首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Growth and l-threonine productivity of l-threonine producer Escherichia coli H-4290 were inhibited by precursor amino acids, l-homoserine and l-aspartate. l-Threonine hyper-producers were isolated among the mutants resistant to l-homoserine and l-aspartate. Mutants H-4351 (Homr) and H-4578 (Homr, Aspr) accumulated 22.2 g/l and 24.3 g/l of l-threonine in test tube cultures, while the parental strain H-4290 accumulated 18.2 g/l. The enzyme level of aspartokinase I (first enzyme of the threonine operon) was enhanced 2.3 times (H-4351) and 3 times (H-4578) that of H-4290. Mutant H-4578 accumulated 76 g/l of l-threonine in a 2-l jar fermentor after 75 h cultivation.Abbreviations DAP diaminopimeric acid - Met l poor growth in methionine-free medium - AHV -amino--hydroxyvaleric acid - Thr-N- lack of ability to utilize l-threonine as a nitrogen source - Rif rifampicin - Lys+Metr resistant to l-lysine and dl-methionine  相似文献   

2.
The uptake ofl-[3H]glutamate,l-[3H]aspartate, -[3H]aminobutric acid (GABA), [3H]dopamine,dl-[3H]norepinephrine and [3H]5-hydroxytryptamine (5-HT) was studied in astrocytes cultured from the cerebral cortex, striatum and brain stem of newborn rat and grown for 2 weeks in primary cultures. The astrocytes exhibited a high-affinityl-glutamate uptake withK m values ranging from 11 to 110 M.V max values were 4.5 in cerebral cortex, 39.1 in striatum, and 0.4 in brain stem, nmol per mg cell protein per min. There was a less prominent high-affinity uptake ofl-aspartate withK m values from 88 to 187 M.V max values were 7.4 in cerebral cortex, 37.1 in striatum, and 3.1 in brain stem, nmol per mg cell protein per min. The high-affinity GABA uptake exhibitedK m values ranging from 5 to 17 M andV max values were 0.01 for cerebral cortex, 0.04 for striatum, and 0.1 for brain stem, nmol per mg cell protein per min. No high-affinity, high-capacity uptake was found for the monoamines. The results demonstrate a heterogeneity among the astroglial cells cultivated from the different brain regions concerning the uptake capacity of amino acid neurotransmitters. Furthermore, amino acid transmitters and monoamines are taken up by the cells in different ways.  相似文献   

3.
The effect ofl-aspartate on the32Pi incorporation of phospholipids, was studied on slices of rat cerebral cortex. This amino acid produced an inhibitory effect in concentrations 0.01–10 mM, which was more evident at 120 min. This effect was not stereospecific and did not imply a change in Pi uptake and in nucleotides P precursors. The inhibition was present in PS, PC, PE and to a lesser extent in PI. On liver slices 1 mMl-aspartate had the opposite effect, stimulating the incorporation of32Pi into total phospholipids. Our results suggest that the effect ofl-aspartate is by a non-specific mechanism, probably not mediated by a receptor.  相似文献   

4.
The subcellular distribution of kainic acid (KA) binding sites in rat brain has been studied using a microcentrifugation assay. KA did not bind to myelin or brain cytosol and had few or no binding sites in the nuclear fraction. However, it bound to microsomal components (K d =128–136 nM; 2.5–4.8 pmol/mg protein), purified synaptic plasma membranes (SPM) (K d =45–71 nM; 5.8–6.5 pmol/mg), and purified cell-body and intraterminal mitochondria (K d =11–31 nM; 0.4–1.1 pmol/mg). Bound KA could be totally displaced byl-glutamate orl-aspartate, but several putative antagonists of these amino acids (nuciferin, compound HA-966, 2-amino-4-phosphonobutyrate, and 2-amino-3-phosphonoproprionate) failed to displace KA or did so at very high concentrations (4 mM). Glutamic acid diethyl ester (GDEE) andd,l--aminoadipate (-AA) were more effective (IC50, 0.2–0.8 mM) and showed differential effects in their capacity to displace KA bound to the various subcellular fractions. Thus, GDEE only displaced 40–60% of the KA bound by SPM or mitochondria and did not prevent the binding of KA to microsomes. -AA, on the other hand, was more effective in preventing the binding of KA at high concentrations and displaced between 80 and 100% of the drug. Both compounds showed biphasic curves of KA displacement from synaptic plasma membranes and mitochondria. The overall results indicate the presence of multiple binding sites for KA in brain cells and suggest that KA does not act exclusively at synaptic glutamate receptors. The mechanism of KA action is most likely quite complex, and the drug probably acts at multiple binding sites affecting a number of processes.  相似文献   

