首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The link between sirtuin activity and mitochondrial biology has recently emerged as an important field. This conserved family of NAD(+)-dependent deacetylase proteins has been described to be particularly involved in metabolism and longevity. Recent studies on protein acetylation have uncovered a high number of acetylated mitochondrial proteins indicating that acetylation/deacetylation processes may be important not only for the regulation of mitochondrial homeostasis but also for metabolic dysfunction in the context of various diseases such as metabolic syndrome/diabetes and cancer. The functional involvement of sirtuins as sensors of the redox/nutritional state of mitochondria and their role in mitochondrial protection against stress are hereby described, suggesting that pharmacological manipulation of sirtuins is a viable strategy against several pathologies.  相似文献   

2.
Neuronal protection by sirtuins in Alzheimer's disease   总被引:4,自引:0,他引:4  
Silent information regulator 2, a member of NAD+-dependent histone deacetylase in yeast, and its homologs in mice and humans, participate in numerous important cell functions, including cell protection and cell cycle regulation. The sirtuin family members are highly conserved evolutionarily, and are predicted to have a role in cell survival. The science of sirtuins is an emerging field and is expected to contribute significantly to the role of sirtuins in healthy aging in humans. The role of sirtuins in neuronal protection has been studied in lower organisms, such as yeast, worms, flies and rodents. Both yeast Sir2 and mammalian sirtuin proteins are up-regulated under calorie-restricted and resveratrol treatments. Increased sirtuin expression protects cells from various insults. Caloric restriction and antioxidant treatments have shown useful effects in mouse models of aging and Alzheimer's disease (AD) and in limited human AD clinical trials. The role sirtuins may play in modifying and protecting neurons in patients with neurodegenerative diseases is still unknown. However, a recent report of Huntington's disease revealed that Sirtuin protects neurons in a Huntington's disease mouse model, suggesting that sirtuins may protect neurons in patients with neurodegenerative diseases, such as AD. In this review, we discuss the possible mechanisms of sirtuins involved in neuronal protection and the potential therapeutic value of sirtuins in healthy aging and AD.  相似文献   

3.
Sirtuins are a family of protein deacetylases that catalyze the nicotinamide adenine dinucleotide (NAD+)-dependent removal of acetyl groups from modified lysine side chains in various proteins. Sirtuins act as metabolic sensors and influence metabolic adaptation but also many other processes such as stress response mechanisms, gene expression, and organismal aging. Mammals have seven Sirtuin isoforms, three of them – Sirt3, Sirt4, and Sirt5 – located to mitochondria, our centers of energy metabolism and apoptosis initiation. In this review, we shortly introduce the mammalian Sirtuin family, with a focus on the mitochondrial isoforms. We then discuss in detail the current knowledge on the mitochondrial isoform Sirt5. Its physiological role in metabolic regulation has recently been confirmed, whereas an additional function in apoptosis regulation remains speculative. We will discuss the biochemical properties of Sirt5 and how they might contribute to its physiological function. Furthermore, we discuss the potential use of Sirt5 as a drug target, structural features of Sirt5 and of an Sirt5/inhibitor complex as well as their differences to other Sirtuins and the current status of modulating Sirt5 activity with pharmacological compounds.  相似文献   

4.
Sirt1 is the most prominent and extensively studied member of sirtuins, the family of mammalian class III histone deacetylases heavily implicated in health span and longevity. Although primarily a nuclear protein, Sirt1’s deacetylation of Peroxisome proliferator-activated receptor Gamma Coactivator-1α (PGC-1α) has been extensively implicated in metabolic control and mitochondrial biogenesis, which was proposed to partially underlie Sirt1’s role in caloric restriction and impacts on longevity. The notion of Sirt1’s regulation of PGC-1α activity and its role in mitochondrial biogenesis has, however, been controversial. Interestingly, Sirt1 also appears to be important for the turnover of defective mitochondria by mitophagy. I discuss here evidences for Sirt1’s regulation of mitochondrial biogenesis and turnover, in relation to PGC-1α deacetylation and various aspects of cellular physiology and disease.  相似文献   

