首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The capacities of retinal and pigmented cells to regenerate histotypic in-vitro-retinae (IVR) in rotary culture were investigated by dividing the eye cups of 6-day-old chicken embryos into a central and a peripheral part; they were cut along the ora serrata, and the retinal and the pigmented constituents of both parts were isolated. The 4 dissociated cell populations were cultured separately and in all double combinations. Two different types of IVR's were generated; one developed from central or peripheral retinal cells, the other required the addition of pigmented cells from the ciliary margin of the eye. The shape of these IVR's was examined using scanning electron microscopy, and they were also characterized histologically. The acetylcholinesterase pattern marked the inner half of the retina; F11-antibody and a peanut agglutinin marker revealed both plexiform layers and a radial fiber system. In both types, organized histotypical areas consisted of complete sets of retinal layers. In the type containing pigmented cells from the eye periphery, the sequence of layers was identical with that of an in-situ-retina (laminar IVR). In IVR's derived from retinal cells only, the sequence of layers was reversed (rosetted IVR).  相似文献   

2.
The visual ecology of fishes places changing demands on their visual system during development. Study of changes in the eye can suggest possible changes in behavioral ecology. The spectral transmission of the pre-retinal ocular media controls the wavelength of light that reaches the retina and is a simply measured indication of their potential visual capabilities. Dascyllus albisella is a coral reef planktivore known to have UV-sensitive retinal cone cells. UV vision probably aids in detection of zooplankton. As a juvenile it is very closely associated with branching coral heads or, more rarely, sea anemones. As it matures, it ventures farther from its coral, above the reef, and eventually assumes a more vagile life style, moving farther and more frequently afield. Their eyes contain short-wavelength blocking compounds in the lens, cornea and humors. As they age, both the lens and the cornea accumulate blocking compounds that increase the 50% transmission cutoff of the whole eye from ca. 330nm in 2–3cm juveniles to ca. 360nm in the largest adults. The cornea increases its cutoff wavelength faster than the lens and becomes the primary filter in large adults. The cutoff of the aqueous and vitreous humors combined does not change with size. The slope of the transmission cutoff curve increases with the size of the fish. The increased blocking of UV radiation is likely not an adaptation to protect the eye from short-wavelength induced damage. Instead it probably reduces the image degradation effects of short-wavelength light in the largest eyes and still allows sufficient penetration of UV radiation to permit functional UV vision.  相似文献   

3.
The eye optics and topographic distribution of ganglion cells were studied using whole mount preparations from European beaver Castor fiber L. The beaver eye optics provides emmetropia in air and hypermetropia in water. The optometrical measurements predict retinal resolution of the beaver eye around 17′ in air and 9′ in water. In air, retinal resolution corresponds to the real visual acuity, whereas in water, visual acuity is below the retinal resolution because of the non-precise focusing.  相似文献   

4.
A hypothesis is presented which describes, in biomechanical terms, the central programs underlying horizontal eye movements in man. It is suggested that eye movements are produced by means of programmed shifts of the so-called invariant muscle characteristics (static force vs angle of gaze). These shifts lead to a change of the equilibrium point resulting from the interaction of agnnist and antagonist muscles and, as a consequence, to movement and the attainment of a new position of gaze. A reciprocal or a coactivation command to agonist and antagonist muscles occurs when their characteristics shift with respect to the coordinate in the same or opposite directions, respectively. It is proposed that during pursuit and saccadic eye movements a supperposition of the both central commands occurs. During a saccade, the reciprocal command develops evenly up to a certain level. The initial and final levels of the reciprocal command dictate the respective position of gaze and therefore the size of the saccade. The coactivation command develops to a maximum level and is slowly switched off when the new position of gaze has been achieved. The magnitude of the coactivation command seems to be not connected with an absolute position of gaze. It provides probably a stability of the movement and, in particular, prevents overshoot and oscillation during the saccade. The same timing of these commands occurs during pursuit movements, but the magnitude of the coactivation command and the rates of the development of the both commands are less in this case and correlate with the velocity of the movement. This hypothesis enables the tension changes in the muscle during saccadic and pursuit movements to be simulated in qualitative accordance with unique experimental data obtained by Collins et al. (1975). The functional significance of superposition of these motor commands and similarity in the efferent organization of eye and limb movements are discussed.  相似文献   

5.

