首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial Artificial Chromosome (BAC) clones are widely used for retrieving genomic DNA sequences for gene targeting. In this study, low-copy-number plasmids pBAC-FB, pBAC-FC, and pBAC-DE, which carry the F plasmid replicon, were generated from pBACe3.6. pBAC-FB was successfully used to retrieve a sequence of a BAC that was resistant to retrieval by a high-copy-number plasmid via λ Red-mediated recombineering (gap-repair cloning). This plasmid was also used to retrieve two other genes from BAC, indicating its general usability retrieving genes from BAC. The retrieved genes were manipulated in generating targeting vectors for gene knockouts by recombineering. The functionality of the targeting vector was further validated in a targeting experiment with C57BL/6 embryonic stem cells. The low-copy-number plasmid pBAC-FB is a plasmid of choice to retrieve toxic DNA sequences from BACs and to manipulate them to generate gene-targeting constructs by recombineering.  相似文献   

2.
ES cell-tetraploid (ES) mice are completely derived from embryonic stem cells and can be obtained at high efficiency upon injection of hybrid ES cells into tetraploid blastocysts. This method allows the immediate generation of targeted mouse mutants from genetically modified ES cell clones, in contrast to the standard protocol, which involves the production of chimeras and several breeding steps. To provide a baseline for the analysis of ES mouse mutants, we performed a phenotypic characterization of wild-type B6129S6F(1) ES mice in relation to controls of the same age, sex, and genotype raised from normal matings. The comparison of 90 morphological, physiological, and behavioral parameters revealed elevated body weight and hematocrit as the only major difference of ES mice, which exhibited an otherwise normal phenotype. We further demonstrate that ES mouse mutants can be produced from mutant hybrid ES cells and analyzed within a period of only 4 months. Thus, ES mouse technology is a valid research tool for rapidly elucidating gene function in vivo.  相似文献   

3.
We describe the ability of novel episomally maintained vectors to efficiently promote gene expression in embryonic stem (ES) cells as well as in established mouse cell lines. Extrachromosomal maintenance of our vectors is based on the presence of polyoma virus DNA sequences, including the origin of replication harboring a mutant enhancer (PyF101), and a modified version of the polyoma early region (LT20) encoding the large T antigen only. Reporter gene expression from such extrachromosomally replicating vectors was approximately 10-fold higher than expression from replication-incompetent control plasmids. After transfection of different ES cell lines, the polyoma virus-derived plasmid variant pMGD20neo (7.2 kb) was maintained episomally in 16% of the G418-resistant clones. No chromosomal integration of pMGD20neo vector DNA was detected in ES cells that contained episomal vector DNA even after long term passage. The vector's replication ability was not altered after insertion of up to 10 kb hprt gene fragments. Besides undifferentiated ES cells, the polyoma-based vectors were also maintained extrachromosomally in differentiating ES cells and embryoid bodies as well as in established mouse cell lines.  相似文献   

4.
The majority of gene-targeting experiments in mice are performed in 129Sv-derived embryonic stem (ES) cell lines, which are generally considered to be more reliable at colonizing the germ line than ES cells derived from other strains. Gene targeting is reliant on homologous recombination of a targeting vector with the host ES cell genome. The efficiency of recombination is affected by many factors, including the isogenicity (H. te Riele et al., 1992, Proc. Natl. Acad. Sci. USA 89, 5128-5132) and the length of homologous sequence of the targeting vector and the location of the target locus. Here we describe the double-end sequencing and mapping of 84,507 bacterial artificial chromosomes (BACs) generated from AB2.2 ES cell DNA (129S7/SvEvBrd-Hprtb-m2). We have aligned these BACs against the mouse genome and displayed them on the Ensembl genome browser, DAS: 129S7/AB2.2. This library has an average insert size of 110.68 kb and average depth of genome coverage of 3.63- and 1.24-fold across the autosomes and sex chromosomes, respectively. Over 97% of the mouse genome and 99.1% of Ensembl genes are covered by clones from this library. This publicly available BAC resource can be used for the rapid construction of targeting vectors via recombineering. Furthermore, we show that targeting vectors containing DNA recombineered from this BAC library can be used to target genes efficiently in several 129-derived ES cell lines.  相似文献   