5.
Idiopathic pulmonary fibrosis (IPF) is a severe, incurable, age-associated respiratory disorder that has gained significance because of its unknown etiology and lack of therapeutic approaches. IPF causes maximum damage to the alveolar epithelial cells, thereby leading to lung remodeling and initiating epithelial to mesenchymal transition (EMT). The actual molecular mechanisms underlying IPF still remain unclear, and knowledge about these mechanisms would be helpful in its diagnosis. Sirtuins (Sirt) are class of NAD+-dependent proteins, widely known to exert positive and protective effects on age-related diseases such as diabetes, cancer, and so on, and are also involved in regulating IPF. The sirtuin family comprises of seven members (Sirt1 to Sirt7), out of which Sirt1, Sirt3, Sirt6, and Sirt7 exert positive effects on IPF. Sirt1 is associated with aging and inhibits cellular senescence and fibrosis. Sirt1 is well recognized in controlling pulmonary fibrosis and is also considered as a prime positive mediator of EMT. The expressions of Sirt3 protein tend to decline in IPF patients; hence it is known as an anti-fibrotic protein. Sirt6 indeed has been proven to reduce EMT during IPF. Decreased levels of Sirt7 during IPF regulate lung fibroblasts. Hence, active levels of Sirt1, Sirt3, Sirt6, and Sirt7 can be attractive target models to elucidate a novel potential therapeutic approach for IPF. In this prospect, we have discussed the role of Sirtuins in pulmonary fibrosis by exploring the recent research evidence that highlight the role of sirtuins and also describes their protective effects.  相似文献   

6.
Grubisha O  Smith BC  Denu JM 《The FEBS journal》2005,272(18):4607-4616
The Sir2 family of histone/protein deacetylases (sirtuins) is comprised of homologues found across all kingdoms of life. These enzymes catalyse a unique reaction in which NAD+ and acetylated substrate are converted into deacetylated product, nicotinamide, and a novel metabolite O-acetyl ADP-ribose. Although the catalytic mechanism is well conserved across Sir2 family members, sirtuins display differential specificity toward acetylated substrates, which translates into an expanding range of physiological functions. These roles include control of gene expression, cell cycle regulation, apoptosis, metabolism and ageing. The dependence of sirtuin activity on NAD+ has spearheaded investigations into how these enzymes respond to metabolic signals, such as caloric restriction. In addition, NAD+ metabolites and NAD+ salvage pathway enzymes regulate sirtuin activity, supporting a link between deacetylation of target proteins and metabolic pathways. Apart from physiological regulators, forward chemical genetics and high-throughput activity screening has been used to identify sirtuin inhibitors and activators. This review focuses on small molecule regulators that control the activity and functions of this unusual family of protein deacetylases.  相似文献   

7.
Sirtuins are recently redefined as a family of nicotinamide adenine dinucleotide (NAD)-dependent deacylases. Sirtuins in mammals including human have seven members, which are SIRT1-7. Compared to other sirtuin members, not much study is focused on mitochondrial sirtuins (SIRT3-5). In mitochondrial sirtuins, SIRT4 was the last of less well-understood mitochondrial sirtuins especially for its robust enzymatic activity. This makes SIRT4 become the last puzzle of mitochondrial sirtuins, and thus brings some obstacles for studying SIRT4 biological functions or developing SIRT4 modulators. In this review, we will summarize and discuss the current findings for substrates, biological functions and possible enzymatic activities of SIRT4. The purpose of this review is to facilitate in discovering the robust enzymatic activity of SIRT4 and eventually finish this last puzzle of mitochondrial sirtuins.  相似文献   

8.
Conserved metabolic regulatory functions of sirtuins   总被引:3,自引:0,他引:3  
Silent information regulator 2 (Sir2) proteins, or sirtuins, are protein deacetylases/mono-ADP-ribosyltransferases found in organisms ranging from bacteria to humans. Their dependence on nicotinamide adenine dinucleotide (NAD+) links their activity to cellular metabolic status. In bacteria, the sirtuin CobB regulates the metabolic enzyme acetyl-coenzyme A (acetyl-CoA) synthetase. The earliest function of sirtuins therefore may have been regulation of cellular metabolism in response to nutrient availability. Recent findings support the idea that sirtuins play a pivotal role in metabolic control in higher organisms, including mammals. This review surveys evidence for an emerging role of sirtuins as regulators of metabolism in mammals.  相似文献   

