首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gelsolin is a Ca2+- and polyphosphoinositide-modulated actin-binding protein which severs actin filaments, nucleates actin assembly, and caps the "barbed" end of actin filaments. Proteolytic cleavage analysis of human plasma gelsolin has shown that the NH2-terminal half of the molecule severs actin filaments almost as effectively as native gelsolin in a Ca2+-insensitive but polyphosphoinositide-inhibited manner. Further proteolysis of the NH2-terminal half generates two unique fragments (CT14N and CT28N), which have minimal severing activity. Under physiological salt conditions, CT14N binds monomeric actin coupled to Sepharose but CT28N does not. In this paper, we show that CT28N binds stoichiometrically and with high affinity to actin subunits in filaments, suggesting that it preferentially recognizes the conformation of polymerized actin. Analysis of the binding data shows that actin filaments have one class of CT28N binding sites with Kd = 2.0 X 10(-7) M, which saturates at a CT28N/actin subunit ratio of 0.8. Binding of CT28N to actin filaments is inhibited by phosphatidylinositol 4,5-bisphosphate micelles. In contrast, neither CT14N nor another actin-binding domain located in the COOH-terminal half of gelsolin form stable stoichiometric complexes with actin along the filaments, and their binding to actin monomers is not inhibited by PIP2. Based on these observations, we propose that CT28N is the polyphosphoinositide-regulated actin-binding domain which allows gelsolin to bind to actin subunits within a filament before serving.  相似文献   

2.
The actin filament-severing domain of plasma gelsolin   总被引:10,自引:10,他引:10       下载免费PDF全文
Gelsolin, a multifunctional actin-modulating protein, has two actin-binding sites which may interact cooperatively. Native gelsolin requires micromolar Ca2+ for optimal binding of actin to both sites, and for expression of its actin filament-severing function. Recent work has shown that an NH2-terminal chymotryptic 17-kD fragment of human plasma gelsolin contains one of the actin-binding sites, and that this fragment binds to and severs actin filaments weakly irrespective of whether Ca2+ is present. The other binding site is Ca2+ sensitive, and is found in a chymotryptic peptide derived from the COOH-terminal two-thirds of plasma gelsolin; this fragment does not sever F-actin or accelerate the polymerization of actin. This paper documents that larger thermolysin-derived fragments encompassing the NH2-terminal half of gelsolin sever actin filaments as effectively as native plasma gelsolin, although in a Ca2+-insensitive manner. This result indicates that the NH2-terminal half of gelsolin is the actin-severing domain. The stringent Ca2+ requirement for actin severing found in intact gelsolin is not due to a direct effect of Ca2+ on the severing domain, but indirectly through an effect on domains in the COOH-terminal half of the molecule to allow exposure of both actin-binding sites.  相似文献   

3.
It is generally assumed that of the six domains that comprise gelsolin, domain 2 is primarily responsible for the initial contact with the actin filament that will ultimately result in the filament being severed. Other actin-binding regions within domains 1 and 4 are involved in gelsolin's severing and subsequent capping activity. The overall fold of all gelsolin repeated domains are similar to the actin depolymerizing factor (ADF)/cofilin family of actin-binding proteins and it has been proposed that there is a similarity in the actin-binding interface. Gelsolin domains 1 and 4 bind G-actin in a similar manner and compete with each other, whereas domain 2 binds F-actin at physiological salt concentrations, and does not compete with domain 1. Here we investigate the domain 2 : actin interface and compare this to our recent studies of the cofilin : actin interface. We conclude that important differences exist between the interfaces of actin with gelsolin domains 1 and 2, and with ADF/cofilin. We present a model for F-actin binding of domain 2 with respect to the F-actin severing and capping activity of the whole gelsolin molecule.  相似文献   