Background

Vision loss causes major changes in lifestyle and habits that may result in psychological distress and further reduction in the quality of life. Little is known about the magnitude of psychological distress in patients with vision loss and its variation with the normal. The aim of this study is, therefore, to investigate the psychological effects of vision loss and its determinants among Ethiopians.

Methods

A comparative cross-sectional study was conducted on adults attending the Eye clinic of Jimma University Hospital. One hundred fifteen consecutive adults with visual loss at least in one eye and 115 age-and sex-matched controls with normal vision were studied. The psychological distress was measured using standardized Self-Reporting Questionnaire (SRQ-20). Chi-square test and logistic regression were carried out and associations were considered significant at P<0.05.

Results

The overall prevalence of psychological distress was 33.4%. While psychological distress was found in 49.8% of patients who had loss of vision at least in one eye, only 18.3% of the controls had it. In the adjusted analysis, patients with vision loss had 4.6 times higher risk of suffering from psychological distress compared to patients with normal vision (AOR 4.56; 95% CI 2.16-9.62). Moreover, patients with vision loss in both eyes (AOR 4.00; 95% CI 1.453-11.015) and with worse visual acuity in the better eye (AOR 3.66; 95% CI 1.27-10.54) were significantly more likely to have psychological distress than those patients with vision loss in one eye only and good visual acuity in the better eye respectively. The cause of visual loss, pattern of visual loss, duration of visual loss and sociodemographic variables did not influence the likelihood of having psychological distress.

Conclusion

Prevalence of psychological distress was significantly higher in patients with visual loss compared to patients with normal vision. There is a need for integration of psychosocial care into the current medical and surgical treatment of patients with vision loss.  相似文献   

6.
The activity of nitrate reductase and the pool sizes of some amino acids and some sugars were measured in relation to the leaf water potential () of maize leaves. The activity of nitrate reductase was severely inhibited in water-stressed maize leaves. This was not due to substrate shortage or the presence of an inhibitor at reduced leaf water potential. While the typical proteinogenic amino acids valine, tyrosine, leucine and isoleucine were almost undetectable in the leaves of the control plants, their concentrations markedly increased with declining , thus indicating protein degradation. The concentrations of serine, glycine and glutamate increased upon water stress, their total amount in severely stressed leaves ranging 5- to 6-fold higher than the total amount of valine, tyrosine, leucine and isoleucine at this stage of water deficit. The pool sizes of glucose, fructose and sucrose decreased in relation to decreasing . The total amount of organic solutes remained almost constant at least up to a of approx.—1.0 MPa and then dropped to about 50% when reached –1.25 MPa.Abbreviations PCR photosynthetic carbon reduction cycle - PCO photosynthetic carbon oxidation cycle - PAR photosynthetically active radiation  相似文献   

7.
1.  If the eyes of young chickens are deprived of clear vision by translucent occluders, they develop considerable amounts of axial myopia within days. At the same time, the day time retinal dopamine levels drop by about 30%. Because the retinal dopamine levels of normally sighted chicks also differ diurnally and are low at night, we expected that the rate of axial eye growth might also differ during this time.
2.  Unexpectedly, eyes grew in length only during the day (about 0.13 mm/day) and even shrank during the night (about -0.04 mm/night, average net growth + 0.09 mm in 24 h).
3.  If the eyes were occluded, they grew both during the day and also at night (average net growth: + 0.16 mm in 24 h). Therefore, development of deprivation myopia was a result of the lack of growth inhibition at night rather than of excessive growth during the day when the actual deprivation occurred.
4.  Suppression of dopaminergic retinal pathways by intravitreal injections of the neurotoxin 6-hydroxy-dopamine (6-OHDA) also suppressed development of deprivation myopia and it restored the growth inhibition at night. With normal visual experience, the drug had no effect on axial eye growth and refractive state.
5.  Diurnal growth rhythms of the eyes disappeared under continuous light.
6.  Our results show that: (a) normal diurnal eye growth rhythms require a normal (12/12 h) light cycle and normal visual experience; with a degraded retinal image during the day, growth rates at night change so that they relate to retinal dopamine levels in the opposite way as with normal visual experience, (b) intact retinal dopaminergic pathways are necessary to mediate the deprivation-induced alterations in diurnal growth rhythms and myopia, (c) deprivation myopia is not simply a result of the lack of visual feedback control of eye growth during deprivation but rather of an active process related to abnormal diurnal dopamine rhythms.
  相似文献   

