首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell wall material (CWM) was prepared from sections of fresh and aerobically-stored asparagus (Asparagus officinalis, L. cv. Connovor Collossus) stems. Polymers were solubilized from the CWM by successive extraction with cyclohexane-trans-1,2-diamine-N N N' N'-tetraacetate (CDTA), Na2CO3 and KOH to leave the alpha-cellulose residue which contained a significant amount of cross-linked pectic polysaccharides. The polymers were fractionated by anion-exchange chromatography and selected fractions were subjected to methylation analysis. The storage-related decrease in (1-4)-linked Galp was detected in all the fractions rich in pectic polysaccharides, particularly in the CDTA, Na2CO3, 0.5 M KOH fractions and alpha-cellulose residue. A smaller decrease in Araf was also observed. This was mainly due to a decrease in (1-5)-linked Araf in the Na2CO3-1-soluble polymers, and terminal Araf in the alpha-cellulose residue. There was evidence for the occurrence of significant amounts of complexes containing pectic polysaccharides and xylans having a relatively low degree of polymerization in the dilute alkali-soluble polymers, and some of these contained phenolic compounds; the storage-induced increase in (1-4)-linked Xylp was confined to these polymers. Interestingly, no free acidic xylans could be detected in the 1 M and 4 M KOH-soluble polymers; instead, the bulk of the hemicellulosic polysaccharides appeared to be mixtures of xyloglucans and xylans in which the ratio of xyloglucan to xylan increased with increasing strength of alkali used for extraction of the polymers. The non-degradative extraction and fractionation procedures revealed heterogeneity in pectic polysaccharides, pectic polysaccharide-xylan complexes and xyloglucans in close association with xylans. The possible relationship between pectic polysaccharide-xylan-phenolic complexes and the onset of lignification in maturing tissues is discussed.  相似文献   

2.
Pectic polysaccharides solubilized in vivo during ripening, were isolated using phenol, acetic acid, and water (PAW) from the outer pericarp of kiwifruit (Actinidia deliciosa [A. Chev.] C.F. Liang and A.R. Ferguson var deliciosa `Hayward') before and after postharvest ethylene treatment. Insoluble polysaccharides of the cell wall materials (CWMs) were solubilized in vitro by chemical extraction with 0.05 molar cyclohexane-trans-1,2-diamine tetraacetate (CDTA), 0.05 molar Na2CO3, 6 molar guanidinium thiocyanate, and 4 molar KOH. The Na2CO3-soluble fraction decreased by 26%, and the CDTA-soluble fraction increased by 54% 1 day after ethylene treatment. Concomitantly, an increase in the pectic polymer content of the PAW-soluble fraction occurred without loss of galactose from the cell wall. The molecular weight of the PAW-soluble pectic fraction 1 day after ethylene treatment was similar to that of the Na2CO3-soluble fraction before ethylene treatment. Four days after ethylene treatment, 60% of cell wall polyuronide was solubilized, and 50% of the galactose was lost from the CWM, but the degree of galactosylation and molecular weight of pectic polymers remaining in the CWMs did not decrease. The exception was the CDTA-soluble fraction which showed an apparent decrease in molecular weight during ripening. Concurrently, the PAW-soluble pectic fraction showed a 20-fold reduction in molecular weight. The results suggest that considerable solubilization of the pectic polymers occurred during ripening without changes to their primary structure or degree of polymerization. Following solubilization, the polymers then became susceptible to depolymerization and degalactosidation. Pectolytic enzymes such as endopolygalacturonase and β-galactosidase were therefore implicated in the degradation of solubilized cell wall pectic polymers but not the initial solubilization of the bulk of the pectic polymers in vivo.  相似文献   