9.
哺乳动物Sirtuins家族目前共发现7个成员:SIRT1~SIRT7,它们均为NAD+依 赖性且从细菌到人类都保守的一类酶.人们已经对这7种去乙酰化酶进行了亚细胞定位 .目前,对其研究主要集中在对细胞发育相关的重要转录因子如p53、FOXO家族及相关 蛋白的去乙酰化修饰.Sirtuins对许多生理过程有着重要的调节作用,尤其是当发现 它们对寿命延长的调控作用后,Sirtuins引起了人们极大的关注,且都发表在世界顶 级刊物上.聚ADP核糖聚合酶(poly ADP-ribose polymerase, PARP)是一类存在于大多 数真核细胞中的蛋白质翻译后修饰酶,尤其是聚ADP核糖聚合酶1(PARP-1)在细胞内 DNA损伤修复等过程中起着重要作用,该酶同样以NAD+作为催化反应的底物.有研究发 现,Sirtuins家族成员与PARP-1在细胞内某些重要生理过程中存在着相互作用.本文评 述了Sirtuins家族成员、PARP-1的生物学特点,并就其参与哺乳动物细胞凋亡的调控 机制和相关信号通路进行了详细的论述,以期对Sirtuins家族成员、PARP-1生物学功 能及其相互作用的研究提供理论指导.  相似文献   

10.
Sirtuins are highly conserved NAD+-dependent protein deacetylases and/or ADP-ribosyltransferases that can extend the lifespan of several lower model organisms including yeast, worms and flies. The seven mammalian sirtuins, SIRT1 to SIRT7, have emerged as key metabolic sensors that directly link environmental signals to mammalian metabolic homeostasis and stress response. Recent studies have shed light on the critical roles of sirtuins in mammalian energy metabolism in response to nutrient signals. This review focuses on the involvement of two nuclear sirtuins, SIRT1 and SIRT6, and three mitochondrial sirtuins, SIRT3, SIRT4, and SIRT5, in regulation of diverse metabolic processes.  相似文献   

11.
12.
《遗传学报》2022,49(4):287-298
Maintaining metabolic homeostasis is essential for cellular and organismal health throughout life. Multiple signaling pathways that regulate metabolism also play critical roles in aging, such as PI3K/AKT, mTOR, AMPK, and sirtuins (SIRTs). Among them, sirtuins are known as a protein family with versatile functions, such as metabolic control, epigenetic modification and lifespan extension. Therefore, by understanding how sirtuins regulate metabolic processes, we can start to understand how they slow down or accelerate biological aging from the perspectives of metabolic regulation. Here, we review the biology of SIRT3, SIRT4, and SIRT5, known as the mitochondrial sirtuins due to their localization in the mitochondrial matrix. First, we will discuss canonical pathways that regulate metabolism more broadly and how these are integrated with aging regulation. Then, we will summarize the current knowledge about functional differences between SIRT3, SIRT4, and SIRT5 in metabolic control and integration in signaling networks. Finally, we will discuss how mitochondrial sirtuins regulate processes associated with aging and aging-related diseases.  相似文献   

13.
Nicotinamide adenine dinucleotide (NAD) and its phosphorylated form NADP are the major coenzymes in the redox reactions of various essential metabolic pathways. NAD+ also serves as a substrate for several families of regulatory proteins, such as protein deacetylases (sirtuins), ADP-ribosyltransferases, and poly(ADP-ribose) polymerases, that control vital cell processes including gene expression, DNA repair, apoptosis, mitochondrial biogenesis, unfolded protein response, and many others. NAD+ is also a precursor for calcium-mobilizing secondary messengers. Proper regulation of these NAD-dependent metabolic and signaling pathways depends on how efficiently cells can maintain their NAD levels. Generally, mammalian cells regulate their NAD supply through biosynthesis from the precursors delivered with the diet: nicotinamide and nicotinic acid (vitamin B3), as well as nicotinamide riboside and nicotinic acid riboside. Administration of NAD precursors has been demonstrated to restore NAD levels in tissues (i.e., to produce beneficial therapeutic effects) in preclinical models of various diseases, such as neurodegenerative disorders, obesity, diabetes, and metabolic syndrome.  相似文献   

