共查询到20条相似文献,搜索用时 15 毫秒
1.
Nichole R. Klatt Steven E. Bosinger Melicent Peck Laura E. Richert-Spuhler Anke Heigele Jillian P. Gile Nirav Patel Jessica Taaffe Boris Julg David Camerini Carlo Torti Jeffrey N. Martin Steven G. Deeks Elizabeth Sinclair Frederick M. Hecht Michael M. Lederman Mirko Paiardini Frank Kirchhoff Jason M. Brenchley Peter W. Hunt Guido Silvestri 《PLoS pathogens》2014,10(8)
A rare subset of HIV-infected individuals, designated viremic non-progressors (VNP), remain asymptomatic and maintain normal levels of CD4+ T-cells despite persistently high viremia. To identify mechanisms potentially responsible for the VNP phenotype, we compared VNPs (average >9 years of HIV infection) to HIV-infected individuals who have similar CD4+ T-cell counts and viral load, but who are likely to progress if left untreated (“putative progressors”, PP), thus avoiding the confounding effect of differences related to substantial CD4+ T cell depletion. We found that VNPs, compared to PPs, had preserved levels of CD4+ stem cell memory cells (TSCM (p<0.0001), which was associated with decreased HIV infection of these cells in VNPs (r = −0.649, p = 0.019). In addition, VNPs had decreased HIV infection in CD4+ central memory (TCM) cells (p = 0.035), and the total number of TCM cells was associated with increased proliferation of memory CD4+ T cells (r = 0.733, p = 0.01). Our results suggest that, in HIV-infected VNPs, decreased infection of CD4+ TCM and TSCM, cells are involved in preservation of CD4+ T cell homeostasis and lack of disease progression despite high viremia. 相似文献
2.
3.
Jennifer M. Pfaff Craig B. Wilen Jessamina E. Harrison James F. Demarest Benhur Lee Robert W. Doms John C. Tilton 《Journal of virology》2010,84(13):6505-6514
We previously reported on a panel of HIV-1 clade B envelope (Env) proteins isolated from a patient treated with the CCR5 antagonist aplaviroc (APL) that were drug resistant. These Envs used the APL-bound conformation of CCR5, were cross resistant to other small-molecule CCR5 antagonists, and were isolated from the patient''s pretreatment viral quasispecies as well as after therapy. We analyzed viral and host determinants of resistance and their effects on viral tropism on primary CD4+ T cells. The V3 loop contained residues essential for viral resistance to APL, while additional mutations in gp120 and gp41 modulated the magnitude of drug resistance. However, these mutations were context dependent, being unable to confer resistance when introduced into a heterologous virus. The resistant virus displayed altered binding between gp120 and CCR5 such that the virus became critically dependent on the N′ terminus of CCR5 in the presence of APL. In addition, the drug-resistant Envs studied here utilized CCR5 very efficiently: robust virus infection occurred even when very low levels of CCR5 were expressed. However, recognition of drug-bound CCR5 was less efficient, resulting in a tropism shift toward effector memory cells upon infection of primary CD4+ T cells in the presence of APL, with relative sparing of the central memory CD4+ T cell subset. If such a tropism shift proves to be a common feature of CCR5-antagonist-resistant viruses, then continued use of CCR5 antagonists even in the face of virologic failure could provide a relative degree of protection to the TCM subset of CD4+ T cells and result in improved T cell homeostasis and immune function.Entry of human immunodeficiency virus (HIV) into target cells is a complex, multistep process that is initiated by interactions between the viral envelope (Env) protein gp120 and the host cell receptor CD4, which trigger conformational changes in gp120 that form and orient the coreceptor binding site (9, 24). Upon binding to coreceptor, which is either CCR5 or CXCR4 for primary HIV isolates, Env undergoes further conformational changes resulting in insertion of the gp41 fusion peptide into the host cell membrane and gp41-mediated membrane fusion (8, 15, 26). Targeting stages of the HIV entry process with antiretroviral drugs is a productive method of inhibiting HIV replication, as demonstrated by the potent antiviral effects of small-molecule CCR5 antagonists and fusion inhibitors (23, 35, 49). As with other antiretroviral drugs, HIV can develop resistance to entry inhibitors, and a detailed understanding of viral and host determinants of resistance will be critical to the optimal clinical use of these agents.The coreceptor binding site that is induced by CD4 engagement consists of noncontiguous regions in the bridging sheet and V3 loop of gp120 (4, 18, 42, 43, 50). Interactions between gp120 and CCR5 occur in at least two distinct