5.
It is proposed that the activity of an epidermal cotransport system for Na+ and dicarboxylic amino acids accounts for the small amounts of L-glutamate and L-aspartate in the otherwise amino-acid-rich blood plasma of insects. This Na+-dependent transport system is responsible for more than 95% of the uptake of these amino acids into the larval epidermis of the beetle Tenebrio molitor. Kinetic analysis of uptake showed that the Na+-dependent co-transporter has medium affinity for L-glutamate and L-aspartate. The K m for L-glutamate uptake was 146 mol·l-1, and the maximum velocity of uptake (V max) was 12.1 pmol·mm-2 of epidermal sheet per minute. The corresponding values for L-aspartate were 191 mol·l-1 and 8.4 pmol·mm-2·min-1. The Na+/L-glutamate co-transporter has a stoichiometry of at least two Na+ ions for each L-glutamate-ion transported (n=217). The co-transporter has an affinity for Na+ equivalent to a K m of 21 mmol · l-1 Na+. Na+ is the only external ion apparently required to drive L-glutamate uptake. Li+ substitutes weakly for Na+. Removal of external K+ or addition of ouabain decreases uptake slowly over 1 h, suggesting that these treatments dissipate the Na+/K+ gradient by inhibiting epidermal Na+/K+ ATPase. Several structural analogues of L-glutamate inhibit the medium-affinity uptake of L-glutamate. The order of potency with which these competitive inhibitors block glutamate uptake is L-cysteatethreo-3-hydroxy-Dl-aspartate > D-aspartateL-aspartate> L-cysteine sulphinate > L-homocysteateD-glutamate. L-trans-Pyrrolidine-2,4-dicarboxylate, a potent inhibitor of L-glutamate uptake in mammalian synaptosomes, is a relatively weak blocker of epidermal uptake. The epidermis takes up substantially more L-glutamate by this Na+-dependent system than tissues such as skeletal muscle and ventral nerve cord. The epidermis may be a main site regulating blood L-glutamate levels in insects with high blood [Na+]. Because L-glutamate and L-aspartate stimulate skeletal muscle in insects, a likely role for epidermal L-glutamate/L-aspartate transporter is to keep the level of these excitatory amino acids in the blood below the postsynaptic activation thresholds.Abbreviation ac acetate - Ch choline - CNS central nervous system - cpm counts per minute - CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetic acids - HPLC high performance liquid chromatography - K m Michaelis constant - n app apparent number - NMG N-methyl-D-glucamine - Pipes Piperazine-N,N-bis-[2-ethanesulfonic acid] - SD standard deviation - TEA tetraethyl-ammonium - V velocity of uptake - V max maximum velocity of uptake  相似文献   

6.
N-Acetyl-L-glutamate (NAG), the activator of mitochondrial carbamoyl phosphate synthetase (CPS), is demonstrated by several methods, including a new HPLC assay, in the brain of mammals and of chicken. The brain levels of NAG are 200–300 times lower than the levels of N-acetyl-l-aspartate (NAA), and are similar to the levels of NAG in rat liver. The NAG levels in chicken liver are very low. Although NAG is mitochondrial in the liver, it is cytosolic in brain. Using enzyme activity and immuno assays we did not detect CPS in brain (detection limit, 12.5 g/g brain), excluding that brain NAG is involved in citrullinogenesis. The regional distribution of brain NAG differs from that of NAA and resembles that of N-acetyl-l-aspartyl-l-glutamate (NAAG), suggesting that NAG and NAAG are related. NAG might be involved in the modulation of NAAG degradation.Special issue dedicated to Dr. Santiago Grisolía  相似文献   