4.
M Way  B Pope  J Gooch  M Hawkins    A G Weeds 《The EMBO journal》1990,9(12):4103-4109
The actin severing and capping protein gelsolin contains three distinct actin binding sites. The smallest actin binding domain of approximately 15,000 Mr was originally obtained by limited proteolysis and it corresponds to the first of six repeating segments contained in the gelsolin sequence. We have expressed this domain (here termed segment 1 or N150 to define its amino acid length) in Escherichia coli, together with a series of smaller mutants truncated at either N- or C-terminal ends, in an attempt to localize residues critical of actin binding. Limited truncation of segment 1 by 11 residues at its N-terminal end has no observable effect on actin binding, but on removal of a further eight residues, actin binding is totally eliminated. Although this loss of actin binding may reflect ablation of critical residues, we cannot rule out the possibility that removal of these residues adversely affects the folding of the polypeptide chain during renaturation. Truncation at the C-terminus of segment 1 has a progressive effect on actin binding. Unlike intact segment 1, which shows no calcium sensitivity of actin binding within the resolution of our assays, a mutant with 19 residues deleted from its C-terminus shows unchanged affinity for actin in the presence of calcium, but approximately 100-fold weaker binding in its absence. Removal of an additional five residues from the C-terminus produces a mutant that binds actin only in calcium. Further limited truncation results in progressively weaker calcium dependent binding and all binding is eliminated when a total of 29 residues has been removed. Although none of the expressed proteins on their own binds calcium, 45Ca is trapped in the complexes, including the complex between actin and segment 1 itself. These results highlight a region close to the C-terminus of segment 1 that is essential for actin binding and demonstrate that calcium plays an important role in the high affinity actin binding by this domain of gelsolin.  相似文献   

5.
In our database searches, we have identified mammalian homologues of yeast actin-binding protein, twinfilin. Previous studies suggested that these mammalian proteins were tyrosine kinases, and therefore they were named A6 protein tyrosine kinase. In contrast to these earlier studies, we did not find any tyrosine kinase activity in our recombinant protein. However, biochemical analysis showed that mouse A6/twinfilin forms a complex with actin monomer and prevents actin filament assembly in vitro. A6/twinfilin mRNA is expressed in most adult tissues but not in skeletal muscle and spleen. In mouse cells, A6/twinfilin protein is concentrated to the areas at the cell cortex which overlap with G-actin-rich actin structures. A6/twinfilin also colocalizes with the activated forms of small GTPases Rac1 and Cdc42 to membrane ruffles and to cell-cell contacts, respectively. Furthermore, expression of the activated Rac1(V12) in NIH 3T3 cells leads to an increased A6/twinfilin localization to nucleus and cell cortex, whereas a dominant negative form of Rac1(V12,N17) induces A6/twinfilin localization to cytoplasm. Taken together, these studies show that mouse A6/twinfilin is an actin monomer-binding protein whose localization to cortical G-actin-rich structures may be regulated by the small GTPase Rac1.  相似文献   

6.
Y Doi 《Biochemistry》1992,31(41):10061-10069
One of the two actin molecules in the ternary actin-gelsolin complex was selectively cross-linked to gelsolin when benzophenonemaleimide-actin (BPM-actin) was used [Doi, Y., Banba, M., & Vertut-Doi (1991a) Biochemistry 30, 5769-5777]. Here, we examine the interaction between gelsolin and BPM-actin dimer in which BPM-actin is covalently conjugated to unlabeled actin by p-phenylenedimaleimide (pPDM). BPM-actin dimer having an apparent molecular mass of 115 kDa is photo-cross-linked to gelsolin (90 kDa) more effectively than BPM-actin monomer in the presence of Ca2+, forming a cross-linked actin dimer-gelsolin (1:1) complex with a molecular mass of 210 kDa. The tight direct association of the dimer to gelsolin is shown by the titration of gelsolin with the fluorescently labeled dimer and by the higher concentration of phosphatidylinositol 4,5-bisphosphate required to inhibit the formation of BPM-dimer complex with gelsolin than that of BPM-monomer complex. However, an attempt to cross-link the two actin molecules in the ternary actin-gelsolin (2:1) complex by pPDM fails. The results argue that the topography of the two actin molecules in the actin-gelsolin (2:1) complex is similar, but not identical, to that of the barbed end of an actin filament.  相似文献   

