首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro evidence suggests that memory CD4+ cells are preferentially infected by human immunodeficiency virus type 1 (HIV-1), yet studies of HIV-1-infected individuals have failed to detect preferential memory cell depletion. To explore this paradox, we stimulated CD45RA+ CD4+ (naïve) and CD45RO+ CD4+ (memory) cells with antibodies to CD3 and CD28 and infected them with either CCR5-dependent (R5) or CXCR4-dependent (X4) HIV-1 isolates. Naïve CD4+ cells supported less X4 HIV replication than their memory counterparts. However, naïve cells were susceptible to R5 viral infection, while memory cells remained resistant to infection and viral replication. As with the unseparated cells, mixing the naïve and memory cells prior to infection resulted in cells resistant to R5 infection and highly susceptible to X4 infection. While both naïve and memory CD4+ subsets downregulated CCR5 expression in response to CD28 costimulation, only the memory cells produced high levels of the β-chemokines RANTES, MIP-1α, and MIP-1β upon stimulation. Neutralization of these β-chemokines rendered memory CD4+ cells highly sensitive to infection with R5 HIV-1 isolates, indicating that downregulation of CCR5 is not sufficient to mediate complete protection from CCR5 strains of HIV-1. These results indicate that susceptibility to R5 HIV-1 isolates is determined not only by the level of CCR5 expression but also by the balance of CCR5 expression and β-chemokine production. Furthermore, our results suggest a model of HIV-1 transmission and pathogenesis in which naïve rather than memory CD4+ T cells serve as the targets for early rounds of HIV-1 replication.  相似文献   

2.
In 50% of progressing HIV-1 patients, CXCR4-tropic (X4) virus emerges late in infection, often overtaking CCR5-tropic (R5) virus as the dominant viral strain. This “phenotypic switch” is strongly associated with rapidly declining CD4+ T cell counts and AIDS onset, yet its causes remain unknown. Here, we analyze a mathematical model for the mechanism of X4 emergence in late-stage HIV infection and use this analysis to evaluate the utility of a promising new class of antiretroviral drugs—CCR5 inhibitors—in dual R5, X4 infection. The model shows that the R5-to-X4 switch occurs as CD4+ T cell activation levels increase above a threshold and as CD4+ T cell counts decrease below a threshold during late-stage HIV infection. Importantly, the model also shows that highly active antiretroviral therapy (HAART) can inhibit X4 emergence but that monotherapy with CCR5 blockers can accelerate X4 onset and immunodeficiency if X4 infection of memory CD4+ T cells occurs at a high rate. Fortunately, when CXCR4 blockers or HAART are used in conjunction with CCR5 blockers, this risk of accelerated immunodeficiency is eliminated. The results suggest that CCR5 blockers will be more effective when used in combination with CXCR4 blockers and caution against CCR5 blockers in the absence of an effective HAART regimen or during HAART failure.  相似文献   

3.
4.
Memory CD4+ T cells are preferentially infected by HIV-1 compared to naïve cells. HIV-1 fusion and entry is a dynamic process in which the cytoskeleton plays an important role by allowing virion internalization and uncoating. Here, we evaluate the role of the cortical actin in cell-to-cell transfer of virus antigens and infection of target CD4+ T cells. Using different actin remodeling compounds we demonstrate that efficiency of HIV-internalization was proportional to the actin polymerization of the target cell. Naïve (CD45RA+) and memory (CD45RA−) CD4+ T cells could be phenotypically differentiated by the degree of cortical actin density and their capacity to capture virus. Thus, the higher cortical actin density of memory CD4+ T cells was associated to increased efficiency of HIV-antigen internalization and the establishment of a productive infection. Conversely, the lower cortical actin density in naïve CD4+ T cells restricted viral antigen transfer and consequently HIV-1 infection. In conclusion, the cortical actin density differentially affects the susceptibility to HIV-1 infection in naïve and memory CD4+ T cells by modulating the efficiency of HIV antigen internalization.  相似文献   

5.
The stages of development of human antigen-specific CD4+ T cells responding to viral infection and their differentiation into long-term memory cells are not well understood. The inoculation of healthy adults with vaccinia virus presents an opportunity to study these events intensively. Between days 11 and 14 postinoculation, there was a peak of proliferating CCR5+CD38+++ CD4+ effector cells which contained the cytotoxic granule marker T-cell intracellular antigen 1 and included gamma interferon (IFN-gamma)-producing vaccinia virus-specific CD4+ T cells. The majority of these initial vaccinia virus-specific CD4+ T cells were CD127+ and produced interleukin-2 (IL-2) but not CTLA-4 in response to restimulation in vitro. Between days 14 and 21, there was a switch from IFN-gamma and IL-2 coexpression to IL-2 production only, coinciding with a resting phenotype and an increased in vitro proliferation response. The early CCR5+CD38+++ vaccinia virus-specific CD4+ T cells were similar to our previous observations of human immunodeficiency virus (HIV)-specific CD4+ T cells in primary HIV type 1 (HIV-1) infection, but the vaccinia virus-specific cells expressed much more CD127 and IL-2 than we previously found in their HIV-specific counterparts. The current study provides important information on the differentiation of IL-2+ vaccinia virus-specific memory cells, allowing further study of antiviral effector CD4+ T cells in healthy adults and their dysfunction in HIV-1 infection.  相似文献   