14.
DNA损伤的发生与积累是造成细胞功能紊乱的根本原因,也是引起衰老与肿瘤等疾病发生的关键事件。为维持机体自身遗传物质的完整性与稳定性,生物体内拥有多种针对不同类型DNA损伤的修复方式。Sirtuin蛋白是一组NAD+依赖的、高度保守的组蛋白去乙酰化酶,可通过去乙酰化作用调节众多底物蛋白质的表达、活性与稳定性。 近来的研究显示,DNA损伤修复途径的多个关键蛋白质是Sirtuin的下游底物。Sirtuin蛋白通过调节同源重组修复、非同源末端修复、核苷酸切除修复等途径中的核心蛋白质参与修复包括双链断裂(double stranded breakes, DSBs)在内的多种DNA损伤类型,从而在维持基因组稳定性、寿命以及细胞能量代谢调节等一系列生物学作用中发挥至关重要的作用。本综述将介绍近年来Sirtuin与DNA损伤修复的研究进展。  相似文献   

15.
Kim SH  Lu HF  Alano CC 《PloS one》2011,6(3):e14731

Background

Sirtuins (Sirt), a family of nicotinamide adenine nucleotide (NAD) dependent deacetylases, are implicated in energy metabolism and life span. Among the known Sirt isoforms (Sirt1-7), Sirt3 was identified as a stress responsive deacetylase recently shown to play a role in protecting cells under stress conditions. Here, we demonstrated the presence of Sirt3 in neurons, and characterized the role of Sirt3 in neuron survival under NMDA-induced excitotoxicity.

Methodology/Principal Findings

To induce excitotoxic injury, we exposed primary cultured mouse cortical neurons to NMDA (30 µM). NMDA induced a rapid decrease of cytoplasmic NAD (but not mitochondrial NAD) in neurons through poly (ADP-ribose) polymerase-1 (PARP-1) activation. Mitochondrial Sirt3 was increased following PARP-1 mediated NAD depletion, which was reversed by either inhibition of PARP-1 or exogenous NAD. We found that massive reactive oxygen species (ROS) produced under this NAD depleted condition mediated the increase in mitochondrial Sirt3. By transfecting primary neurons with a Sirt3 overexpressing plasmid or Sirt3 siRNA, we showed that Sirt3 is required for neuroprotection against excitotoxicity.

Conclusions

This study demonstrated for the first time that mitochondrial Sirt3 acts as a prosurvival factor playing an essential role to protect neurons under excitotoxic injury.  相似文献   

16.
The Sir2 (silent i nformation r egulator 2) family of NAD-dependent deacetylases regulates aging and longevity across a wide variety of organisms, including yeast, worms, and flies. In mammals, the Sir2 ortholog Sirt1 promotes fat mobilization, fatty acid oxidation, glucose production, and insulin secretion in response to nutrient availability. We previously reported that an increased dosage of Sirt1 in pancreatic β cells enhances glucose-stimulated insulin secretion (GSIS) and improves glucose tolerance in be ta cell-specific S ir t 1- o verexpressing (BESTO) transgenic mice at 3 and 8 months of age. Here, we report that as this same cohort of BESTO mice reaches 18–24 months of age, the GSIS regulated by Sirt1 through repression of Ucp2 is blunted. Increased body weight and hyperlipidemia alone, which are observed in aged males and also induced by a Western-style high-fat diet, are not enough to abolish the positive effects of Sirt1 on β cell function. Interestingly, plasma levels of nicotinamide mononucleotide (NMN), an important metabolite for the maintenance of normal NAD biosynthesis and GSIS in β cells, are significantly reduced in aged BESTO mice. Furthermore, NMN administration restores enhanced GSIS and improved glucose tolerance in the aged BESTO females, suggesting that Sirt1 activity decreases with advanced age due to a decline in systemic NAD biosynthesis. These findings provide insight into the age-dependent regulation of Sirt1 activity and suggest that enhancement of systemic NAD biosynthesis and Sirt1 activity in tissues such as β cells may be an effective therapeutic intervention for age-associated metabolic disorders such as type 2 diabetes.  相似文献   