7.
Human neutrophils generally function adherent to an extracellular matrix. We have previously reported that upon adhesion to laminin- or fibronectin-coated, but not uncoated, plastic there is a depolymerization of actin in neutrophils. This phenomenon was not affected by inhibitors of the more well-studied components of the signal transduction pathway, specifically, pertussis toxin, an inhibitor of G-proteins, H-7 or staurosporine, inhibitors of protein kinase C, or herbimycin A, an inhibitor of nonreceptor tyrosine kinase. We therefore focused our attention on actin-binding proteins and measured the changes in the partitioning of gelsolin between the Triton X-100-soluble and -insoluble cellular fractions which occur upon neutrophil adhesion by means of quantitating anti-gelsolin antibody binding to aliquots of these fractions. It was found that approximately 90% of the total cellular gelsolin was found in the Triton X-100-soluble fraction in suspended cells, but that upon adherence to either fibronectin- or laminin-coated plastic about 40% of the soluble gelsolin could be detected in the insoluble fraction. This effect was not observed in cells adherent to uncoated plastic, wherein more than 90% of the gelsolin was found in the soluble fraction. Results of immunofluorescence microscopy of these cell preparations was consistent with this data. A gelsolin translocation to the insoluble cellular actin network may account for a part of the observed actin depolymerization.  相似文献   

8.
Actin cleaved by the protease from Escherichia coli A2 strain between Gly42 and Val43 (ECP-actin) is no longer polymerizable when it contains Ca2+ as a tightly bound cation, but polymerizes when Mg2+ is bound. We have investigated the interactions of gelsolin with this actin with regard to conformational changes in the actin molecule induced by the binding of gelsolin. ECP-(Ca)actin interacts with gelsolin in a manner similar to that in which it reacts with intact actin, and forms a stoichiometric 2:1 complex. Despite the nonpolymerizability of ECP-(Ca)actin, this complex can act as a nucleus for the polymerization of intact actin, thus indicating that upon interaction with gelsolin, ECP-(Ca)actin undergoes a conformational change that enables its interaction with another actin monomer. By gel filtration and fluorometry it was shown that the binding of at least one of the ECP-cleaved actins to gelsolin is considerably weaker than of intact actin, suggesting that conformational changes in subdomain 2 of actin monomer may directly or allosterically affect actin-gelsolin interactions. On the other hand, interaction with gelsolin changes the conformation of actin within the DNase I-binding loop, as indicated by inhibition of limited proteolysis of actin by ECP and subtilisin. Cross-linking experiments with gelsolin-nucleated actin filaments using N,N-phenylene-bismaleimide (which cross-links adjacent actin monomers between Cys374 and Lys191) reveal that gelsolin causes a significant increase in the yield of the 115-kDa cross-linking product, confirming the evidence that gelsolin stabilizes or changes the conformation of the C-terminal region of the actin molecule, and these changes are propagated from the capped end along the filament. These results allow us to conclude that nucleation of actin polymerization by gelsolin is promoted by conformational changes within subdomain 2 and at the C-terminus of the actin monomer.  相似文献   

9.
Actobindin is a new actin-binding protein isolated from Acanthamoeba castellanii. It is composed of two possibly identical polypeptide chains of approximately 13,000 daltons, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis, and with isoelectric points of 5.9. In the native state, actobindin appears to be a dimer of about 25,000 daltons by sedimentation equilibrium analysis. It contains no tryptophan and probably no tyrosine. Actobindin reduces the concentration of F-actin at steady state and inhibits the rate of filament elongation to extents consistent with the formation of a 1:1 actobindin-G-actin complex in a reaction with a KD of about 5 microM. The available data do not eliminate the possibility of other stoichiometries for the complex, but they are not consistent with any significant interaction between actobindin and F-actin. Despite the similarities between the effects of actobindin and Acanthamoeba profilin on the polymerization of Acanthamoeba actin, the two proteins are quite distinct with different native and subunit molecular weights, different isoelectric points, and different amino acid compositions. Also, unlike profilin, actobindin binds as well to rabbit skeletal muscle G-actin and to pyrenyl-labeled G-actin as it does to unmodified Acanthamoeba G-actin.  相似文献   