3.
Nectarine fruit (Prunus persica L. Batsch var nectarina [Ait] maxim) cultivar Fantasia were either ripened immediately after harvest at 20°C or stored for 5 weeks at 2°C prior to ripening. Fruit ripened after 5 weeks of storage did not soften to the same extent as normally ripened fruit, they lacked juice, and had a dry, mealy texture. Pectic and hemicellulosic polysaccharides were solubilized from the mesocarp of the fruit using phenol:acetic acid:water (PAW) treatment to yield PAW-soluble material and cell wall material (CWM). The carbohydrate composition and relative molecular weight (Mr) of polysaccharide fractions released from the CWM by sequential treatment with cyclohexane-trans-1,2-diamine tetra-acetate, 0.05 m Na2CO3, 6 m guanidinium thiocyanate, and 4 m KOH were determined. Normal ripening of nectarines resulted in solubilization of pectic polymers of high Mr from CWM during the first 2 d at ripening temperatures. Concurrently, galactan side chains were removed from pectic polymers. Solubilized pectic polymers were depolymerized to lower Mr species during the latter stages of ripening. Upon removal from cool storage, fruit had undergone some pectic polymer solubilization, and after ripening, pectins were not depolymerized and were of high Mr. Side chains did not appear to be removed from insoluble pectic polymers and branched pectins accumulated in the CWM. The molecular weight profiles obtained by gel filtration of the hemicellulosic fractions from normally ripening and mealy fruit were similar. The results suggest that mealiness results as a consequence of altered pectic polymer breakdown, including that associated with neutral side chains.  相似文献   

4.
Changes in Cell Wall Polysaccharides of Green Bean Pods during Development   总被引:2,自引:0,他引:2  
The changes in cell wall polysaccharides and selected cell wall-modifying enzymes were studied during the development of green bean (Phaseolus vulgaris L.) pods. An overall increase of cell wall material on a dry-weight basis was observed during pod development. Major changes were detected in the pectic polymers. Young, exponentially growing cell walls contained large amounts of neutral, sugar-rich pectic polymers (rhamnogalacturonan), which were water insoluble and relatively tightly connected to the cell wall. During elongation, more galactose-rich pectic polymers were deposited into the cell wall. In addition, the level of branched rhamnogalacturonan remained constant, while the level of linear homogalacturonan steadily increased. During maturation of the pods, galactose-rich pectic polymers were degraded, while the accumulation of soluble homogalacturonan continued. During senescence there was an increase in the amount of ionically complexed pectins, mainly at the expense of freely soluble pectins. The most abundant of the enzymes tested for was pectin methylesterase. Peroxidase, beta-galactosidase, and alpha-arabinosidase were also detected in appreciable amounts. Polygalacturonase was detected only in very small amounts throughout development. The relationship between endogenous enzyme levels and the properties of cell wall polymers is discussed with respect to cell wall synthesis and degradation.  相似文献   

5.
Toole GA  Smith AC  Waldron KW 《Planta》2002,214(3):468-475
Single large internode cells of the charophyte (giant alga) Chara corallina were dissected to give sheets of cell wall, which were then notched and their mechanical properties in tension determined. The cells were subjected to a thermal treatment in excess water (cf. cooking), which had little effect on strength but increased the stiffness, contrasting with the behaviour of higher-plant tissues. Extraction in CDTA (cyclohexane-trans-1,2-diamine-N,N,N',N'-tetraacetate) or 4 M KOH reduced the strength from 17 MPa to 10 MPa, although sequential extraction in CDTA and 4 M KOH reduced the strength further to 4 MPa. The stiffness decreased from 500 MPa to 300 MPa on extraction in CDTA or 4 M KOH, while falling to 70 MPa after extraction in CDTA followed by 4 M KOH. Conventional sequential extraction in CDTA, Na2CO3 at 1 degrees C and 20 degrees C, and KOH at 0.5 M, 1 M, 2 M and 4 M caused a gradual decrease in stiffness and strength after the CDTA treatment to the same lower values. This result is in keeping with mechanical properties for plant tissues, but in contrast to the removal of pectic polysaccharides from model cell wall systems, which does not reduce the stiffness.  相似文献   

6.
1. Polymers were solubilized from the cell walls of parenchyma from mature runner-bean pods with minimum degradation by successive extractions with cyclohexane-trans-1,2-diamine-NNN'N'-tetra-acetate (CDTA), Na2CO3 and KOH to leave the alpha-cellulose residue, which contained cross-linked pectic polysaccharides and Hyp-rich glycoproteins. These were solubilized with chlorite/acetic acid and cellulase. The polymers were fractionated by anion-exchange chromatography, and fractions were subjected to methylation analysis. 2. The pectic polysaccharides differed in their ease of extraction, and a small proportion were highly cross-linked. The bulk of the pectic polysaccharides solubilized by CDTA and Na2CO3 were less branched than those solubilized by KOH. There was good evidence that most of the pectic polysaccharides were not degraded during extraction. 3. The protein-containing fractions included Hyp-rich and Hyp-poor glycoproteins associated with easily extractable pectic polysaccharides, Hyp-rich glycoproteins solubilized with 4M-KOH+borate, the bulk of which were not associated with pectic polysaccharides, and highly cross-linked Hyp-rich glycoproteins. 4. Isodityrosine was not detected, suggesting that it does not have a (major) cross-linking role in these walls. Instead, it is suggested that phenolics, presumably linked to C-5 of 3,5-linked Araf residues of Hyp-rich glycoproteins, serve to cross-link some of the polymers. 5. There were two main types of xyloglucan, with different degrees of branching. The bulk of the less branched xyloglucans were solubilized by more-concentrated alkali. The anomeric configurations of the sugars in one of the highly branched xyloglucans were determined by 13C-n.m.r. spectroscopy. 6. The structural features of the cell-wall polymers and complexes are discussed in relation to the structure of the cell walls of parenchyma tissues.  相似文献   

