首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Negative selection serves as a major mechanism to maintain self-tolerance. We previously reported that LIGHT (a cellular ligand for herpes virus entry mediator and lymphotoxin receptor), a TNF family member, plays an important role in thymocyte development via promoting apoptosis of double-positive thymocytes. Here, we demonstrated that LIGHT-mediated deletion of thymocyte requires the strong interaction of TCR with MHC/self-peptide. Transgenic mice overexpressing LIGHT in thymocytes were bred with a transgenic mouse line expressing a TCR recognizing the H-Y male Ag in the context of H-2b class I MHC molecules. In male H-Y/LIGHT double-transgenic mice, more efficient negative selection of H-Y T cells occurred, and total thymocyte number was further reduced compared with H-Y/negative littermates. In contrast, the presence of LIGHT transgene had no evident impact on the thymocyte development of female H-Y/LIGHT double-transgenic mice. Taken together, LIGHT plays a role in negative selection of thymocytes via inducing the apoptosis of thymocytes bearing high affinity TCR during negative selection.  相似文献   

3.
T lymphocyte development and function are tightly regulated by the intrinsic death pathway through members of the Bcl-2 family. Genetic studies have demonstrated that the Bcl-2 family member Mcl-1 is an important anti-apoptotic protein in the development of multiple cell types including T lymphocytes. However, the expression pattern and anti-apoptotic roles of Mcl-1 in T lymphocytes at different developmental stages remain to be fully determined. In this study, we examined the expression pattern of Mcl-1 in different populations of T cells at the single-cell level and found that Mcl-1 protein is constitutively expressed in all T cell populations and up-regulated upon TCR stimulation. We then investigated the role of Mcl-1 in the survival of these different populations by conditionally deleting Mcl-1 at various T cell stages. Our results show that Mcl-1 is required for the survival of double-negative and single-positive thymocytes as well as naive and activated T cells. Furthermore, we demonstrate that Mcl-1 functions together with Bcl-xL to promote double-positive thymocyte survival. Thus, Mcl-1 is a critical anti-apoptotic factor for the survival of T cells at multiple stages in vivo.  相似文献   

4.
Survival factors activate kinases which, in turn, phosphorylate the proapoptotic Bcl-xl/Bcl-2-associated death promoter homolog (BAD) protein at key serine residues. Phosphorylated BAD interacts with 14-3-3 proteins, and overexpression of 14-3-3 attenuates BAD-mediated apoptosis. Although BAD is known to interact with Bcl-2, Bcl-w, and Bcl-xL, the exact relationship between BAD and anti- or proapoptotic Bcl-2 proteins has not been analyzed systematically. Using the yeast two-hybrid protein interaction assay, we found that BAD interacted negligibly with proapoptotic Bcl-2 proteins. Even though wild type BAD only interacted with selected numbers of antiapoptotic proteins, underphosphorylated mutant BAD interacted with all antiapoptotic Bcl-2 proteins tested (Bcl-2, Bcl-w, Bcl-xL, Bfl-1/A1, Mcl-1, Ced-9, and BHRF-1). Using nonphosphorylated recombinant BAD expressed in bacteria, direct interactions between BAD and diverse antiapoptotic Bcl-2 members were also observed. Furthermore, apoptosis induced by BAD was blocked by coexpression with Bcl-2, Bcl-w, and Bfl-1. Comparison of BAD orthologs from zebrafish to human indicated the conservation of a 14-3-3 binding site and the BH3 domain during evolution. Thus, highly conserved BAD interacts with diverse antiapoptotic Bcl-2 members to regulate apoptosis.  相似文献   