7.
[3H]Glutamate uptake into astrocytes in primary culture was potently inhibited by the aspartate analoguesl- andd-aspartic acid,Dl-threo--hydroxy-aspartic acid,l-aspartic acid--hydroxymate (IC50's: 136, 259, 168, and 560 M, respectively) and by -Dl-methylene-aspartate, a suicide inhibitor of asparate aminotransferase (IC50: 524 M), and by the endogenous sulphur-containing amino acidl-cysteinesulfinic acid (IC50: 114 M). [3H]Glutamate uptake was not significantly affected by either N-methyl-d-aspartate orDl-homocysteine thiolactone. These results demonstrate that other excitatory amino acids including aspartate andl-cysteinesulfinic acid (but excludingl-homocysteic acid) interact with the glutamate transport system of astrocytes. Inhibition of glutamate uptake may significantly increase the level of neuronal excitability.  相似文献   

8.
The action of the convulsant drugs, methionine sulfoximine (MSO), 3-mercaptopropionate (3-MP), megimide (MG), and allylglycine on the binding ofl-[14C]aspartate,l-[14C]glutamate and [14C]GABA to a hydrophobic protein fraction isolated from rat cerebral cortex was studied. Using the convulsant at 10–4 M concentration and the radioactive ligands at 106 M the binding ofl-[14C]glutamate was inhibited 60% by 3-MP and 40% by MSO, while MG and allylglycine had no effect. The binding ofl-[14C]aspartate was inhibited 55%, and 10–20% by 3-MP and MSO, respectively, while MG and allylglycine had not effect. None of the drugs mentioned, except for a minimal inhibition by MG, altered the binding of [14C]GABA. Neither MSO nor 3-MP affected the high-affinity sites forl-[14C]glutamate orl-[14C]aspartate, but they had a strong inhibitory action on the medium affinity site. These results are discussed in relation to the possible mechanism of action of these drugs onl-glutamate andl-aspartate receptors.  相似文献   

9.
Astrocytes have been proposed to regulate the extracellular space in the brain, even if rather little is known about their specific functions. One possibility for obtaining more knowledge on the functions of astroglial cells is to examine how they respond on exposure to pharmacological agents. Na+-valproate is an anticonvulsive drug which is used in the treatment of several types of epilepsy. The mechanisms of action of the drug are not fully understood, but the GABA-ergic system, both in neurons and astrocytes, has been shown to be affected. In the present study, the effects of valproate were investigated on astroglial cells in primary cultures from newborn rat cerebral cortex. The transport of the drug itself and its effects on the transport of the amino acid transmitters glutamate, aspartate and -aminobutyric acid (GABA) into astrocytes were examined. The [3H]valproate transport into the astrocytes was increased after exposure tol-glutamate but notl-aspartate. On the other hand, after acute exposure for the drug, the transport of [3H]l-glutamate and [3H]l-aspartate decreased, as also did the affinity but not the transport capacity for the [3H]GABA uptake. However, after 5 days chronic valproate exposure, no effects could be seen on the uptake kinetics ofl-glutamate orl-aspartate. For GABA, the affinity decreased, while the transport capacity remained unchanged compared with controls. The results showed that valproate, glutamate, aspartate and GABA were capable of interacting significantly with each others transport into the astrocytes.  相似文献   

10.
Our earlier observations showed thatl-lysine enhanced the activity of diazepam against seizures induced by pentylenetetrazol (PTZ), and increased the affinity of benzodiazepine receptor binding in a manner additive to that caused by -aminobutyric acid (GABA). The present paper provides additional evidence to show thatl-lysine has central nervous system depressant-like characteristics.l-lysine enhanced [3H]flunitrazepam (FTZ) binding in brain membranes was dose-dependent and stimulated by chloride, bromide and iodide, but not fluoride. Enhancement of [3H]FTZ binding byl-lysine at a fixed concentration was increased by GABA but inhibited by pentobarbital between 10–7 to 10–3M. While GABA enhancement of [3H]FTZ binding was inhibited by the GABA mimetics imidazole acetic acid and tetrahydroisoxazol pyridinol, the enhancement by pentobarbital andl-lysine of [3H]FTZ binding was dose-dependently increased by these two GABA mimetics. The above results suggest thatl-lysine and pentobarbital acted at the same site of the GABA/benzodiazepine receptor complex which was different from the GABA binding site. The benzodiazepine receptor antagonist imidazodiazepine Ro15-1788 blocked the antiseizure activity of diazepam against PTZ. Similar to pentobarbital, the anti-PTZ effect ofl-lysine was not blocked by Ro15-1788. Picrotoxinin and the GABA, receptor antagonist bicuculline partially inhibitedl-lysine's enhancement of [3H]FTZ binding with the IC50s of 2 M and 0.1 M, respectively. The convulsant benzodiazepine Ro5-3663 dose-dependently inhibited the enhancement of [3H]FTZ binding byl-lysine. This article shows the basic amino acidl-lysine to have a central nervous system depressant characteristics with an anti-PTZ seizure activity and an enhancement of [3H]FTZ binding similar to that of barbiturates but different from GABA.  相似文献   