7.
Bacillus anthracis, the causative agent of anthrax, replicates as chains of vegetative cells by regulating the separation of septal peptidoglycan. Surface (S)-layer proteins and associated proteins (BSLs) function as chain length determinants and bind to the secondary cell wall polysaccharide (SCWP). In this study, we identified the B. anthracis lcpD mutant, which displays increased chain length and S-layer assembly defects due to diminished SCWP attachment to peptidoglycan. In contrast, the B. anthracis lcpB3 variant displayed reduced cell size and chain length, which could be attributed to increased deposition of BSLs. In other bacteria, LytR-CpsA-Psr (LCP) proteins attach wall teichoic acid (WTA) and polysaccharide capsule to peptidoglycan. B. anthracis does not synthesize these polymers, yet its genome encodes six LCP homologues, which, when expressed in S. aureus, promote WTA attachment. We propose a model whereby B. anthracis LCPs promote attachment of SCWP precursors to discrete locations in the peptidoglycan, enabling BSL assembly and regulated separation of septal peptidoglycan.  相似文献   

8.
Pectic substances extracted from cabbage cell walls with water, at 80°, and (NH4)2C2O4, at 80°, accounted for 45%(w/w) of the purified cell wall material. Only a small amount of neutral arabinan was isolated. Partial acid hydrolysis and methylation analysis revealed that the major pectic polysaccharide had a rhamnogalacturonan backbone to which a highly branched arabinan was linked, at C-4 of the rhamnose units, mainly through short chains of (1→4)-linked galactopyranose residues. The bulk of the soluble pectic substances had only small amounts of proteins associated with them. After further extraction of the depectinated material with 1M and 4M KOH, to remove the hemicelluloses, the cellulose residue was found to contain a pectic polysaccharide which was solubilized by treatment with cellulase. The general structural features of the pectic polymers are discussed in the light of these results.  相似文献   

9.
The present work reports the results of a study on the isolation and characterization of matrix polysaccharides in the cell walls of galls formed by an aphid (Neothoracaphis yanonis) on Distylium racemosum leaves. Cell walls were isolated from both healthy Distylium leaf and gall tissues and then extracted sequentially with cyclohexane‐trans‐1,2‐diaminetetra‐acetate (CDTA), Na2CO3, 1 m KOH, and 4 m KOH. The amount of pectin solubilized from gall cell walls was approximately 2.6‐fold higher than the pectin solubilized from leaf cell walls, whereas the amount of hemicellulose solubilized from gall cell walls was 1.4‐fold higher than that from normal leaf cell walls. When the polysaccharides were fractionated by anion‐exchange chromatography, considerable increases in arabinose and galactose were observed in CDTA‐soluble pectic polymer (fraction PI‐1) from gall cell walls, whereas the gall cell walls had less xylose in 1 m KOH‐soluble hemicellulosic polymers (fractions HI‐2, HI‐3, and HI‐4) than did the cell walls from the healthy leaf. The hemicellulosic polymers of the gall cell walls exhibited distinctly different patterns of molecular mass, compared with the healthy leaf cell walls. These results suggest that an extensive change occurs in the matrix polysaccharide structure of the cell walls of Distylium galls formed by an aphid. In addition, many glycosylhydrolase activities were detected in the protein fraction solubilized with strong saline solution from the gall cell walls, and the activities of β‐galactosidase, β‐xylosidase and α‐l ‐arabinofuranosidase were considerably increased under gall formation.  相似文献   