5.
The nature of the signals that influence thymocyte selection and determine the fate of CD4(+)8(+) (double positive) thymocytes remains unclear. Cytokines produced locally in the thymus may modulate signals delivered by TCR-MHC/peptide interactions and thereby influence the fate of double-positive thymocytes. Because the IL-2/IL-2R signaling pathway has been implicated in thymocyte and peripheral T cell survival, we investigated the possibility that IL-2/IL-2R interactions contribute to the deletion of self-reactive, Ag-specific thymocytes. By using nontransgenic and transgenic IL-2-sufficient and -deficient animal model systems, we have shown that during TCR-mediated thymocyte apoptosis, IL-2 protein is expressed in situ in the thymus, and apoptotic thymocytes up-regulate expression of IL-2RS: IL-2R(+) double-positive and CD4 single-positive thymocytes undergoing activation-induced cell death bind and internalize IL-2. IL-2-deficient thymocytes are resistant to TCR/CD3-mediated apoptotic death, which is overcome by providing exogenous IL-2 to IL-2(-/-) mice. Furthermore, disruption or blockade of IL-2/IL-2R interactions in vivo during Ag-mediated selection rescues some MHC class II-restricted thymocytes from apoptosis. Collectively, these findings provide evidence for the direct involvement of the IL-2/IL-2R signaling pathway in the deletion of Ag-specific thymocyte populations and suggest that CD4 T cell hyperplasia and autoimmunity in IL-2(-/-) mice is a consequence of ineffective deletion of self-reactive T cells.  相似文献   

6.
Despite real advances made in chemoimmunotherapy, chronic lymphocytic leukemia (CLL) is still an incurable disease. New therapeutic strategies based on the restoration of the cell death program seemed relevant. Some members of the Bcl-2 family are critical players in the defective apoptotic program in CLL cells and/or targets of apoptosis inducers in vitro. The concept of BH3 mimetics has led to the characterization of small molecules mimicking proapoptotic BH3-only members of the Bcl-2 family by their ability to bind and antagonize the prosurvival members. Some putative or actual BH3 mimetics are already being tested in clinical trials with somewhat promising results. However, none of them has a high enough interaction affinity with Mcl-1, a crucial antiapoptotic factor in CLL. It has been suggested that resistance to BH3 mimetics can be overcome by using inhibitors of Mcl-1 expression. An alternative and more direct strategy is to design mimetics of the Noxa BH3 domain, which is a specific antagonistic Mcl-1 ligand. The development of such Noxa-like BH3 mimetics, capable of directly interacting with Mcl-1 and efficiently neutralizing its antiapoptotic activity, is extremely important to evaluate their impact on the clinical outcome of patients with CLL.  相似文献   

7.
Immature double-positive (DP) thymocytes mature into CD4(+)CD8(-) cells in response to coengagement of TCR with any of a variety of cell surface "coinducer" receptors, including CD2. In contrast, DP thymocytes are signaled to undergo apoptosis by coengagement of TCR with CD28 costimulatory receptors, but the molecular basis for DP thymocyte apoptosis by TCR plus CD28 coengagement is not known. In the present study, we report that TCR plus CD28 coengagement does not invariably induce DP thymocyte apoptosis but, depending on the intensity of CD28 costimulation, can induce DP thymocyte maturation. We demonstrate that distinct but interacting signal transduction pathways mediate DP thymocyte maturation signals and DP thymocyte apoptotic signals. Specifically, DP maturation signals are transduced by the extracellular signal-related kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway and up-regulate expression of the antiapoptotic protein Bcl-2. In contrast, the apoptotic response stimulated by CD28 costimulatory signals is mediated by ERK/MAPK-independent pathways. Importantly, when TCR-activated thymocytes are simultaneously coengaged by both CD28 and CD2 receptors, CD28 signals can inhibit ERK/MAPK-dependent Bcl-2 protein up-regulation. Thus, there is cross-talk between the signal transduction pathways that transduce apoptotic and maturation responses, enabling CD28-initiated signal transduction pathways to both stimulate DP thymocyte apoptosis and also negatively regulate maturation responses initiated by TCR plus CD2 coengagement.  相似文献   