8.
Eye movements were investigated in cats while following a visual target. Wire coils implanted into the eyes served as transducers; the animal was placed in a revolving magnetic field (the magnetic search coil technique). The linear nature of amplitude-velocity relationships in saccadic eye movements was demonstrated. With combined head and eye movements, slope of plot was unrelated to maximum velocity of head movement over the entire test range (of up to 250 deg/sec); saccades decelerated when the head was immobile. Duration of gaze shift rose as it increased in amplitude. Amplitude of gaze was found to depend on head velocity. Experimentally obtained data on the interaction between head and eye movements when combined in following a target may be interpreted from the aspect of a mechanism operating to suppress saccadic signals by an efferent copy signal for head movement.M. V. Lomonosov State University, Moscow. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 631–637, September–October, 1988.  相似文献   

9.
The human horizontal eye movement system produces quick, precise, conjugate eye movements called saccades. These are important in normal vision. For example, reading tasks exclusively utilize saccadic eye movements. The majority of saccades have dynamic overshoot. The amplitude of this overshoot is independent of saccadic amplitude, and is such that it places the image of the stimulus within the retinal region of maximum acuity within a minimum of time. A computer based model of the saccadic mechanisms was used to study the origin of this overshoot. It was discussed that dynamic overshoot cannot be attributed to biomechanism properites of the eye movement mechanism, but must instead be explained by variations in the controlling nervous activity. The form of this neural controller signal is very similar to that required for a time optimal response of an inertial system.  相似文献   

10.
The process of selection of target points during voluntary eye movements when polygonal random shapes are observed was analysed in humans by means of an eye movement recording technique. A computer model was constructed with the aim to explain the empirical results. It has been found that the majority of fixation points were located at the angles. The marginal distribution over the x-axis of the individual angles depends on the angle's size: the maximal value of distribution was found for acute angles more distant from the vertex than in obtuse ones. The distribution of output activity of the ganglion cells in a computer model, reproducing some basic features of the retina, is in good agreement with the empirical results.  相似文献   

11.
We report a model that reproduces many of the behavioral properties of smooth pursuit eye movements. The model is a negative-feedback system that uses three parallel visual motion pathways to drive pursuit. The three visual pathways process image motion, defined as target motion with respect to the moving eye, and provide signals related to image velocity, image acceleration, and a transient that occurs at the onset of target motion. The three visual motion signals are summed and integrated to produce the eye velocity output of the model. The model reproduces the average eye velocity evoked by steps of target velocity in monkeys and humans and accounts for the variation among individual responses and subjects. When its motor pathways are expanded to include positive feedback of eye velocity and a switch, the model reproduces the exponential decay in eye velocity observed when a moving target stops. Manipulation of this expanded model can mimic the effects of stimulation and lesions in the arcuate pursuit area, the middle temporal visual area (MT), and the medial superior temporal visual area (MST).  相似文献   

12.
Molecular genetic analysis of the transmission of mutations in 73 families with fragile X (one of the largest samples evaluated so far) has confirmed previous hypotheses that the fragile X syndrome results from two consecutive mutational steps, designated premutation and full fragile X mutation. These mutations give rise to expansions of restriction fragments, most probably by amplification of the FMR-1 CGG repeat. Premutations are identified by small expansions that apparently have no effect on either the clinical or the cellular phenotype. Full mutations are reflected by large expansions and hypermethylation of the expanded gene region. All males showing large expansions were affected. Individuals with full mutations also expressed the fragile X, with only one exception. An affected mosaic male, showing a predominance of premutated fragments in his leukocytes, was shown to be fragile-X-negative on different occasions. About 50% of heterozygotes with full mutations were reported by clinicians to be mentally retarded. Conversion of the premutation to the full mutation may occur at oogenesis, as previously suggested, or after formation of a zygote at an early transitional stage in development when the CGG repeat behaves as a mitotically unstable element on maternally derived/imprinted X chromosomes carrying a premutation of sufficient repeat length.  相似文献   

13.