10.
GALLEGO  P. P.; ZARRA  I. 《Annals of botany》1997,79(6):695-701
Changes in both cell wall and water-soluble polysaccharide compositionduring the growth of kiwifruits [Actinidia deliciosa (A. chev.) C. F. Liang and A. R. Ferguson var. deliciosa ‘Hayward’]were investigated. Cellulose was the major wall polysaccharide,with galactose and uronics the main non-cellulosic sugars. Muchsolubilization of cell wall pectic polysaccharides was detected.While wall-galactose solubilization started 3 months after anthesis,polyuronide degradation did not start until the fifth month,1 month prior to the harvest date. Parallel to these processes,a linear increase in water-soluble polysaccharides was detected.These mainly comprised galactose-rich polymers in the first3 months and little-branched polyuronides after the fifth month.Two different mechanisms for galactose and uronic acid solubilizationfrom kiwifruit cell walls during fruit development are proposed. Actinidia deliciosa ; cell wall; fruit growth; kiwifruit; water-soluble polysaccharides  相似文献   

11.
A protocol for extracting polysaccharides from cell walls has been modified and used to analyze histochemically two fruits with opposite characteristics. Grapes are nonclimacteric fruits and are harvested at full maturity. In contrast, kiwi fruits are climacteric and are harvested and consumed before they are physiologically mature. The two fruits were analyzed histochemically using two protocols. One method is defined as chemical, and is based on subsequential extractions of pectins by chemical agents. The other is defined as enzymatic because it removes pectins using pectinase followed by hot ammonium oxalate. In both protocols, two types of hemicellulosic polymers are removed by 1 M and 4 M/KOH leaving a cellulosic residue on the slide. Both protocols remove the same amount of pectins, thus confirming their precision. The sum of hemicellulose and the cellulosic insoluble residue are equivalent using the two methods, but the relative amounts of the cellulose and hemicellulosic polymers were dependent upon the method of extraction. When the enzyme was used to extract the pectins, there was less cellulose and more hemicellulose. The removal of polysaccharides by ammonium oxalate and by guanidinethio-cyanate in the enzymatic and the chemical protocols, respectively, yielded approximately the same amount of removed material.

Similar results were obtained from both fruits. Grape, being softer than kiwi fruit, was relatively richer in pectic substances and less rich in hemicellulose and cellulose polymers. No difference in cell wall material could be ascribed to the different ripening habits.  相似文献   

12.
A protocol for extracting polysaccharides from cell walls has been modified and used to analyze histochemically two fruits with opposite characteristics. Grapes are nonclimacteric fruits and are harvested at full maturity. In contrast, kiwi fruits are climacteric and are harvested and consumed before they are physiologically mature. The two fruits were analyzed histochemically using two protocols. One method is defined as chemical, and is based on subsequential extractions of pectins by chemical agents. The other is defined as enzymatic because it removes pectins using pectinase followed by hot ammonium oxalate. In both protocols, two types of hemicellulosic polymers are removed by 1 M and 4 M/KOH leaving a cellulosic residue on the slide. Both protocols remove the same amount of pectins, thus confirming their precision. The sum of hemicellulose and the cellulosic insoluble residue are equivalent using the two methods, but the relative amounts of the cellulose and hemicellulosic polymers were dependent upon the method of extraction. When the enzyme was used to extract the pectins, there was less cellulose and more hemicellulose. The removal of polysaccharides by ammonium oxalate and by guanidinethio-cyanate in the enzymatic and the chemical protocols, respectively, yielded approximately the same amount of removed material.

Similar results were obtained from both fruits. Grape, being softer than kiwi fruit, was relatively richer in pectic substances and less rich in hemicellulose and cellulose polymers. No difference in cell wall material could be ascribed to the different ripening habits.  相似文献   

13.
Roberts RM  Loewus F 《Plant physiology》1966,41(9):1489-1498
Prolonged growth of cell cultures of sycamore (Acer pseudoplatanus L.) on agar medium containing myo-inositol-2-(3)H resulted in incorporation of label predominately into uronosyl and pentosyl units of cell wall polysaccharides. Procedures normally used to distinguish between pectic substance and hemicellulose yielded carbohydrate-rich fractions with solubility characteristics ranging from pectic substance to hemicellulose yet the uronic acid and pentose composition of these fractions was decidedly pectic. Galacturonic acid was the only uronic acid present in each fraction. Subfractionation of alkali-soluble (hemicellulosic) polysaccharide by neutralization followed by ethanol precipitation gave 3 fractions, a water-insoluble, an ethanol-insoluble, and an ethanol-soluble fraction, each progressively poorer in galacturonic acid units and progressively richer in arabinose units; all relatively poor in xylose units.Apparently, processes involved in biosynthesis of primary cell wall continued to produce pectic substance during cell enlargement while processes leading to biosynthesis of typically secondary cell wall polysaccharide such as 4-0-methyl glucuronoxylan were not activated.  相似文献   