8.
Unlike other antiapoptotic Bcl-2 family members, Mcl-1 also mediates resistance to cancer therapy by uniquely inhibiting chemotherapy-induced senescence (CIS). In general, Bcl-2 family members regulate apoptosis at the level of the mitochondria through a common prosurvival binding groove. Through mutagenesis, we determined that Mcl-1 can inhibit CIS even in the absence of its apoptotically important mitochondrion-localizing domains. This finding prompted us to generate a series of Mcl-1 deletion mutants from both the N and C termini of the protein, including one that contained a deletion of all of the Bcl-2 homology domains, none of which impacted anti-CIS capabilities. Through subsequent structure-function analyses of Mcl-1, we identified a previously uncharacterized loop domain responsible for the anti-CIS activity of Mcl-1. The importance of the loop domain was confirmed in multiple tumor types, two in vivo models of senescence, and by demonstrating that a peptide mimetic of the loop domain can effectively inhibit the anti-CIS function of Mcl-1. The results from our studies appear to be highly translatable because we discerned an inverse relationship between the expression of Mcl-1 and of various senescence markers in cancerous human tissues. In summary, our findings regarding the unique structural properties of Mcl-1 provide new approaches for targeted cancer therapy.  相似文献   

9.
As a model for defining the role of lysosomal cathepsins in apoptosis, we characterized the action of the lysosomotropic agent LeuLeuOMe using distinct cellular models. LeuLeuOMe induces lysosomal membrane permeabilization, resulting in release of lysosomal cathepsins that cleave the proapoptotic Bcl-2 family member Bid and degrade the antiapoptotic member Bcl-2, Bcl-xL, or Mcl-1. The papain-like cysteine protease inhibitor E-64d largely prevented apoptosis, Bid cleavage, and Bcl-2/Bcl-xL/Mcl-1 degradation. The pancaspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp(OMe)fluoromethyl ketone failed to prevent Bid cleavage and degradation of anti-apoptotic Bcl-2 homologues but substantially decreased cell death, suggesting that cathepsin-mediated apoptosis in these cellular models mostly follows a caspase-dependent pathway. Moreover, in vitro experiments showed that one or more of the cysteine cathepsins B, L, S, K, and H could cleave Bcl-2, Bcl-xL, Mcl-1, Bak, and BimEL, whereas no Bax cleavage was observed. On the basis of inhibitor studies, we demonstrate that lysosomal disruption triggered by LeuLeuOMe occurs before mitochondrial damage. We propose that degradation of anti-apoptotic Bcl-2 family members by lysosomal cathepsins synergizes with cathepsin-mediated activation of Bid to trigger a mitochondrial pathway to apoptosis. Moreover, XIAP (X-chromosome-linked inhibitor of apoptosis) was also found to be a target of cysteine cathepsins, suggesting that cathepsins can mediate caspase-dependent apoptosis also downstream of mitochondria.  相似文献   

10.
The Bcl-2 family regulates induction of apoptosis at the mitochondria. Essential to this regulation are the interactions between Bcl-2 family members, which are mediated by Bcl-2 homology (BH) domains. Vaccinia virus F1L is a unique inhibitor of apoptosis that lacks significant sequence similarity with the Bcl-2 family and does not contain obvious BH domains. Despite this, F1L inhibits cytochrome c release from mitochondria by preventing Bak and Bax activation. Although F1L constitutively interacts with Bak to prevent Bak activation, the precise mechanism of this interaction remains elusive. We have identified highly divergent BH domains in F1L that were verified by the recent crystal structure of F1L (Kvansakul, M., Yang, H., Fairlie, W. D., Czabotar, P. E., Fischer, S. F., Perugini, M. A., Huang, D. C., and Colman, P. M. (2008) Cell Death Differ. 15, 1564–1571). Here we show that F1L required these BH domains to interact with ectopically expressed and endogenous Bak. The interaction between F1L and Bak was conserved across species, and both F1L and the cellular antiapoptotic protein Mcl-1 required the Bak BH3 domain for interaction. Moreover, F1L replaced Mcl-1 during infection, as the Bak·Mcl-1 complex was disrupted during vaccinia virus infection. In contrast to UV irradiation, vaccinia virus infection did not result in rapid degradation of Mcl-1, consistent with our observation that vaccinia virus did not initiate a DNA damage response. Additionally, Mcl-1 expression prevented Bak activation and apoptosis during infection with a proapoptotic vaccinia virus devoid of F1L. Our data suggest that F1L replaces the antiapoptotic activity of Mcl-1 during vaccinia virus infection by interacting with Bak using highly divergent BH domains.  相似文献   