areas: (i) the bridging sheet and the stem of the V3 loop interact with sulfated tyrosine residues in the N′ terminus of CCR5, and (ii) the crown of the V3 loop is thought to engage the extracellular loops (ECLs), particularly ECL2, of CCR5 (10-12, 14, 18, 28). Small-molecule CCR5 antagonists bind to a hydrophobic pocket in the transmembrane helices of CCR5 and exert their effects on HIV by altering the position of the ECLs, making them allosteric inhibitors of HIV infection (13, 31, 32, 46, 52). The conformational changes in CCR5 that are induced by CCR5 antagonists vary to some degree with different drugs, as evidenced by differential binding of antibodies and chemokines to various drug-bound forms of CCR5 (47, 54).CCR5 antagonists are unusual among antiretroviral agents in that they bind to a host protein rather than a viral target, and therefore the virus cannot directly mutate the drug binding site to evade pharmacologic pressure. Nevertheless, HIV can escape susceptibility to CCR5 antagonists. One mechanism by which this occurs is the use of the alternative HIV coreceptor, CXCR4. In vivo, this has most often been manifest as the outgrowth of R5/X4-tropic HIV isolates that were present in the patient''s circulating viral swarm prior to therapy (17, 27, 55). A second mechanism of HIV resistance to CCR5 antagonists is the use of drug-bound CCR5 as a coreceptor for entry. Resistant viruses that utilize drug-bound CCR5 have been identified following in vitro passaging with multiple CCR5 antagonists (1, 2, 22, 33, 36, 51, 56). Recently, we identified a panel of viral Envs able to use aplaviroc (APL)-bound CCR5 that were isolated from a patient (21, 48). The Envs from this patient were cross resistant to the CCR5 antagonists AD101, TAK779, SCH-C, and maraviroc. Surprisingly, this antiretroviral-naïve patient harbored Envs resistant to aplaviroc prior to the initiation of therapy. In the present study, we have examined viral and host factors that contribute to aplaviroc resistance and examined the consequences of resistance for viral tropism. Aplaviroc resistance determinants were located within the V3 loop of gp120, although additional residues diffusely spread throughout the gp120 and gp41 proteins modulated the magnitude of drug resistance. The resistant virus displayed altered interactions between gp120 and CCR5 such that the virus became critically dependent upon the N′ terminus of drug-bound CCR5. This differential recognition of CCR5 in the presence of aplaviroc was also associated with increased dependence on a higher CCR5 receptor density for efficient virus infection and a tropism shift toward effector memory cells on primary CD4+ T cells. 相似文献
4.
Melinda S. Suchard Elizabeth Mayne Victoria A. Green Sharon Shalekoff Samantha L. Donninger Wendy S. Stevens Clive M. Gray Caroline T. Tiemessen 《PloS one》2010,5(7)
Background
Understanding the role of different classes of T cells during HIV infection is critical to determining which responses correlate with protective immunity. To date, it is unclear whether alterations in regulatory T cell (Treg) function are contributory to progression of HIV infection.Methodology
FOXP3 expression was measured by both qRT-PCR and by flow cytometry in HIV-infected individuals and uninfected controls together with expression of CD25, GITR and CTLA-4. Cultured peripheral blood mononuclear cells were stimulated with anti-CD3 and cell proliferation was assessed by CFSE dilution.Principal Findings
HIV infected individuals had significantly higher frequencies of CD4+FOXP3+ T cells (median of 8.11%; range 1.33%–26.27%) than healthy controls (median 3.72%; range 1.3–7.5%; P = 0.002), despite having lower absolute counts of CD4+FOXP3+ T cells. There was a significant positive correlation between the frequency of CD4+FOXP3+ T cells and viral load (rho = 0.593 P = 0.003) and a significant negative correlation with CD4 count (rho = −0.423 P = 0.044). 48% of our patients had CD4 counts below 200 cells/µl and these patients showed a marked elevation of FOXP3 percentage (median 10% range 4.07%–26.27%). Assessing the mechanism of increased FOXP3 frequency, we found that the high FOXP3 levels noted in HIV infected individuals dropped rapidly in unstimulated culture conditions but could be restimulated by T cell receptor stimulation. This suggests that the high FOXP3 expression in HIV infected patients is likely due to FOXP3 upregulation by individual CD4+ T cells following antigenic or other stimulation.Conclusions/Significance
FOXP3 expression in the CD4+ T cell population is a marker of severity of HIV infection and a potential prognostic marker of disease progression. 相似文献5.