5.
6.
One major strategy to generate genetically modified mouse models is gene targeting in mouse embryonic stem(ES)cells,which is used to produce gene-targeted mice for wide applications in biomedicine.However,a major bottleneck in this approach is that the robustness of germiine transmission of gene-targeted ES cells can be significantly reduced by their genetic and epigenetic instability after long-term culturing,which impairs the efficiency and robustness of mouse model generation.Recently,we have established a new type of pluripotent cells termed extended pluripotent stem(EPS)cells,which have superior developmental potency and robust germline competence compared to conventional mouse ES cells.In this study,we demonstrate that mouse EPS cells well maintain developmental potency and genetic stability after long-term passage.Based on gene targeting in mouse EPS cells,we established a new approach to directly and rapidly generate gene-targeted mouse models through tetraploid complementation,Haibo Li and Chaoran Zhao contributed equally to this work.Electronic supplementary material The online version of this article(https://doi.org/10.1007/s13238-018-0556-1)contains supplementary material,which is available to authorized users.which could be accomplished in approximately 2 months.Importantly,using this approach,we successfully constructed mouse models in which the human interleukin 3(IL3)or interleukin 6(IL6)gene was knocked into its corresponding locus in the mouse genome.Our study demonstrates the feasibility of using mouse EPS cells to rapidly generate mouse models by gene targeting,which have great application potential in biomedical research.  相似文献   

7.
Recombineering allows DNA cloned in Escherichia coli to be modified via lambda (lambda) Red-mediated homologous recombination, obviating the need for restriction enzymes and DNA ligases to modify DNA. Here, we describe the construction of three new recombineering strains (SW102, SW105 and SW106) that allow bacterial artificial chromosomes (BACs) to be modified using galK positive/negative selection. This two-step selection procedure allows DNA to be modified without introducing an unwanted selectable marker at the modification site. All three strains contain an otherwise complete galactose operon, except for a precise deletion of the galK gene, and a defective temperature-sensitive lambda prophage that makes recombineering possible. SW105 and SW106 cells in addition carry l-arabinose-inducible Cre or Flp genes, respectively. The galK function can be selected both for and against. This feature greatly reduces the background seen in other negative-selection schemes, and galK selection is considerably more efficient than other related selection methods published. We also show how galK selection can be used to rapidly introduce point mutations, deletions and loxP sites into BAC DNA and thus facilitate functional studies of SNP and/or disease-causing point mutations, the identification of long-range regulatory elements and the construction of conditional targeting vectors.  相似文献   

8.
9.
10.
Nuclear transfer (NT) provides an opportunity for clonal amplification of a nuclear genome of interest. Here, we report NT-mediated reprogramming with frozen mouse cells that were nonviable because they were frozen at -80 degrees C for up to 342 days without a cryoprotectant. We derived eight embryonic stem (ES) cell lines from cloned blastocysts by conventional NT procedure and five ntES (nuclear transfer embryonic stem) cell lines by a modified NT procedure in which a whole cell instead of a nucleus was injected into an enucleated oocyte. Chromosome analysis revealed that 12 of 13 ntES cell lines have normal karyotypes. On injection of ntES cells into tetraploid blastocysts to generate clonal mice that are nearly completely ntES-cell derived, live pups were obtained; four clonal mice survived until adulthood. On injection of ntES cells into diploid blastocysts, chimeric mice with a high somatic ES cell contribution were generated; germ-line transmission was obtained. Our findings indicate that chromosome stability and genomic integrity can be maintained in mouse somatic cells after freezing without cryoprotection and that NT and ES cell techniques can rescue the genome of these cells.  相似文献   

11.
A useful approach for exploring gene function involves generating mutant mice from genetically modified embryonic stem (ES) cells. Recent advances in genetic engineering of ES cells have shifted the bottleneck in this process to the generation of mice. Conventional injections of ES cells into blastocyst hosts produce F0 generation chimeras that are only partially derived from ES cells, requiring additional breeding to obtain mutant mice that can be phenotyped. The tetraploid complementation approach directly yields mice that are almost entirely derived from ES cells, but it is inefficient, works only with certain hybrid ES cell lines and suffers from nonspecific lethality and abnormalities, complicating phenotypic analyses. Here we show that laser-assisted injection of either inbred or hybrid ES cells into eight cell-stage embryos efficiently yields F0 generation mice that are fully ES cell-derived and healthy, exhibit 100% germline transmission and allow immediate phenotypic analysis, greatly accelerating gene function assignment.  相似文献   

12.
Six newly derived hybrid mouse embryonic stem (ES) cell lines and two inbred ES cell lines were tested for their ability to produce completely ES cell-derived mice by aggregation of ES cells with tetraploid embryos. Forty-five ES cell-tetraploid pups were generated from six hybrid ES cell lines and no pups from two inbred ES cell lines. These pups were found to have increased embryonic and placental weights than control mice. Twenty-two pups survived to adulthood and produced normal offsprings, and the other 23 pups died of several reasons including respiratory distress, abdomen ulcer-like symptoms, and foster failure. The 22 adult ES cell-tetraploid mice were completely ES cell-derived as judged by coat color and germline transmission, only two of them was found to have tetraploid component in liver, blood, and lung as analyzed by microsatellite loci. Our data suggested that genetic heterozygosity is a crucial factor for postnatal survival of ES cell-tetraploid mice, and tetraploid embryo aggregation using hybrid ES cells is a simple and efficient procedure for immediate generation of targeted mouse mutants from genetically modified ES cell clones, in contrast to the standard protocol, which involves the production of chimeras and several breeding steps.  相似文献   