10.
An initial step in platelet shape change is disassembly of actin filaments, which are then reorganized into new actin structures, including filopodia and lamellipodia. This disassembly is thought to be mediated primarily by gelsolin, an abundant actin filament-severing protein in platelets. Shape change is inhibited by VASP, another abundant actin-binding protein. Paradoxically, in vitro VASP enhances formation of actin filaments and bundles them, activities that would be expected to increase shape change, not inhibit it. We hypothesized that VASP might inhibit shape change by stabilizing filaments and preventing their disassembly by gelsolin. Such activity would explain VASP's known physiological role. Here, we test this hypothesis in vitro using either purified recombinant or endogenous platelet VASP by fluorescence microscopy and biochemical assays. VASP inhibited gelsolin's ability to disassemble actin filaments in a dose-dependent fashion. Inhibition was detectable at the low VASP:actin ratio found inside the platelet (1:40 VASP:actin). Gelsolin bound to VASP-actin filaments at least as well as to actin alone. VASP inhibited gelsolin-induced nucleation at higher concentrations (1:5 VASP:actin ratios). VASP's affinity for actin (K(d) approximately 0.07 microM) and its ability to promote polymerization (1:20 VASP actin ratio) were greater with Ca(++)-actin than with Mg(++)-actin (K(d) approximately 1 microM and 1:1 VASP), regardless of the presence of gelsolin. By immunofluorescence, VASP and gelsolin co-localized in the filopodia and lamellipodia of platelets spreading on glass, suggesting that these in vitro interactions could take place within the cell as well. We conclude that VASP stabilizes actin filaments to the severing effects of gelsolin but does not inhibit gelsolin from binding to the filaments. These results suggest a new concept for actin dynamics inside cells: that bundling proteins protect the actin superstructure from disassembly by severing, thereby preserving the integrity of the cytoskeleton.  相似文献   

11.
Crystals of a 1:1 complex between human gelsolin segment 1 and actin have been grown from solutions containing polyethylene glycol 6000. The crystals are orthorhombic, space group P2(1)2(1)2(1); the axes are a = 57.4 A, b = 70.4 A, c = 184.5 A. They are moderately stable to X-rays and diffract to beyond 2.5 A. There is one molecule of complex in the asymmetric unit.  相似文献   

12.
We elucidated the mechanism by which gelsolin, a Ca2+-dependent regulatory protein from lung macrophages, controls the network structure of actin filaments. In the presence of micromolar Ca2+, gelsolin bound Ca2+. The Ca2+-gelsolin complex reduced the apparent viscosity and flow birefringence of F-actin and the lengths of actin filaments viewed in the electron microscope. However, concentrations of gelsolin causing these alterations did not effect proportionate changes in the turbidity of actin filament solutions or in the quantity of nonsedimentable actin as determined by a radioassay. From these findings, we conclude that gelsolin shortens actin filaments without net depolymerization. Such an effect on the distribution of actin filament lengths led to the prediction that low concentrations of gelsolin would increase the critical concentration of actin-binding protein required for incipient gelation of actin filaments in the presence of Ca2+, providing an efficient mechanism for controlling actin network structure. We verified the prediction experimentally, and we estimated that the Ca2+-gelsolin complex effectively breaks the bond between actin monomers in filaments with a stoichiometry of 1:1. The effect of Ca2+-gelsolin complex on actin solation was rapid, independent of temperature between 0 degrees and 37 degrees C, and reversed by reducing the free Ca2+ concentration.  相似文献   

13.
Gelsolin complexes with calcium (gelsolin-Ca2+) binds to the ends of actin filaments to which monomers add preferentially during elongation. It forms a stable complex with actin in a low ionic strength solution which does not normally favor the polymerization of actin. Gelsolin-Ca2+ increases the rate of nucleation of actin which precedes polymerization, but decreases the rate of elongation of the filaments. The final average length of filaments formed in the presence of gelsolin-Ca2+ is shorter and the equilibrium monomer concentration increases relative to actin polymerized in the absence of gelsolin-Ca2+. Gelsolin-Ca2+ also increases the number of actin filaments because the magnitude of the increase in monomer concentration is disproportionately small compared with the reduction in polymer length. In these respects, the population of actin filaments formed during polymerization in the presence of gelsolin-Ca2+ is similar to that resulting from the action of gelsolin on previously assembled actin filaments (Yin, H. L., Zaner, K. S., and Stossel, T. P. (1980) J. Biol. Chem. 255, 9494-9500). The calcium-dependent shortening of ects, the population of actin filaments formed during polymerization in the presence of gelsolin-Ca2+ is similar to that resulting from the action of gelsolin on previously assembled actin filaments (Yin, H. L., Zaner, K. S., and Stossel, T. P. (1980) J. Biol. Chem. 255, 9494-9500). The calcium-dependent shortening of ects, the population of actin filaments formed during polymerization in the presence of gelsolin-Ca2+ is similar to that resulting from the action of gelsolin on previously assembled actin filaments (Yin, H. L., Zaner, K. S., and Stossel, T. P. (1980) J. Biol. Chem. 255, 9494-9500). The calcium-dependent shortening of actin filaments is the primary mechanism for the dissolution of an actin gel by gelsolin. Therefore, the ability of gelsolin to produce short filaments irrespective of the initial state of assembly of the actin offers flexibility for controlling the network structure of the cytoplasm in which either the monomeric or polymeric form of actin molecules might predominate at different times.  相似文献   