11.
Glucocorticoids, administered in pharmacological doses, potently modulate immune system function and are a mainstay therapy for many common human diseases. Physiologic production of glucocorticoids may play a role in optimization of the immune repertoire both centrally and peripherally. Possible effects include alteration of lymphocyte development and down-regulation of cytokine responses, but essential roles remain unclear. To determine the part that endogenous glucocorticoids play in thymocyte development, we used fetal liver from mice lacking the glucocorticoid receptor GRko for immunological reconstitution of lethally irradiated wild-type (WT) mice. We find normal numbers and subset distribution of GRko thymocytes. GRko thymocytes also exhibit similar sensitivity to apoptosis induced by activating anti-CD3epsilon Ab as WT thymocytes in vitro. Surprisingly, GRko thymocytes are significantly more resistant than WT thymocytes to anti-CD3epsilon-mediated thymocyte apoptosis in vivo. Consistent with this finding, in vivo TCR complex activation induces sustained high levels of glucocorticoids that correlate strongly with thymocyte apoptosis in WT mice. We find that while direct engagement of the TCR complex may cause death of a subset of thymocytes, glucocorticoids are required for deletion of the majority of thymocytes. Thus, TCR stimulation by Ab administration may more accurately reflect polyclonal T cell activation than negative selection in vivo.  相似文献   

12.
13.
Bax and Bak are critical effectors of apoptosis. Although both are widely expressed and usually functionally redundant, recent studies suggest that Bak has particular importance in certain cell types. Genetic and biochemical studies indicate that Bak activation is prevented primarily by Mcl-1 and Bcl-xL, whereas Bax is held in check by all pro-survival Bcl-2 homologues, including Bcl-2 itself. In this study, we have investigated whether loss of Bak or elevated Mcl-1 modulates haemopoietic abnormalities provoked by overexpression of Bcl-2. The Mcl-1 transgene had little impact, probably because the expression level was insufficient to effectively reduce Bak activation. However, loss of Bak enhanced lymphocytosis in vavP-BCL-2 transgenic mice and increased resistance of their thymocytes to some cytotoxic agents, implying that Bak-specific signals can be triggered in certain lymphoid populations. Nevertheless, lack of Bak had no significant impact on thymic abnormalities in vavP-BCL-2tg mice, which kinetic analysis suggested was due to accumulation of self-reactive thymocytes that resist deletion. Intriguingly, although Bak−/− mice have elevated platelet counts, Bak−/−vavP-BCL-2 mice, like vavP-BCL-2 littermates, were thrombocytopaenic. To clarify why, the vavP-BCL-2 platelet phenotype was scrutinised more closely. Platelet life span was found to be elevated in vavP-BCL-2 mice, which should have provoked thrombocytosis, as in Bak−/− mice. Analysis of bone marrow chimaeric mice suggested the low platelet phenotype was due principally to extrinsic factors. Following splenectomy, blood platelets remained lower in vavP-BCL-2 than wild-type mice. However, in Rag1−/− BCL-2tg mice, platelet levels were normal, implying that elevated lymphocytes are primarily responsible for BCL-2tg-induced thrombocytopaenia.  相似文献   