14.
Cell wall material (CWM) was prepared from olive seed hull, which is heavily lignified and very tough. The material was cryomilled and delignified with chlorite/acetic acid for 9 h to give the holocellulose. Polymers were solubilised from the holocellulose by sequential extraction with cyclohexane-trans-1,2-diamine-NNN'N'-tetra-acetate (CDTA, Na salt), DMSO, 0.5, 1 and 4 KOH and 4 KOH + borate to leave the -cellulose residue. The suspension of -cellulose on neutralisation released a small amount of pectic material virtually free of xylan to give '-cellulose. The polymers from the various extracts were fractionated by graded precipitation with ethanol prior to anion-exchange chromatography, and selected fractions were subjected to methylation analysis. During delignification, glucuronoxylans with relatively low degrees of polymerisation (DP) and xylan-pectic polysaccharide complexes linked to degraded lignin were solubilised. A proportion of the xylan-pectic polysaccharide complexes were solubilised by 0.5 KOH. The major hemicellulosic polysaccharides of the olive seed hulls are glucuronoxylans, which occur as highly branched short chains, with DP of 30–60; or slightly branched chains with DP of 90–110. Partial acid hydrolysis of the major acidic xylan, gel-filtration chromatography and methylation analysis allowed us to propose a tentative structure for the major glucuronoxylan in which one residue of GlcpA occurs in each 14 continuously linked Xylp residues in a regular structure.  相似文献   

15.
The Hw pectic fraction, extracted with hot water, is the major component of 4 days old epicotyl cell walls of Cicer arietinum L. cv. Castellana and is formed of arabinose and galactose, with smaller amounts of rhamnose, xylose, glucose and mannose. The cell wall 2βIII enzymatic fraction, with β-galactosidase activity (EC 3.2.1.23) and the main enzyme responsible for the autolytic process, essentially acts on the Hw fraction, and is able to hydrolyze 560 μg of this fraction per g of epicotyls, releasing mainly galactose as monosaccharide.
The 2βIII fraction acts very weakly on the other polysaccharide fractions of the cell wall, both pectic and hemicellulosic, releasing 80, 60 and 14 μg per g of epicotyls from the fractions extracted with oxalate (Ox), KOH 10% (KI) and KOH 24% (KII), respectively. It can be concluded that the natural substrate of this enzyme is the Hw pectic fraction, probably an arabinogalactan that is found in the cell wall in isolated form or as side chains of the rhamnogalacturonan I.  相似文献   

16.
The molecular structure and chemical properties of the hemicellulose present in the isolated cell walls of suspension cultures of sycamore (Acer pseudoplatanus) cells has recently been described by Bauer et al. (Plant Physiol. 51: 174-187). The hemicellulose of the sycamore primary cell wall is a xyloglucan. This polymer functions as an important cross-link in the structure of the cell wall; the xyloglucan is hydrogen-bonded to cellulose and covalently attached to the pectic polymers.  相似文献   

17.
Glycosyl composition and linkage analysis of cell wall polysaccharides were examined in apical root zones excised from water-stressed and unstressed wheat seedlings (Triticum durum Desf.) cv. Capeiti ("drought-tolerant") and cv. Creso ("drought sensitive"). Wall polysaccharides were sequentially solubilized to obtain three fractions: CDTA+Na(2)CO(3) extract, KOH extract and the insoluble residue (alpha-cellulose). A comparison between the two genotypes showed only small variations in the percentages of matrix polysaccharides (CDTA+Na(2)CO(3) plus KOH extract) and of the insoluble residues (alpha-cellulose) in water-stressed and unstressed conditions. Xylosyl, glucosyl and arabinosyl residues represented more than 90mol% of the matrix polysaccharides. The linkage analysis of matrix polysaccharides showed high levels of xyloglucans (23-39mol%), and arabinoxylans (38-48mol%) and a low amount of pectins and (1-->3), (1-->4)-beta-d-glucans. The high level of xyloglucans was supported by the release of the diagnostic disaccharide isoprimeverose after Driselase digestion of KOH-extracted polysaccharides. In the "drought-tolerant" cv. Capeiti the mol% of side chains of rhamnogalacturonan I and II significantly increased in response to water stress, whereas in cv. Creso, this increase did not occur. The results support a role of the pectic side chains during water stress response in a drought-tolerant wheat cultivar.  相似文献   