17.
Aging is the strongest risk factor for cancer development, suggesting that molecular crosstalks between aging and tumorigenesis exist in many cellular pathways. Recently, Sirtuins (Sirt1-7), the mammalian homologues of aging-related sir2α in yeast, have been shown to modulate several major cellular pathways, such as DNA repair, inflammation, metabolism, cell death, and proliferation in response to diverse stresses, and may serve as a possible molecular link between aging and tumorignenesis. In addition, growing evidence suggests that sirtuins are directly implicated in the development of cancer, and they can act as either a tumor suppressor or promoter, depending on the cellular context and tumor types. While the functions of Sirt1 in tumorigenesis have been reported and reviewed in many studies, the connection between sirtuins 2-7 and the development of cancer is less established. Thus, this review will present the recent updates on the emerging roles of Sirt2-7 members in carcinogenesis. [BMB Reports 2013; 46(9): 429-438]  相似文献   

18.
The enzymes of the Sirtuin family of nicotinamide-adenine-dinucleotide-dependent protein deacetylases are emerging key players in nuclear and cytosolic signaling, but also in mitochondrial regulation and aging. Mammalian mitochondria contain three Sirtuins, Sirt3, Sirt4, and Sirt5. Only one substrate is known for Sirt3 as well as for Sirt4, and up to now, no target for Sirt5 has been reported. Here, we describe the identification of novel substrates for the human mitochondrial Sirtuin isoforms Sirt3 and Sirt5. We show that Sirt3 can deacetylate and thereby activate a central metabolic regulator in the mitochondrial matrix, glutamate dehydrogenase. Furthermore, Sirt3 deacetylates and activates isocitrate dehydrogenase 2, an enzyme that promotes regeneration of antioxidants and catalyzes a key regulation point of the citric acid cycle. Sirt3 thus can regulate flux and anapleurosis of this central metabolic cycle. We further find that the N- and C-terminal regions of Sirt3 regulate its activity against glutamate dehydrogenase and a peptide substrate, indicating roles for these regions in substrate recognition and Sirtuin regulation. Sirt5, in contrast to Sirt3, deacetylates none of the mitochondrial matrix proteins tested. Instead, it can deacetylate cytochrome c, a protein of the mitochondrial intermembrane space with a central function in oxidative metabolism, as well as apoptosis initiation. Using a mitochondrial import assay, we find that Sirt5 can indeed be translocated into the mitochondrial intermembrane space, but also into the matrix, indicating that localization might contribute to Sirt5 regulation and substrate selection.  相似文献   

19.
20.
For the past couple of decades, aging science has been rapidly evolving, and powerful genetic tools have identified a variety of evolutionarily conserved regulators and signaling pathways for the control of aging and longevity in model organisms. Nonetheless, a big challenge still remains to construct a comprehensive concept that could integrate many distinct layers of biological events into a systemic, hierarchical view of aging. The “heterochromatin island” hypothesis was originally proposed 10 years ago to explain deterministic and stochastic aspects of cellular and organismal aging, which drove the author to the study of evolutionarily conserved Sir2 proteins. Since a surprising discovery of their NAD-dependent deacetylase activity, Sir2 proteins, now called “sirtuins,” have been emerging as a critical epigenetic regulator for aging. In this review, I will follow the process of conceptual development from the heterochromatin island hypothesis to a novel, comprehensive concept of a systemic regulatory network for mammalian aging, named “NAD World,” summarizing recent studies on the mammalian NAD-dependent deacetylase Sirt1 and nicotinamide phosphoribosyltransferase (Nampt)-mediated systemic NAD biosynthesis. This new concept of the NAD World provides critical insights into a systemic regulatory mechanism that fundamentally connects metabolism and aging and also conveys the ideas of functional hierarchy and frailty for the regulation of aging in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号