11.
Membranes prepared from cerebellar granule cells and cortical astrocytes exhibited specific, saturable binding ofl-[3H]glutamate. The apparent binding constant K d was 135 nM and 393 nM and the maximal binding capacity Bmax 42 and 34 mol/kg in granule cells and astrocytes, respectively. In granule cells the binding was strongly inhibited by the glutamate receptor agonists kainate, quisqualate, N-methyl-d-aspartate (NMDA),l-homocysteate and ibotenate, and the antagonistdl-5-aminophosphonovalerate. In astrocytes, only quisqualate among these was effective.l-Aspartate,l-cysteate,l-cysteinesulphinate and -d-glutamylglycine were inhibitors in both cell types. The binding was totally displaced in both cell types byl-cysteinesulphinate with IC50 in the micromolar range. In astrocytes the binding was also totally displaced by quisqualate, but in granule cells only partially by NMDA, kainate and quisqualate in turn. It is concluded from the relative potencies of agonists and antagonists in [3H]glutamate binding that cerebellar granule cells express the NMDA, kainate and quisqualate types of the glutamate receptor, while only the quisqualate-sensitive binding seems to be present in cortical astrocytes.  相似文献   

12.
Following the injection of 4-day old rats with 150 mMl-[3,4-3H]valine (10mol/g, IP) the incorporation of3H into protein was linear 2 hours. Valine specific activity in the brain acid-soluble fraction was constant between 30 and 120 min after injection with a mean value of 82.3% of the injectate. Significant amounts of tritated metabolites accumulated in the brain acid-soluble fraction (41.4% of radioactivity at 120 min) but do not prove an impediment to measuring rates of protein synthesis. The rate of protein synthesis in cerebral cortex of the 4-day old rat was measured by quantitative autoradiography using [3H]valine and3H-sensitive film. The measured rate shows excellent agreement with that found previously usingl-[1-14C]valine. Our results suggest that [3H]valine can be a useful precursor to measure local rates of brain protein synthesis by quantitative autoradiography.  相似文献   

13.
Aluminium is a debatable and suspected etiological factor in neurodegenerative disorders. Aluminium–amino acid complexes also play an important role in the complex biology of the metal. Recent reports indicate the presence of d-aspartate and d-glutamate in aging brain, human breast tumors, core amyloid plaques and neurofibrillary tangles of Alzheimer's brain. This stereoinversion from the l- to the d-enantiomer is enhanced by Al. Further, the observation that Al is localized in the chromatin region encouraged the present study of the interaction of Al–amino acid complexes with DNA. This study used circular dichroism of supercoiled DNA and showed that Al–d-Asp caused a native B-DNA to C-DNA conformational change, while Al–l-Asp, Al–l-Glu and Al–d-Glu did not alter the native B-DNA conformation. This differential DNA binding property of Al–amino acid complexes is assigned to the stereoisomerism and chirality of the complexes. Interestingly, polyamines like spermine further induced an asymmetric condensation of the "limit C-motif" induced by Al–d-Asp to a -DNA. The results were supported by computer modeling, gel studies and ethidium bromide binding. We also propose a mechanism of Al–d-Asp binding and its ability to modulate DNA topology.  相似文献   

14.
Two systems for l-glutamate transport were found in Salmonella typhimurium LT-2 GltU+ (glutamate utilization) mutants. The first one is similar to the glt system previously described in Escherichia coli; by transductional analysis the structural gene, gltS, coding for the transport protein was located at minute 80 of the chromosome as part of the operon gltC-gltS, and its regulator, the gltR gene, near minute 90; the gltS gene product transports both l-glutamate and l-aspartate, is sodium independent, and is -hydroxyaspartate sensitive. The second transport system, whose structural gene was called gltF and is located at minute 0, was l-glutamate specific, sodium independent, and -methylglutamate sensitive. Two aspartase activities occurred in S. typhimurium LT-2: the first one was present only in the GltU+ mutants, had a pH 6.4 optimum, was essential for both l-glutamate and l-aspartate metabolism, and mapped at minute 94, close to the ampC gene. The second one had a pH 7.2 optimum, could be induced by several amino acids, and thus may have a general role in nitrogen metabolism.  相似文献   