6.
Eleonora Li Causi Suraj C. Parikh Lindsey Chudley David M. Layfield Christian H. Ottensmeier Freda K. Stevenson Gianfranco Di Genova 《PloS one》2015,10(9)
CD4+ T helper memory (Thmem) cells influence both natural and vaccine-boosted immunity, but mechanisms for their maintenance remain unclear. Pro-survival signals from the common gamma-chain cytokines, in particular IL-7, appear important. Previously we showed in healthy volunteers that a booster vaccination with tetanus toxoid (TT) expanded peripheral blood TT-specific Thmem cells as expected, but was accompanied by parallel increase of Thmem cells specific for two unrelated and non cross-reactive common recall antigens. Here, in a new cohort of healthy human subjects, we compare blood vaccine-specific and bystander Thmem cells in terms of differentiation stage, function, activation and proliferative status. Both responses peaked 1 week post-vaccination. Vaccine-specific cytokine-producing Thmem cells were predominantly effector memory, whereas bystander cells were mainly of central memory phenotype. Importantly, TT-specific Thmem cells were activated (CD38High HLA-DR+), cycling or recently divided (Ki-67+), and apparently vulnerable to death (IL-7RαLow and Bcl-2 Low). In contrast, bystander Thmem cells were resting (CD38Low HLA-DR- Ki-67-) with high expression of IL-7Rα and Bcl-2. These findings allow a clear distinction between vaccine-specific and bystander Thmem cells, suggesting the latter do not derive from recent proliferation but from cells mobilized from as yet undefined reservoirs. Furthermore, they reveal the interdependent dynamics of specific and bystander T-cell responses which will inform assessments of responses to vaccines. 相似文献
7.
Rachel Lubong Sabado Daniel G. Kavanagh Daniel E. Kaufmann Karlhans Fru Ethan Babcock Eric Rosenberg Bruce Walker Jeffrey Lifson Nina Bhardwaj Marie Larsson 《PloS one》2009,4(1)
Background
The requirements for priming of HIV-specific T cell responses initially seen in infected individuals remain to be defined. Activation of T cell responses in lymph nodes requires cell-cell contact between T cells and DCs, which can give concurrent activation of T cells and HIV transmission.Methodology
The study aim was to establish whether DCs pulsed with HIV-1 could prime HIV-specific T cell responses and to characterize these responses. Both infectious and aldrithiol-2 inactivated noninfectious HIV-1 were compared to establish efficiencies in priming and the type of responses elicited.Findings
Our findings show that both infectious and inactivated HIV-1 pulsed DCs can prime HIV-specific responses from naïve T cells. Responses included several CD4+ and CD8+ T cell epitopes shown to be recognized in vivo by acutely and chronically infected individuals and some CD4+ T cell epitopes not identified previously. Follow up studies of acute and recent HIV infected samples revealed that these latter epitopes are among the earliest recognized in vivo, but the responses are lost rapidly, presumably through activation-induced general CD4+ T cell depletion which renders the newly activated HIV-specific CD4+ T cells prime targets for elimination.Conclusion
Our studies highlight the ability of DCs to efficiently prime naïve T cells and induce a broad repertoire of HIV-specific responses and also provide valuable insights to the pathogenesis of HIV-1 infection in vivo. 相似文献8.
HIV-1 Antibody Neutralization Breadth Is Associated with Enhanced HIV-Specific CD4+ T Cell Responses
Srinika Ranasinghe Damien Z. Soghoian Madelene Lindqvist Musie Ghebremichael Faith Donaghey Mary Carrington Michael S. Seaman Daniel E. Kaufmann Bruce D. Walker Filippos Porichis 《Journal of virology》2016,90(5):2208-2220
9.