Objective

To determine the vision-related quality of life (VR-QOL) after surgery for macula-off rhegmatogenous retinal detachment (RRD) in relation to visual acuity, contrast acuity, and color vision.

Methods

In a prospective observational study, we included 55 patients with a macula-off RRD. Best corrected visual acuity (BCVA), color vision (saturated and desaturated color confusion indices (CCI)) and contrast acuity were measured at 12 months postoperatively in both the RRD eye and the fellow control eye, and the 25-item National Eye Institute Visual Function Questionnaire (NEI VFQ-25) was filled out.

Results

Operated and fellow control eyes differed significantly in mean LogMAR BCVA (P<0.0001), median Log contrast acuity (P<0.0001), saturated CCI (P = 0.009), and desaturated CCI (P = 0.016). Significant correlations were observed between the NEI VFQ-25 overall composite score and postoperative LogMAR BCVA (R = −0.551, P<0.0001), contrast acuity (R = 0.472, P<0.0001), saturated CCI (R = −0.315, P = 0.023), and desaturated CCI (R = −0.283, P = 0.044).

Conclusions

A lower VR-QOL was highly correlated to a worse postoperative BCVA and contrast acuity and to a lesser extent to color vision disturbances.  相似文献   

14.
The development of orientation selectivity in the primary visual cortex is described by first-order kinetics between three functional compartments chained in a catenary mode. A first model is presented, in which two unidirectional kinetics with constant exchange coefficients, symmetrical in their effects, function in an alternating mode depending on the presence or absence of visual experience. The failure of this model to simulate the modifications induced by a delayed visual experience, when the exchange coefficients are identified to fit normal and dark rearing, supports the hypothesis that the maturation process consequent to interaction with visual environment is dependent on the date at which it is allowed to take place. A second model is then proposed, in which exchange coefficients are piecewise linear functions of time. In order to correctly predict the functional effects of restricted visual experience following prior dark rearing, it is assumed that visuomotor experience during the critical period permits the expression of a non-linear modifiability gradient which may have been masked up to this point by the absence of vision or eye movements.  相似文献   

15.
The crystal structure of mitochondrial F1-ATPase indicatesthat the and subunits fold into a structure defined by threedomains: the top -barrel domain, the middle nucleotide-binding domain,and the C-terminal -helix bundle domain (Abraham et al.1994); Bianchet et al., 1998). The -barrel domains of the and subunits form a crown structure at the top ofF1, which was suggested to stabilize it (Abraham et al.1994). In this study. the role of the -barrel domain in the and subunits of the yeast Saccharomyces cerevisiae F1,with regard to its folding and assembly, was investigated. The -barreldomains of yeast F1 and subunits were expressedindividually and together in Escherichia coli. When expressedseperately, the -barrel domain of the subunit formed a largeaggregate structure, while the domain of the subunit waspredominately a monomer or dimer. However, coexpression of the -barreldomain of subunit domain. Furthermore, the two domains copurified incomplexes with the major portion of the complex found in a small molecularweight form. These results indicate that the -barrel domain of the and subunits interact specifically with each other and thatthese interactions prevent the aggregation of the -barrel domain of the subunit. These results mimic in vivo results and suggest thatthe interactions of the -barrel domains may be critical during thefolding and assembly of F1.  相似文献   

16.

Background

Saccadic eye movements are used to rapidly align the fovea with the image of objects of interest in peripheral vision. We have recently shown that in children there is a high preponderance of quick latency but poorly planned saccades that consistently fall short of the target goal. The characteristics of these multiple saccades are consistent with a lack of proper inhibitory control of cortical oculomotor areas on the brainstem saccade generation circuitry.