14.
Thymic negative selection is the process in which maturing thymocytes that express T-cell receptors recognizing self are eliminated by apoptotic cell death. The molecular mechanism by which this occurs is poorly understood. Notably, genes involved in cell death, even thymocyte death, such as Fas, Fas-ligand, p53, caspase-1, caspase-3, and caspase-9, and Bcl-2 have been found to not be required for normal thymic negative selection. We have demonstrated previously that E2F1-deficient mice have a defect in thymocyte apoptosis. Here we show that E2F1 is required for normal thymic negative selection. Furthermore, we observed an E2F1-dependent increase of p53 protein levels during the process of thymic clonal deletion, which suggests that E2F1 regulates activation-induced apoptosis of self-reactive thymocytes by a p53-dependent mechanism. In contrast, other apoptotic pathways operating on developing thymocytes, such as glucocorticoid-induced cell death, are not mediated by E2F1. The T lymphocytes that escape thymic negative selection migrate to the peripheral immune system but do not appear to be autoreactive, indicating that there may exist E2F1-independent mechanisms of peripheral tolerance, which protect mice from developing an autoimmune response. We expect that E2F1-deficient mice will provide a useful tool for understanding the molecular mechanism of and the immunological importance of thymic negative selection.  相似文献   

15.
Caspases, a family of cysteine proteases, are critical mediators of apoptosis. To address the importance of caspases in thymocyte development, we have generated transgenic mice that express the baculovirus protein p35, a viral caspase inhibitor, specifically in the thymus. p35 expression inhibited Fas (CD95)-, CD3-, or peptide-induced caspase activity in vitro and conferred resistance to Fas-induced apoptosis. However, p35 did not block specific peptide-induced negative selection in OT1 and HY TCR transgenic mouse models. Even the potent pharmacological caspase inhibitor zVAD-FMK (benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl-ketone) could not prevent peptide-induced deletion of OT1 thymocytes, although it improved basal thymocyte survival in vitro. Moreover, the developmental block observed in rag1-/- thymocytes, which lack pre-TCR signaling, was also not rescued by p35 expression. These results indicate that caspase-independent signal transduction pathways can mediate thymocyte death during normal T cell development.  相似文献   

16.
17.
Peripheral CD4(+)Vβ5(+) T cells are tolerized to an endogenous mouse mammary tumor virus superantigen either by deletion or TCR revision. Through TCR revision, RAG reexpression mediates extrathymic TCRβ rearrangement and results in a population of postrevision CD4(+)Vβ5(-) T cells expressing revised TCRβ chains. We have hypothesized that cell death pathways regulate the selection of cells undergoing TCR revision to ensure the safety and utility of the postrevision population. In this study, we investigate the role of Bcl-2-interacting mediator of cell death (Bim)-mediated cell death in autoantigen-driven deletion and TCR revision. Bim deficiency and Bcl-2 overexpression in Vβ5 transgenic (Tg) mice both impair peripheral deletion. Vβ5 Tg Bim-deficient and Bcl-2 Tg mice exhibit an elevated frequency of CD4(+) T cells expressing both the transgene-encoded Vβ5 chain and a revised TCRβ chain. We now show that these dual-TCR-expressing cells are TCR revision intermediates and that the population of RAG-expressing, revising CD4(+) T cells is increased in Bim-deficient Vβ5 Tg mice. These findings support a role for Bim and Bcl-2 in regulating the balance of survival versus apoptosis in peripheral T cells undergoing RAG-dependent TCR rearrangements during TCR revision, thereby ensuring the utility of the postrevision repertoire.  相似文献   