15.
Summary Corynebacterium glutamicum ATCC 13 032 produces 13 g/l l-isoleucine from 200 mM -ketobutyrate as a synthetic precursor. In fed batch cultures up to 19 g/l l-isoleucine is formed. For optimal conversion the addition of 0.3 mM l-valine plus 0.3 mM l-leucine to the fermentation medium is required. The affinity constants for the acetohydroxy acid synthase (AHAS) were determined. (This enzyme directs the flow of -ketobutyrate plus pyruvate towards l-isoleucine and that of two moles of pyruvate to l-valine and l-leucine, respectively.) For -ketobutyrate the K m is 4.8×10-3 M, and V max 0.58 U/mg, for pyruvate the K m is 8.4×10-3 M, and V max 0.37 U/mg. Due to these characteristics the presence of high -ketobutyrate concentrations apparently results in a l-valine, l-leucine deficiency. This in turn leads to a derepression of the AHAS synthesis from 0.03 U/mg to 0.29 U/mg and high l-isoleucine production is favoured. The derepression of the AHAS synthesis induced by the l-valine, l-leucine shortage was directly proven with a l-valine, l-leucine, l-isoleucine auxotrophic mutant where the starvation of each amino acid resulted in an increased AHAS level. This is in accordance with the fact that only one AHAS enzyme could be verified by chromatographic and electrophoretic separations as being responsible for the synthesis of all three branched-chain amino-acids.  相似文献   

16.
Evidence is presented that the high levels of internal l-glutamic and l-aspartic acid in frog Rana esculenta red blood cells are due to the existence of a specific carrier for acidic amino acids of high affinity K m = 3 m and low capacity (Vmax) 0.4 mol l-Glu · Kg–1 dry cell mass · 10 min–1. It is Na+ dependent and the incorporation of l-glutamic acid can be inhibited by l and d-aspartate and l-cysteic acid, while d-glutamic does not inhibit. Moreover, this glutamic uptake shows a bell-shaped dependence on the external pH. All these properties show that this carrier belongs to the system X AG family. Besides the incorporation through this system, l-glutamic acid is also taken up through the ASC system, although, under physiological conditions, this transport is far less important, since it has relatively low affinity K m 39 m but high capacity (V max) 1.8 mol l-Glu · Kg–1 dry cell mass · 10 min–1.  相似文献   

17.
Summary Biotransformations were developed to oxidize N-carbobenzoxy(CBZ)-l-lysine and to reduce the product keto acid to l-CBZ-oxylysine. Lysyl oxidase (l-lysine: O2 oxidoreductase, EC 1.4.3.14) from Trichoderma viride was relatively specific for l-lysine and had very low activity with N-substituted derivatives. l-Amino acid oxidase (l-amino acid: O2 oxidoreductase [deaminating], EC 1.4.3.2) from Crotalus adamanteus venom had low activity with l-lysine but high activity with N-formyl-, t-butyoxycarbonyl(BOC)-, acetyl-, trifluoroacetyl-, or CBZ-l-lysine. l-2-Hydroxyisocaproate dehydrogenase (EC 1.1.1.-) from Lactobacillus confusus catalyzed the reduction by NADH of the keto acids from N-acetyl-, trifluoroacetyl-, formyl- and CBZ-l-lysine but was inactive with the products from oxidation of l-lysine, l-lysine methyl ester, l-lysine ethyl ester or N-t-BOC-l-lysine. Providencia alcalifaciens (SC9036, ATCC 13159) was a good microbial substitute for the snake venom oxidase and also provided catalase (H2O2:H2O2 oxidoreductase EC 1.11.1.6). N-CBZ-l-Lysine was converted to CBZ-l-oxylysine in 95% yield with 98.5% optical purity by oxidation using P. alcalifaciens cells followed by reduction of the keto acid using l-2-hydroxyisocaproate dehydrogenase. NADH was regenerated using formate dehydrogenase (formate: NAD oxidoreductase, EC 1.2.1.2) from Candida boidinii. The Providencia oxidase was localized in the particulate fraction and catalase activity was predominantly in the soluble fraction of sonicated cells. The pH optima and kinetic constants were determined for the reactions. Correspondence to: R. L. Hanson  相似文献   