The peripheral Foxp3+ Treg pool consists of naturally arising Treg (nTreg) and adaptive Treg cells (iTreg). It is well known that naive CD4+ T cells can be readily converted to Foxp3+ iTreg in vitro, and memory CD4+ T cells are resistant to conversion. In this study, we investigated the induction of Foxp3+ T cells from various CD4+ T-cell subsets in human peripheral blood. Though naive CD4+ T cells were readily converted to Foxp3+ T cells with TGF-β and IL-2 treatment in vitro, such Foxp3+ T cells did not express the memory marker CD45RO as do Foxp3+ T cells induced in the peripheral blood of Hepatitis B Virus (HBV) patients. Interestingly, a subset of human memory CD4+ T cells, defined as CD62L+ central memory T cells, could be induced by TGF-β to differentiate into Foxp3+ T cells. It is well known that Foxp3+ T cells derived from human CD4+CD25- T cells in vitro are lack suppressive functions. Our data about the suppressive functions of CD4+CD62L+ central memory T cell-derived Foxp3+ T cells support this conception, and an epigenetic analysis of these cells showed a similar methylation pattern in the FOXP3 Treg-specific demethylated region as the naive CD4+ T cell-derived Foxp3+ T cells. But further research showed that mouse CD4+ central memory T cells also could be induced to differentiate into Foxp3+ T cells, such Foxp3+ T cells could suppress the proliferation of effector T cells. Thus, our study identified CD4+CD62L+ central memory T cells as a novel potential source of iTreg. 相似文献
10.
Jennifer A. Slyker Sarah L. Rowland-Jones Tao Dong Marie Reilly Barbra Richardson Vincent C. Emery Ann Atzberger Dorothy Mbori-Ngacha Barbara L. Lohman-Payne Grace C. John-Stewart 《Journal of virology》2012,86(20):11373-11379
Cytomegalovirus (CMV) coinfection is associated with infant HIV-1 disease progression and mortality. In a cohort of Kenyan HIV-infected infants, the frequencies of activated (CD38+ HLA-DR+) and apoptosis-vulnerable (CD95+ Bcl-2−) CD4+ and CD8+ T cells increased substantially during acute CMV infection. The frequency of activated CD4+ T cells was strongly associated with both concurrent CMV coinfection (P = 0.001) and HIV-1 viral load (P = 0.05). The frequency of apoptosis-vulnerable cells was also associated with CMV coinfection in the CD4 (P = 0.02) and CD8 (P < 0.001) T cell subsets. Similar observations were made in HIV-exposed uninfected infants. CMV-induced increases in T cell activation and apoptosis may contribute to the rapid disease progression in coinfected infants. 相似文献
11.
12.
Fang Zhang Linlin Qi Tong Li Xiaojing Li Dan Yang Shengbo Cao Jing Ye Bin Wei 《中国病毒学》2019,34(5):538-548
Japanese encephalitis(JE) is a viral encephalitis disease caused by Japanese encephalitis virus(JEV) infection. Uncontrolled inflammatory responses in the central nervous system(CNS) are a hallmark of severe JE. Although the CCR2–CCL2 axis is important for monocytes trafficking during JEV infection, little is known about its role in CNS trafficking of CD8~+T cells. Here, we characterized a mouse model of JEV infection, induced via intravenous injection(i.v.) and delineated the chemokines and infiltrating peripheral immune cells in the brains of infected mice. The CNS expression of chemokines, Ccl2, Ccl3, and Ccl5, and their receptors, Ccr2 or Ccr5, was significantly up-regulated after JEV infection and was associated with the degree of JE pathogenesis. Moreover, JEV infection resulted in the migration of a large number of CD8~+T cells into the CNS. In the brains of JEV-infected mice, infiltrating CD8~+T cells expressed CCR2 and CCR5 and were found to comprise mainly effector T cells(CD44~+CD62 L~-). JEV infection dramatically enhanced the expression of programmed death 1(PD-1) on infiltrating CD8~+T cells in the brain, as compared to that on peripheral CD8~+T cells in the spleen. This effect was more pronounced on infiltrating CCR2~+CD8~+T cells than on CCR2-CD8~+T cells. In conclusion,we identified a new subset of CD8~+T cells(PD1~+CCR2~+CD8~+T cells) present in the CNS of mice during acute JEV infection. These CD8~+T cells might play a role in JE pathogenesis. 相似文献
13.