14.
Gelsolin is a Ca2+-binding protein of mammalian leukocytes, platelets and other cells which has multiple and closely regulated powerful effects on actin. In the presence of micromolar Ca2+, gelsolin severs actin filaments, causing profound changes in the consistency of actin polymer networks. A variant of gelsolin containing a 25-amino acid extension at the NH2-terminus is present in plasma where it may be involved in the clearance of actin filaments released during tissue damage. Gelsolin has two sites which bind actin cooperatively. These sites have been localized using proteolytic cleavage and monoclonal antibody mapping techniques. The NH2-terminal half of the molecule contains a Ca2+-insensitive actin severing domain while the COOH-terminal half contains a Ca2+-sensitive actin binding domain which does not sever filaments. These data suggest that the NH2-terminal severing domain in intact gelsolin is influenced by the Ca2+-regulated COOH-terminal half of the molecule. The primary structure of gelsolin, deduced from human plasma gelsolin cDNA clones, supports the existence of actin binding domains and suggests that these may have arisen from a gene duplication event, and diverged subsequently to adopt their respective unique functions. The plasma and cytoplasmic forms of gelsolin are encoded by a single gene, and preliminary results indicate that separate mRNAs code for the two forms. Further application of molecular biological techniques will allow exploration into the structural basis for the multifunctionality of gelsolin, as well as the molecular basis for the genesis of the cytoplasmic and secreted forms of gelsolin.  相似文献   

15.
Adseverin (74-kDa protein, scinderin) is a calcium- and phospholipid-modulated actin-binding protein that promotes actin polymerization, severs actin filaments, and caps the barbed end of the actin filament, with its NH2-terminal half retaining these properties (Sakurai, T., Kurokawa, H., and Nonomura, Y. (1991) J. Biol. Chem. 266, 4581-4585). Further proteolysis of this NH2-terminal half generated five fragments, and two of them (Mr 15,000 and 31,000) showed Ca(2+)-dependent binding to monomeric actin. The Mr 31,000 fragment especially caused actin filament fragmentation, although its severing activity was also inhibited by several acidic phospholipids as was found in adseverin and its NH2-terminal half. Amino acid sequencing demonstrated that the two fragments' NH2 terminus were blocked in the same manner as the NH2 terminus of adseverin, and thus these two fragments are possibly located at the NH2-terminal of the adseverin molecule. This would then indicate that NH2-terminal fragments had a Ca(2+)-sensitive actin-binding function that relates to actin severing. The other two fragments' NH2-terminal sequencing showed a similar homology to the amino acid sequences of gelsolin and villin. Based on these observations, we propose that adseverin has a functional domain structure similar to that of the gelsolin and villin core.  相似文献   

16.
Dynamic light scattering was used to characterize the diffusion of monodisperse polystyrene latex spheres (PLS) of different sizes (55-, 105-, and 265-nm radii) in column-purified 0.65 mg/mL actin solutions polymerized with 100 mM KCl in the absence and presence of various amounts of the actin-binding protein gelsolin. The gelsolin and its interaction with actin was initially studied to ensure that the gelsolin could be used to produce filament populations with well-defined mean lengths. Measurements with PLS diffusion probes present showed, in the absence of gelsolin, that the effective local microviscosity in the actin solutions was 5-20 times that of water and that a large fraction of the PLS are trapped within the pores of the actin filament network, as found previously [J. Newman, K. L. Schick, & K. S. Zaner, (1989) Biopolymers 28, 1969-1980]. As the molar ratio of gelsolin to actin was increased, the diffusion coefficients of the PLS approached those in pure water while the degree of PLS trapping went to zero. Measurements of the dependence of the PLS diffusion coefficients on the ratio of actin concentration to the semidilute overlap concentration showed, for the smaller PLS, a transition occurring near the mean global overlap concentration. These results reflect the dissolution of the actin network as the gelsolin concentration is increased and illustrate the role of gelsolin/actin interactions in the control of macromolecular transport within the periphery of cells.  相似文献   