18.
Using flow cytometry, we investigated the effect of TLR agonists on human polymorphonuclear neutrophil (PMN) apoptosis in whole blood. LPS (TLR4), peptidoglycan (TLR2), R-848 (TLR7/8), and CpG-DNA (TLR9) were equally effective at delaying spontaneous apoptosis of PMN, while PamCSK4 (TLR1/2), macrophage-activating lipopeptide-2 (TLR2/6), flagellin (TLR5), and loxoribine (TLR7) were less effective or inactive. TLR agonists found to delay apoptosis also extended the functional life span of PMN. Analysis of signaling pathways revealed that the antiapoptotic effect of TLR agonists required NF-kappaB and PI3K activation. Furthermore, analysis of intact cells by flow cytometry showed that TLR agonists delaying PMN apoptosis increased phosphorylation of Akt, a major target of PI3K. This effect was associated with a PI3K-dependent increase in heat shock protein 27 phosphorylation, which has been reported to play a key role in PMN survival. Finally, the TLR-induced delay in PMN apoptosis was associated with increased levels of Mcl-1 and A1, which are antiapoptotic members of the Bcl-2 family. These effects were reversed by PI3K and NF-kappaB inhibitors, respectively. TLR activation also led to PI3K-dependent phosphorylation of the proapoptotic protein Bad. Taken together, our results strongly suggest a role of NF-kappaB and PI3K in TLR-induced PMN survival, leading to modulation of Bcl-2 family molecules.  相似文献   

19.
Thymocytes undergo negative and positive selection during development in the thymus. During this selection process, the majority of thymocytes are eliminated by apoptosis through signaling via TCR or die by neglect, possibly mediated through glucocorticoids. In this study, we report that thymocytes require molecular oxygen to undergo apoptosis induced by dexamethasone (DEX), a synthetic glucocorticoid, and treatment with N-acetyl-L-cysteine (NAC), a thiol antioxidant, inhibits thymocyte apoptosis in vivo as well as ex vivo. We detected elevated intracellular levels of hydrogen peroxide (H(2)O(2)) during DEX-induced apoptosis, which is reduced by NAC treatment, indicating that the elevated levels of intracellular H(2)O(2) are proapoptotic. We also show that loss of mitochondrial membrane potential, cytochrome c release, as well as caspase-3 activation induced by DEX are attenuated by NAC treatment. We identified the production site for H(2)O(2) as the ubiquinone cycle at complex III of mitochondria by using various inhibitors of the mitochondrial electron transport chain, and we show that the cell death events mediated by mitochondria are also significantly reduced when the inhibitors were used. Through inhibition of the proteasome, we also show that the production of H(2)O(2) and the cell death events mediated by mitochondria are regulated by proteosomal activities in DEX-induced thymocyte apoptosis. We conclude that in DEX-treated thymocytes, the increased production of H(2)O(2) originates from mitochondria and is proapoptotic for cell death mediated by mitochondria. We also conclude that all the apoptotic events mediated by mitochondria are regulated by proteasomes.  相似文献   

20.
The B-cell lymphoma-2 (Bcl-2) family proteins are critical regulators of apoptosis and consist of both proapoptotic and antiapoptotic factors. Within this family, the myeloid cell leukemia factor 1 (Mcl-1) protein exists in two forms as the result of alternative splicing. The long variant (Mcl-1L) acts as an antiapoptotic factor, whereas the short isoform (Mcl-1S) displays proapoptotic activity. In this study, using splice-switching antisense oligonucleotides (ASOs), we increased the synthesis of Mcl-1S, which induced a concurrent reduction of Mcl-1L, resulting in increased sensitivity of cancer cells to apoptotic stimuli. The Mcl-1 ASOs also induced mitochondrial hyperpolarization and a consequent increase in mitochondrial calcium (Ca2+) accumulation. The high Mcl-1S/L ratio correlated with significant hyperfusion of the entire mitochondrial network, which occurred in a dynamin-related protein (Drp1)–dependent manner. Our data indicate that the balance between the long and short variants of the Mcl-1 gene represents a key aspect of the regulation of mitochondrial physiology. We propose that the Mcl-1L/S balance is a novel regulatory factor controlling the mitochondrial fusion and fission machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号