18.
A detailed kinetic study of the inhibitory effects ofl- andd-enantiomers of cysteate, cysteine sulphinate, homocysteine sulphinate, homocysteate, and S-sulpho-cysteine on the neuronal, astroglial and synaptosomal high-affinity glutamate transport system was undertaken.d-[3H] Aspartate was used as the transport substrate. Kinetic characterisation of uptake in the absence of sulphur compounds confirmed the high-affinity nature of the transport systems, the Michaelis constant (K m) ford-aspartate uptake being 6 M, 21 M and 84 M, respectively, in rat brain cortical synaptosomes and primary cultures of mouse cerebellar granule cells and cortical astrocytes. In those cases where significant effects could be demonstrated, the nature of the inhibition was competitive irrespective of the neuronal versus glial systems. The rank order of inhibition was essentially similar in synaptosomes, neurons and astrocytes. Potent inhibition (K iK m) of transport in each system was exhibited byl-cysteate, andl- andd-cysteine sulphinate whereas substantially weaker inhibitory effects (K i>10–1000 times the appropriateK m value) were exhibited by the remaining sulphur amino acids. In general, inhibition: (i) was markedly stereospecific in favor of thel-enantiomers (except for cysteine sulphinate) and (ii) was found to decrease with increasing chain length. Computer-assisted molecular modelling studies, in which volume contour maps of the sulphur compounds were superimposed on those ofd-aspartate andl-glutamate, demonstrated an order of inhibitory potency which was, qualitatively, in agreement with that obtained quantitatively by in vitro kinetic studies.Special issue dedicated to Dr. Elling Kvamme  相似文献   

19.
The enzymatic production of sulfur froml-cysteine was studied in young dormant -spores ofPhomopsis viticola. Cysteine aminotransferase (CAT) and mercaptopyruvate sulfurtransferase (MST) activities could be responsible for the production of endogenous elemental sulfur (S0) in -spores.l-Cysteine was first deaminated, with production of -mercaptopyruvate, by the CAT. The -mercaptopyruvate produced is successively desulfurated by the MST with production of sulfur and pyruvate. Deaminase activity was recovered principally in the cytoplasmic fraction, whereas desulfurase activity was recovered mainly in the mitochondrial fraction.l-Cysteine and S0 sharply affected the respiratory activity, the ATP content, and suppressed germination of -spores. In contrast, reduced glutathione did not affect these metabolic parameters. Production of S0 by enzymatic degradation ofl-cysteine could be responsible for the inhibitory action of this amino acid. We suggest that CAT and MST, by their capacity to produce sulfur or S0, plays a key role in regulation of morphogenetic processes ofPhomopsis viticola.  相似文献   

20.
The transport of [3H]l-glutamate, [3H]l-aspartate, [3H]-aminobutyric acid ([3H]GABA), [3H]dopamine, [3H]norepinephrine and [3H]5-hydroxytryptamine (3H-5-HT) was measured in primary astroglial cultures from newborn rat cerebral hemispheres. There was a high-affinity uptake with aK m of 69.0 M for L-glutamate, 12.3 M forl-aspartate and 3.1 M for GABA. The uptake showed properties of high capacity with aV max of 17.0 nmol·mg prot–1·min–1 forl-glutamate, 1.1 nmol·mg prot–1·min–1 forl-aspartate and 0.04 nmol·mg prot–1·min–1 for GABA. No high-affinity high capacity transport system was found for the monoamines studies. Autoradiographic examination demonstrated a heavy deposit of grains suggesting a prominent accumulation of [3H]l-glutamate and [3H]l-aspartate in the astroglial-like cells of the cultures, while the [3H]GABA accumulation was less intense. On the other hand, there was only a weak accumulation of grains after incubating the cultures with [3H]dopamine, [3H]norepinephrine or [3H]5-HT. Thus, astroglial cells in culture accumulate amino acid neurotransmitters and monoamines in different ways with a high-affinity high-capacity uptake of glutamate, aspartate and GABA and a diffusion-uptake of dopamine, norepinephrine and 5-HT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号