Alexandra A. Lambert Micha?l Imbeault Caroline Gilbert Michel J. Tremblay 《PLoS pathogens》2010,6(11)
The C-type lectin receptor DCIR, which has been shown very recently to act as an attachment factor for HIV-1 in dendritic cells, is expressed predominantly on antigen-presenting cells. However, this concept was recently challenged by the discovery that DCIR can also be detected in CD4+ T cells found in the synovial tissue from rheumatoid arthritis (RA) patients. Given that RA and HIV-1 infections share common features such as a chronic inflammatory condition and polyclonal immune hyperactivation status, we hypothesized that HIV-1 could promote DCIR expression in CD4+ T cells. We report here that HIV-1 drives DCIR expression in human primary CD4+ T cells isolated from patients (from both aviremic/treated and viremic/treatment naive persons) and cells acutely infected in vitro (seen in both virus-infected and uninfected cells). Soluble factors produced by virus-infected cells are responsible for the noticed DCIR up-regulation on uninfected cells. Infection studies with Vpr- or Nef-deleted viruses revealed that these two viral genes are not contributing to the mechanism of DCIR induction that is seen following acute infection of CD4+ T cells with HIV-1. Moreover, we report that DCIR is linked to caspase-dependent (induced by a mitochondria-mediated generation of free radicals) and -independent intrinsic apoptotic pathways (involving the death effector AIF). Finally, we demonstrate that the higher surface expression of DCIR in CD4+ T cells is accompanied by an enhancement of virus attachment/entry, replication and transfer. This study shows for the first time that HIV-1 induces DCIR membrane expression in CD4+ T cells, a process that might promote virus dissemination throughout the infected organism. 相似文献
14.
Kazutaka Terahara Masayuki Ishige Shota Ikeno Yu-ya Mitsuki Seiji Okada Kazuo Kobayashi Yasuko Tsunetsugu-Yokota 《PloS one》2013,8(1)
Humanized mice reconstituted with human hematopoietic cells have been developed as an experimental animal model for human immunodeficiency virus type 1 (HIV-1) infection. Myeloablative irradiation is usually performed to augment the engraftment of donor hematopoietic stem cells (HSCs) in recipient mice; however, some mouse strains are susceptible to irradiation, making longitudinal analysis difficult. We previously attempted to construct humanized NOD/SCID/JAK3null (hNOJ) mice, which were not irradiated prior to human HSC transplantation. We found that, over time, many of the reconstituted CD4+ T cells expanded with an activated effector memory phenotype. Therefore, the present study used hNOJ mice that were irradiated (hNOJ (IR+)) or not (hNOJ (IR−)) prior to human HSC transplantation to examine whether the development and cellularity of the reconstituted CD4+ T cells were influenced by the degree of chimerism, and whether they affected HIV-1 infectivity. Indeed, hNOJ (IR+) mice showed a greater degree of chimerism than hNOJ (IR−) mice. However, the conversion of CD4+ T cells to an activated effector memory phenotype, with a high percentage of cells showing Ki-67 expression, occurred in both hNOJ (IR+) and hNOJ (IR−) mice, probably as a result of lymphopenia-induced homeostatic expansion. Furthermore, when hNOJ (IR+) and hNOJ (IR−) mice, which were selected as naïve- and memory CD4+ T cell subset-rich groups, respectively, were infected with CCR5-tropic HIV-1 in vivo, virus replication (as assessed by the plasma viral load) was delayed; however, the titer subsequently reached a 1-log higher level in memory-rich hNOJ (IR−) mice than in naïve-rich hNOJ (IR+) mice, indicating that virus infectivity in hNOJ mice was affected by the different status of the reconstituted CD4+ T cells. Therefore, the hNOJ mouse model should be used selectively, i.e., according to the specific experimental objectives, to gain an appropriate understanding of HIV-1 infection/pathogenesis. 相似文献
15.
Jun-liang FU Fu-biao KANG Yan-mei JIAO Shao-jun XING Bao-yun FU Chun-bao ZHOU Xi-cheng WANG Hao WU Fu-Sheng WANG 《中国病毒学》2007,22(6)
CD4+CD25+ Regulatory T cells (Treg) have been found to down-regulate immune activation in HIV-1 infection. However, whether the depletion of Treg benefits to the disease status of HIV infection remains undefined. To address this issue, we enumerated the Treg absolute counts and frequency in 75 antiviral-na(i)ve HIV-1-infected individuals in this study. It was found that HIV-infected patients displayed a significant decline in Treg absolute counts but a significant increase in Treg frequency. In addition, with disease progression indicated by CD4 T-cell absolute counts, circulating Treg frequency gradually increased; while Treg absolute counts were gradually decreased, suggesting that the alteration of Treg number closely correlated with disease progression in HIV infection.Functional analysis further showed that Treg efficiently inhibit both CD4 and CD8 T cell proliferation in vitro. Thus, our findings indicates that Treg actively participate in pathogenesis of chronic HIV infection,influencing the disease progression. 相似文献
16.