Methodology/Principal Findings

In the present paper, we directly tested this assumption by using single pulse transcranial magnetic stimulation (TMS) to transiently disrupt neuronal activity in the frontal eye fields (FEF) and supplementary eye fields (SEF) in adults performing a gap saccade task. The results showed that the incidence of multiple saccades was increased for ispiversive but not contraversive directions for the right and left FEF, the left SEF, but not for the right SEF. Moreover, this disruption was most substantial during the ∼50 ms period around the appearance of the peripheral target. A control condition in which the dorsal motor cortex was stimulated demonstrated that this was not due to any non-specific effects of the TMS influencing the spatial distribution of attention.

Conclusions/Significance

Taken together, the results are consistent with a direction-dependent role of the FEF and left SEF in delaying the release of saccadic eye movements until they have been fully planned.  相似文献   

17.
In this paper, we offer a stability analysis of the cue interaction model of depth perception (House (1984)). Depth estimation using stereopsis suffers from the matching problem, the problem of correctly matching the retinal image of a feature in one eye, to its retinal image in the other eye. The Cue Interaction Model overcomes this by using monocular cues to disambiguate between the correct matches and the incorrect matches. Its decision making is based on the concept of cooperation and competition in a neural network. A general class of cooperative and competitive models has been mathematically analysed by Amari and Arbib (1977), with special attention given to equilibrium states and stability. In this paper we adapt their methods to study the above model. In particular, we prove that if the parameters are correctly tuned, the model successfully achieves its goals by suppressing the cues which represent the incorrect matches.Preparation of this paper was supported in part by NIH grant number NS-1 R01 NS24926 from NINCDS  相似文献   

18.
Summary Our previous observations indicated that mutants partially resistant to IFN-y cytotoxicity were defective in the induction of indoleamine 2,3-dioxygenase, (IDO). Two mutants highly resistant to IFN- were isolated following a second round of mutagenesis. The resistance to IFN- was inversely correlated with the inducibility of IDO in these mutants. Moreover, several other IFN- responsive genes, including those encoding 2-5A synthetase, GTP cyclohydrolase and HLA-DR, were also differentially altered in their expression upon INF- treatment. IFN-y receptor gene expression was not changed nor was the binding of the receptor to IFN-. Southern blot analysis failed to reveal any significant abnormality in the IDO gene structure in these mutants. We therefore suggest that these mutants are defective in the IFN- signaling pathway and will be useful in further analysis of the biochemical mechanism of IFN- activated gene expression in target cells.  相似文献   

19.
The eye of the bigeye tuna (Thunnus obesus) contains a retinal tapetum composed of guanine. The total amount of the guanine in one eye of the fish (SL=120 cm) was about 88.6 mg. The mean guanine content of the tapetum was approximately 1.25 mg/cm2 of the retinal surface. The highest content of guanine (2.15 mg/cm2) was observed only in the ventro-temporal part of the retina. To distinguish this area from the rest of the eye, we suggested the term ‘locus tapetalis’ for it. The visual accommodation system clearly indicated that the visual axis of the fish is upper-forward and the resulting retinal area for acute vision was suggested to be in the ventro-temporal retina. We discussed that the area centralis of the bigeye tuna may have two functions: to guarantee high visual acuity and to allow for high photo-sensitivity in dim light vision.  相似文献   

20.
Dynamic expression patterns of four retinoid-metabolizing enzymes create rapidly changing retinoic acid (RA) patterns in the emerging eye anlage of the mouse. First, a RA-rich ventral zone is set up, then a RA-poor dorsal zone, and finally a tripartite organization consisting of dorsal and ventral RA-rich zones separated by a horizontal RA-poor stripe. This subdivision of the retina into three RA concentration zones is directly visible as beta-galactosidase labeling patterns in retinas of RA-reporter mice. Because the axons of retinal ganglion cells transport the reporter product anterogradely, the central projections from dorsal and ventral retina can be visualized as two heavily labeled axon bundles. Comparisons of the axonal labeling with physiologic recordings of visual topography in the adult mouse show that the labeled axons represent the upper and the lower visual fields. The RA-poor stripe develops into a broad horizontal zone of higher visual acuity. Comparisons of the retina labeling with eye-muscle insertions show that the axis of the RA pattern lines up with the dorsoventral axis of the oculomotor system. These observations indicate that the dorsoventral axis of the embryonic eye anlage determines the functional coordinates of both vision and eye movements in the adult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号