potential. Depolarizing current pulses had no effect on the amplitude of the excitatory junction potential (E.J.P.) in passive response cells, but in general did decrease its amplitude in active response cells. These results are discussed with respect to the mechanism of autonomic neuroeffector transmission.  相似文献   

17.
The aim of the present study was to assess the cellular mechanism of secretion in the salivary gland of the snail, Helix pomatia, using electrophysiological, electron microscopic and immunohistochemical techniques. A homogeneously distributed membrane potential (-56.6 +/- 9.8 mV) was determined mainly by a K+ -electrochemical gradient and partly by the contribution of the electrogenic Na+ -pump and Cl- conductance. Low resistance electrical coupling sites were identified physiologically. Transmission electron microscopy and innexin 2 antibody revealed the presence of gap-junction-like membrane structures between gland cells. It is suggested that gap-junctions are sites of electrotonic intercellular communication, which integrate the gland cells into a synchronized functional unit in the acinus. Stimulation of the salivary nerve elicited secretory potentials (depolarization) which could be mimicked by local application of acetylcholine, dopamine or serotonin. In voltage-clamp experiments four major conductances were identified: a delayed rectifier (IK), a transient (IA) and a Ca2+ -activated outward K+ current (IK(Ca)) and Ca2+ -inward currents (ICa). It is suggested that one or more of these conductances may give rise to a stimulus activated secretory potential leading to excitation-secretion coupling and subsequent the release of the mucus from the gland cells.  相似文献   

18.
Exact and adiabatic electrotonic solutions [1] were calculated for reconstructed motoneurone and hippocampal interneurone in case of linear and exponential ramp stimulation by the fixed current, potential or homogenous electric field. For the rising exponential ramp the solutions are identical. In case of the decaying exponent the adiabatic solution becomes an asymptote for the exact one if the stimulus decays slower than relaxation of the initial conditions in the cell. If the stimulus decays faster, the asymptote is the current or potential axis, depending on the stimulation mode. For electrotonically short cell, the exact solution approaches the asymptote faster. The solution for the exponentially rising field does not depend on the dendritic tree configuration and depends only on the effective electrotonic length of the neurone. It could be useful to apply ramp stimulation, especially exponential ramp of the electric field, to estimate electrotonic parameters of cells.  相似文献   

19.
The heart of the ostracod crustacean Vargula hilgendorfii has a single intrinsic neuron that morphologically appears to innervate the myocardium. We, therefore, examined the heart activity electrophysiologically to determine whether the heartbeat is neurogenic. Each heartbeat is associated with a myocardial action potential composed of a spike potential followed by a plateau potential. The frequency of the action potential is not stable but changes successively over a wide range. The action potential is not preceded by a pacemaker potential and has an inflection in its rising phase. The myocardial cells couple electrically and fire almost simultaneously. The frequency of the action potential was unchanged by injection of depolarizing or hyperpolarizing current into the myocardium. However, slow oscillatory potentials appeared during the depolarization and its frequency was higher with increasing current intensity. Application of 1-microM tetrodotoxin (TTX) depolarized the myocardial membrane and completely prevented the action potential. During this depolarization, slow oscillatory potentials often appeared spontaneously. These results suggest that, although the myocardium has a property of conditional oscillator, the heartbeat is driven by the single cell cardiac ganglion that has both pacemaker and motor functions.  相似文献   

20.
Excitation-Contraction Coupling in Crayfish   总被引:8,自引:0,他引:8  
High-sensitivity recording techniques demonstrate a continuousrelation between the onset and magnitude ot tension and themembrane depolarization that is induced by increasing K in thebathing medium or by intracellularly applied outward currents.This finding is not consistent with the mechanism of signallinge-c coupling by electrotonic spread of a "critical" depolarizationinward along the membrane of the transverse tubular system.It is in accord, however, with the channelled current mechanismthat is based on the known anion-permselectivity of the membranein the terminals of the TTS. The channelled-current model alsopredicts a direct role of Cl and a possible interaction betweenCa and CI in e-c coupling. The initiation and maintenance oftension as well as its magnitude, are in fact dependent uponthe concentrations of Ca and Cl in the medium. Thus, both thesignalling to, and the activation of, the contractile systemappear to be performed by a flow of current in the loop: cellmembrane – cell interior – TTS membrane –TTS channels – exterior, as is envisaged in the channelled-currentmodel of e-c coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号