17.
Small GTPases of the Rho family are crucial regulators of actin cytoskeleton rearrangements. Rho is activated by members of the Rho guanine-nucleotide exchange factor (GEF) family; however, mechanisms that regulate RhoGEFs are not well understood. This report demonstrates that PDZ-RhoGEF, a member of a subfamily of RhoGEFs that contain regulator of G protein signaling domains, is partially localized at or near the plasma membranes in 293T, COS-7, and Neuro2a cells, and this localization is coincident with cortical actin. Disruption of the cortical actin cytoskeleton in cells by using latrunculin B prevents the peri-plasma membrane localization of PDZ-RhoGEF. Coimmunoprecipitation and F-actin cosedimentation assays demonstrate that PDZ-RhoGEF binds to actin. Extensive deletion mutagenesis revealed the presence of a novel 25-amino acid sequence in PDZ-RhoGEF, located at amino acids 561-585, that is necessary and sufficient for localization to the actin cytoskeleton and interaction with actin. Last, PDZ-RhoGEF mutants that fail to interact with the actin cytoskeleton display enhanced Rho-dependent signaling compared with wild-type PDZ-RhoGEF. These results identify interaction with the actin cytoskeleton as a novel function for PDZ-RhoGEF, thus implicating actin interaction in organizing PDZ-RhoGEF signaling.  相似文献   

18.
19.
In vitro Ca++ activates gelsolin to sever F-actin and form a gelsolin-actin (GA) complex at the+end of F-actin that is not dissociated by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) but is separated by EGTA+PIP/PIP2. The gelsolin blocks the+end on the actin filament, but the-end of the filament can still initiate actin polymerization. In thrombin activated platelets, evidence suggests that severing of F-actin by gelsolin increases GA complex, creates one-end actin nucleus and one cryptic+end actin nucleus per cut, and then dissociates to yield free+ends to nucleate rapid actin assembly. We examined the role of F-actin severing in creation and regulation of nuclei and polymerization in polymorphonuclear neutrophils (PMNs). At 2-s intervals after formyl peptide (FMLP) activation of endotoxin free (ETF) PMNs, change in GA complex was correlated with change in+end actin nuclei,-end actin nuclei, and F-actin content. GA complex was quantitated by electrophoretograms of proteins absorbed by antigelsolin from cells lysed in 10 mM EGTA,+end actin nuclei as cytochalasin (CD) sensitive and-end actin nuclei as CD insensitive increases in G-pyrenyl actin polymerization rates induced by the same PMNs, and F-actin content by NBDphallacidin binding to fixed cells. Thirty three percent of gelsolin was in GA complex in basal ETF PMNs; from 2-6 s, GA complexes dissociate (low = 15% at 10 s) and sequentially+end nuclei and F-actin content and then-end nuclei increase to a maximum at 10 s. At > s GA complex increase toward basal and + end nuclei and F-actin content returned toward basal. These kinetic data show gelsolin regulates availability of + end nuclei and actin polymerization in FMLP. However, absence of an initial increase in GA complex or - end nucleating activity shows FMLP activation does not cause gelsolin to sever F- or to bind G-actin to create cryptic + end nuclei in PMNs; the results suggest the + nucleus formation is gelsolin independent.  相似文献   

20.
Tryptic digestion of ABP-120, an actin cross-linking protein from Dictyostelium discoideum, generates a ladder of peptides differing in molecular mass by 13,000 daltons, indicating a structural repeat within the molecule. A number of peptides bind actin with the smallest having a molecular mass of 17,000 daltons (T17). Our sedimentation assays also show that a peptide of 14,000 daltons does not bind actin. Using the full-length cDNA sequence (Noegel, A., Rapp, S., Lottspeich, F., Schleicher, M., and Stewart, M. (1989) J. Cell Biol. 109, 607-618) and protein sequencing techniques, we have determined that T17 begins at residue 89 while T14 begins at residue 116. Therefore we have localized 27 amino acids which are essential for actin binding activity. This region is at the end of the molecule, distal from the repetitive beta-sheet region predicted from the cDNA sequence, and displays high sequence identity with regions in the N termini of ABP/filamin, dystrophin, beta-spectrin, and alpha-actinin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号