13.
The MSM/Ms strain is derived from the Japanese wild mouse Mus musculus molossinus and displays characteristics not observed in common laboratory strains. Functional genomic analyses using genetically engineered MSM/Ms mice will reveal novel phenotypes and gene functions/interactions. We previously reported the establishment of a germline-competent embryonic stem (ES) cell line, Mol/MSM-1, from the MSM/Ms strain. To analyze its usefulness for insertional mutagenesis, we performed gene-trapping using these cells. In the present study, we compared the gene-trap events between Mol/MSM-1 and a conventional ES cell line, KTPU8, derived from the F1 progeny of a C57BL/6 × CBA cross. We introduced a promoter-trap vector carrying the promoterless β-galactosidase/neomycin-resistance fusion gene into Mol/MSM-1 and KTPU8 cells, isolated clones, and identified the trapped genes by rapid amplification of cDNA 5′-ends (5′-RACE), inverse PCR, or plasmid rescue. Unexpectedly, the success rate of 5′-RACE in Mol/MSM trap clones was 47 %, lower than the 87 % observed in KTPU8 clones. Genomic analysis of the 5′-RACE-failed clones revealed that most had trapped ribosomal RNA gene regions. The percentage of ribosomal RNA region trap clones was 41 % in Mol/MSM-1 cells, but less than 10 % in KTPU8 cells. However, within the Mol/MSM-1 5′-RACE-successful clones, the trapping frequency of annotated genes, the chromosomal distribution of vector insertions, the frequency of integration into an intron around the start codon-containing exon, and the functional spectrum of trapped genes were comparable to those in KTPU8 cells. By selecting 5′-RACE-successful clones, it is possible to perform gene-trapping efficiently using Mol/MSM-1 ES cells and promoter-trap vectors.  相似文献   

14.
RNA interference (RNAi) is a powerful approach to phenocopy mutations in many organisms. Gold standard conventional knock‐out mouse technology is labor‐ and time‐intensive; however, off‐target effects may confound transgenic RNAi approaches. Here, we describe a rapid method for conditional and reversible gene silencing in RNAi transgenic mouse models and embryonic stem (ES) cells. RUSH and CRUSH RNAi vectors were designed for reversible or conditional knockdown, respectively, demonstrated using targeted replacement in an engineered ROSA26lacZ ES cell line and wildtype V6.5 ES cells. RUSH was validated by reversible knockdown of Dnmt1 in vitro. Conditional mouse model production using CRUSH was expedited by deriving ES cell lines from Cre transgenic mouse strains (nestin, cTnnT, and Isl1) and generating all‐ES G0 transgenic founders by tetraploid complementation. A control CRUSHGFP RNAi mouse strain showed quantitative knockdown of GFP fluorescence as observed in compound CRUSHGFP, Ds‐Red Cre‐reporter transgenic mice, and confirmed by Western blotting. The capability to turn RUSH and CRUSH alleles off or on using Cre recombinase enables this method to rapidly address questions of tissue‐specificity and cell autonomy of gene function in development. genesis 52:39–48, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
We have devised a general strategy for producing female mice from 39,X0 embryonic stem (ES) cells derived from male cell lines carrying a targeted mutation of interest. We show that the Y chromosome is lost in 2% of subclones from 40,XY ES cell lines, making the identification of targeted 39,X0 subclones a routine procedure. After gene targeting, male and female mice carrying the mutation can be generated by tetraploid embryo complementation from the 40,XY ES cell line and its 39,X0 derivatives. A single intercross then produces homozygous mutant offspring. Because this strategy avoids outcrossing and therefore segregation of mutant alleles introduced into the ES cells, the time and expense required for production of experimental mutant animals from a targeted ES cell clone are substantially reduced. Our data also indicate that ES cells have inherently unstable karyotypes, but this instability does not interfere with production of adult ES cell tetraploid mice.  相似文献   