艾滋病是全球流行的一种严重传染病,严重损害机体免疫系统,病死率高,至今仍无治愈手段。该病以破环细胞免疫功能为主,因此,认识疾病病程的免疫状态对于进一步探索治疗艾滋病的方法意义重大。CD4+CD25+调节性T细胞在感染性疾病、移植耐受、自身免疫等疾病中的免疫作用是近年来研究热点。在艾滋病中,CD4+CD25+调节性T细胞发挥着重要的免疫作用,研究在不同疾病阶段该细胞亚群所起作用将有助于我们揭示疾病免疫机制。本文概述了CD4+CD25+调节性T细胞频率与艾滋病疾病进展的关系。 相似文献
17.
Björn Corleis Allison N. Bucsan Maud Deruaz Vladimir D. Vrbanac Antonella C. Lisanti-Park Samantha J. Gates Alice H. Linder Jeffrey M. Paer Gregory S. Olson Brittany A. Bowman Abigail E. Schiff Benjamin D. Medoff Andrew M. Tager Andrew D. Luster Shabaana A. Khader Deepak Kaushal Douglas S. Kwon 《Cell reports》2019,26(6):1409-1418.e5
18.
Eloy Cuadrado Thijs Booiman John L. van Hamme Machiel H. Jansen Karel A. van Dort Adeline Vanderver Gillian I. Rice Yanick J. Crow Neeltje A. Kootstra Taco W. Kuijpers 《PloS one》2015,10(12)
Unlike resting CD4+ T cells, activated CD4+T cells are highly susceptible to infection of human immunodeficiency virus 1 (HIV-1). HIV-1 infects T cells and macrophages without activating the nucleic acid sensors and the anti-viral type I interferon response. Adenosine deaminase acting on RNA 1 (ADAR1) is an RNA editing enzyme that displays antiviral activity against several RNA viruses. Mutations in ADAR1 cause the autoimmune disorder Aicardi-Goutieères syndrome (AGS). This disease is characterized by an inappropriate activation of the interferon-stimulated gene response. Here we show that HIV-1 replication, in ADAR1-deficient CD4+T lymphocytes from AGS patients, is blocked at the level of protein translation. Furthermore, viral protein synthesis block is accompanied by an activation of interferon-stimulated genes. RNA silencing of ADAR1 in Jurkat cells also inhibited HIV-1 protein synthesis. Our data support that HIV-1 requires ADAR1 for efficient replication in human CD4+T cells. 相似文献
19.
Vanessa A. Evans Nitasha Kumar Ali Filali Francesco A. Procopio Oleg Yegorov Jean-Philippe Goulet Suha Saleh Elias K. Haddad Candida da Fonseca Pereira Paula C. Ellenberg Rafick-Pierre Sekaly Paul U. Cameron Sharon R. Lewin 《PLoS pathogens》2013,9(12)
Latently infected resting CD4+ T cells are a major barrier to HIV cure. Understanding how latency is established, maintained and reversed is critical to identifying novel strategies to eliminate latently infected cells. We demonstrate here that co-culture of resting CD4+ T cells and syngeneic myeloid dendritic cells (mDC) can dramatically increase the frequency of HIV DNA integration and latent HIV infection in non-proliferating memory, but not naïve, CD4+ T cells. Latency was eliminated when cell-to-cell contact was prevented in the mDC-T cell co-cultures and reduced when clustering was minimised in the mDC-T cell co-cultures. Supernatants from infected mDC-T cell co-cultures did not facilitate the establishment of latency, consistent with cell-cell contact and not a soluble factor being critical for mediating latent infection of resting CD4+ T cells. Gene expression in non-proliferating CD4+ T cells, enriched for latent infection, showed significant changes in the expression of genes involved in cellular activation and interferon regulated pathways, including the down-regulation of genes controlling both NF-κB and cell cycle. We conclude that mDC play a key role in the establishment of HIV latency in resting memory CD4+ T cells, which is predominantly mediated through signalling during DC-T cell contact. 相似文献