18.
The role of cell wall matrix polysaccharides in gibberellin-regulatedroot growth is unknown. We examined pectic polysaccharides frompea roots treated with or without gibberellin A3 (GA3) in thepresence of ancymidol, an inhibitor of gibberellin biosynthesis.Pectic polymers solubilized by CDTA (trans-l,2-cyclohexanediamine-N,N,N',N'-tetraaceticacid) at 23°C and subjected to gel permeation analysis exhibitedhigh polydispersity with a molecular mass in excess of 500 kDa.Subsequent extraction of cell walls with CDTA at 100°C solubilizedpolymers with an average mol mass of 10 to 40 kDa. Subjectingthe high molecular mass pectic polymers extracted at 23°Cto 70–100°C for 2h generated 10 to 40 kDa fragments,similar in size distribution to those solubilized directly fromcell walls by CDTA solutions at 100°C. Pectic polymers from(GA3+Anc)-treated roots were of higher average mol mass thanthose from Anc-treated roots in both the elongation zone andin the basal maturation zone. Since (GA3+Anc)-treated rootselongate more quickly than Anc-treated roots [Tanimoto (1994)Plant Cell Physiol. 35:1019], the slender, GA3-treated rootsmay produce and deposit highly integrated pectins more rapidlythan the thicker, Anc-treated roots in the elongating or elongatedcell walls. 2Present address: Horticultural Sciences Department, POB 110690IFAS, University of Florida, Gainesville, FL 32611-0690 U.S.A.  相似文献   

19.
The study carried out in this work concerns the pectic polysaccharides of olive cell walls as present in olive pulp and that remained entrapped in the cellulosic residue after sequential extraction of the cell wall material (CWM) with imidazole, carbonate and KOH aqueous solutions. These polymers, obtained after neutralisation and dialysis of an aqueous suspension of the residue (sn-CR fraction), extracted with 4 M KOH, were arabinan-rich pectic polysaccharides. They accounted for 11–19% of the total pectic polysaccharides found in the olive pulp cell walls of fruits collected in two years and in three stages of ripening (green, cherry and black). The analysis by powder X-ray diffraction highlighted the existence, in all sn-CR fractions, of crystalline phases related with the presence of calcium-pectic polysaccharide complexes (CPPC) occurring in an amorphous carbohydrate network. The relative crystallinity of the CPPC varied linearly with the Ca2+/GalA molar ratio until a maximum of 0.57. Size-exclusion chromatography showed that sn-CR fractions possessed a bimodal molecular weight distribution. The lower molecular weight fraction of sn-CR (Mw = 70–135 kDa) was independent on the ripening stage of olive fruit, whereas the higher molecular weight fraction showed values of 1.1, 0.6–0.9 and 0.5–0.7 MDa, respectively, for green, cherry and black olives. Treatment of the sn-CR pectic polysaccharides with a 2 M imidazole solution disrupted the CPPC crystalline network showing the loss of low molecular weight galacturonan-rich material during dialysis (12–14 kDa cut off) and the decrease of molecular weight of the polymers to roughly half. These results allowed to infer the presence of oligogalacturonides held within cell walls by calcium ions and that the pectic polysaccharides of sn-CR fraction occurred in olive pulp cell walls as calcium bridged macrodimers.  相似文献   

20.
Atomic force microscopy (AFM) has been used to image the cellulose networks in moist fragments of the cell walls of Bintje potato (Solanum tuberosum L.). The interfiber spacing in hydrated native cell wall fragments was found to be 26.2 nm. This value is consistent with published estimates of the contour length of xyloglucan cross-links determined by transmission electron microscopy (TEM) studies of cell walls. Sequential extraction of the pectin using CDTA and Na2CO3 led to shrinkage of the cell wall fragment and a reduction in interfiber spacing to 20.2 nm. Partial extraction of xyloglucan using 1 M KOH caused a small decrease in interfiber spacing to 19.5 nm. Finally, the almost complete removal of xyloglucan with 4 M KOH substantially reduced the interfiber spacing to 11 nm. The results are consistent with a model for the cell wall in which the cellulose–xyloglucan network is immersed in a swollen, hydrated pectin network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号