16.
Embryonic stem (ES) cells, derived from the inner cell mass of the preimplantation mouse embryo, are used increasingly as an experimental tool for the investigation of early mammalian development. The differentiation of these cells in vitro can be used as an assay for factors that regulate early developmental decisions in the embryo, while the effects of altered gene expression during early embryogenesis can be analyzed in chimeric mice generated from modified ES cells. The experimental versatility of ES cells would be significantly increased by the development of systems which allow precise control of heterologous gene expression. In this paper, we report that ES cells are responsive to alpha and beta interferons (IFNs). This property has been exploited for the development of inducible ES cell expression vectors, using the promoter of the human IFN-inducible gene, 6-16. The properties of these vectors have been analyzed in both transiently and stably transfected ES cells. Expression was minimal or absent in unstimulated ES cells, could be stimulated up to 100-fold by treatment of the cells with IFN, and increased in linear fashion with increasing levels of IFN. High levels of induced expression were maintained for extended periods of time in the continuous presence of the inducing signal or following a 12-h pulse with IFN. Treatment of ES cells with IFN did not affect their growth or differentiation in vitro or compromise their developmental potential. This combination of features makes the 6-16-based expression vectors suitable for the functional analysis of developmental control control genes in ES cells.  相似文献   

17.
The ability to rapidly and efficiently generate reliable Cre/loxP conditional transgenic mice would greatly complement global high-throughput gene targeting initiatives aimed at identifying gene function in the mouse. We report here the generation of Cre/loxP conditional ROSA26-targeted ES cells within 3–4 weeks by using Gateway® cloning to build the target vectors. The cDNA of the gene of interest can be expressed either directly by the ROSA26 promoter providing a moderate level of expression or by a CAGG promoter placed in the ROSA26 locus providing higher transgene expression. Utilization of F1 hybrid ES cells with exceptional developmental potential allows the production of germ line transmitting, fully or highly ES cell-derived mice by aggregation of cells with diploid embryos. The presented streamlined procedures accelerate the examination of phenotypical consequences of transgene expression. It also provides a unique tool for comparing the biological activity of polymorphic or splice variants of a gene, or products of different genes functioning in the same or parallel pathways in an overlapping manner.  相似文献   

18.
Gene-targeting technology using mouse embryonic stem (ES) cells has become the “gold standard” for analyzing gene functions and producing disease models. Recently, genetically modified mice with multiple mutations have increasingly been produced to study the interaction between proteins and polygenic diseases. However, introduction of an additional mutation into mice already harboring several mutations by conventional natural crossbreeding is an extremely time- and labor-intensive process. Moreover, to do so in mice with a complex genetic background, several years may be required if the genetic background is to be retained. Establishing ES cells from multiple-mutant mice, or disease-model mice with a complex genetic background, would offer a possible solution. Here, we report the establishment and characterization of novel ES cell lines from a mouse model of Alzheimer’s disease (3xTg-AD mouse, Oddo et al. in Neuron 39:409–421, 2003) harboring 3 mutated genes (APPswe, TauP301L, and PS1M146V) and a complex genetic background. Thirty blastocysts were cultured and 15 stable ES cell lines (male: 11; female: 4) obtained. By injecting these ES cells into diploid or tetraploid blastocysts, we generated germline-competent chimeras. Subsequently, we confirmed that F1 mice derived from these animals showed similar biochemical and behavioral characteristics to the original 3xTg-AD mice. Furthermore, we introduced a gene-targeting vector into the ES cells and successfully obtained gene-targeted ES cells, which were then used to generate knockout mice for the targeted gene. These results suggest that the present methodology is effective for introducing an additional mutation into mice already harboring multiple mutated genes and/or a complex genetic background.  相似文献   

19.
为探讨印迹基因H19的甲基化状态与ES小鼠胚胎发育之间的关系, 以遗传背景相同的正常成年对照小鼠、22只成年ES小鼠和8只新生死亡的ES小鼠以及不同传代次数的ES细胞为实验材料, 利用甲基化敏感性限制性内切酶-PCR技术分别检测了其印迹基因H19的5′非翻译区两个位点的甲基化状态。结果表明, 发育至成年的ES小鼠印迹基因H19所检测位点的甲基化状态与正常成年对照小鼠之间没有差异, 而新生死亡的ES小鼠印迹基因H19所检测位点的甲基化状态与成年ES小鼠以及正常成年对照小鼠相比则存在明显差异。推测ES细胞中印迹基因H19所检测位点的甲基化状态与成年ES小鼠以及正常成年对照小鼠之间可能存在 差异。  相似文献   

20.
Embryonic stem (ES) cells are omnipotent; they can differentiate into every cell type of the body. The development of culture conditions that allow their differentiation has made it conceivable to produce large numbers of cells with lineage-specific characteristics in vitro. Here, we describe a method by which murine ES cells can be differentiated into cells with characteristics of epidermal keratinocytes. Keratinocyte-like cells were isolated from embryoid bodies and grown in culture. Potential applications of this method are the in vitro differentiation of cells of interest from ES cells of mice with lethal phenotypes during embryonic development and the production of genetically modified epidermal keratinocytes that could be used as temporary wound dressing or as carriers of genes of interest in gene therapeutic treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号