6.
We recently found that human immunodeficiency virus (HIV)-specific CD4+ T cells express coreceptor CCR5 and activation antigen CD38 during early primary HIV-1 infection (PHI) but then rapidly disappear from the circulation. This cell loss may be due to susceptibility to infection with HIV-1 but could also be due to inappropriate apoptosis, an expansion of T regulatory cells, trafficking out of the circulation, or dysfunction. We purified CD38+++CD4+ T cells from peripheral blood mononuclear cells, measured their level of HIV-1 DNA by PCR, and found that about 10% of this population was infected. However, a small subset of HIV-specific CD4+) T cells also expressed CD127, a marker of long-term memory cells. Purified CD127+CD4+ lymphocytes contained fivefold more copies of HIV-1 DNA per cell than did CD127-negative CD4+ cells, suggesting preferential infection of long-term memory cells. We observed no apoptosis of antigen-specific CD4+ T cells in vitro and only a small increase in CD45RO+CD25+CD127dimCD4+ T regulatory cells during PHI. However, 40% of CCR5+CD38+++ CD4+ T cells expressed gut-homing integrins, suggesting trafficking through gut-associated lymphoid tissue (GALT). Furthermore, 80% of HIV-specific CD4+ T cells expressed high levels of the negative regulator CTLA-4 in response to antigen stimulation in vitro, which was probably contributing to their inability to produce interleukin-2 and proliferate. Taken together, the loss of HIV-specific CD4+ T cells is associated with a combination of an infection of CCR5+ CD127+ memory CD4+ T cells, possibly in GALT, and a high expression of the inhibitory receptor CTLA-4.  相似文献   

7.
8.
V alpha 24 natural killer T (NKT) cells are innate immune cells involved in regulation of immune tolerance, autoimmunity, and tumor immunity. However, the effect of human immunodeficiency virus type 1 (HIV-1) infection on these cells is unknown. Here, we report that the V alpha 24 NKT cells can be subdivided into CD4(+) or CD4(-) subsets that differ in their expression of the homing receptors CD62L and CD11a. Furthermore, both CD4(+) and CD4(-) NKT cells frequently express both CXCR4 and CCR5 HIV coreceptors. We find that the numbers of NKT cells are reduced in HIV-infected subjects with uncontrolled viremia and marked CD4(+) T-cell depletion. The number of CD4(+) NKT cells is inversely correlated with HIV load, indicating depletion of this subset. In contrast, CD4(-) NKT-cell numbers are unaffected in subjects with high viral loads. HIV infection experiments in vitro show preferential depletion of CD4(+) NKT cells relative to regular CD4(+) T cells, in particular with virus that uses the CCR5 coreceptor. Thus, HIV infection causes a selective loss of CD4(+) lymph node homing (CD62L(+)) NKT cells, with consequent skewing of the NKT-cell compartment to a predominantly CD4(-) CD62L(-) phenotype. These data indicate that the key immunoregulatory NKT-cell compartment is compromised in HIV-1-infected patients.  相似文献   

9.
Cellular activation is critical for the propagation of human immunodeficiency virus type 1 (HIV-1) infection. It has been suggested that truly naive CD4(+) T cells are resistant to productive HIV-1 infection because of their constitutive resting state. Memory and naive CD4(+) T-cell subsets from 11 HIV-1-infected individuals were isolated ex vivo by a combination of magnetic bead depletion and fluorescence-activated cell sorting techniques with stringent criteria of combined expression of CD45RA and CD62L to identify naive CD4(+) T-cell subsets. In all patients HIV-1 provirus could be detected within naive CD45RA+/CD62L+ CD4(+) T cells; in addition, replication-competent HIV-1 was isolated from these cells upon CD4(+) T-cell stimulation in tissue cultures. Memory CD4(+) T cells had a median of fourfold more replication-competent virus and a median of sixfold more provirus than naive CD4(+) T cells. Overall, there was a median of 16-fold more integrated provirus identified in memory CD4(+) T cells than in naive CD4(+) T cells within a given patient. Interestingly, there was a trend toward equalization of viral loads in memory and naive CD4(+) T-cell subsets in those patients who harbored CXCR4-using (syncytium-inducing) viruses. Within any given patient, there was no selective usage of a particular coreceptor by virus isolated from memory versus naive CD4(+) T cells. Our findings suggest that naive CD4(+) T cells may be a significant viral reservoir for HIV, particularly in those patients harboring CXCR4-using viruses.  相似文献   

10.
More than 12 chemokine receptors (CKRs) have been identified as coreceptors for the entry of human immunodeficiency virus type 1 (HIV-1), type 2 (HIV-2), and simian immunodeficiency viruses (SIVs) into target cells. The expression of CC chemokine receptor 6 (CCR6) on Th17 cells and regulatory T cells make the host cells vulnerable to HIV/SIV infection preferentially. However, only limited information is available concerning the specific role of CCR6 in HIV/SIV infection. We examined CCR6 as a coreceptor candidate in this study using NP-2 cell line-based in-vitro studies. Normally, CD4-transduced cell line, NP-2/CD4, is strictly resistant to all HIV/SIV infection. When CCR6 was transduced there, the resultant NP-2/CD4/CCR6 cells became susceptible to HIV-1HAN2, HIV-2MIR and SIVsmE660, indicating coreceptor roles of CCR6. Viral antigens in infected cells were detected by IFA and confirmed by detection of proviral DNA. Infection-induced syncytia in NP-2/CD4/CCR6 cells were detected by Giemsa staining. Amount of virus release through CCR6 has been detected by RT assay in spent culture medium. Sequence analysis of proviral DNA showed two common amino acid substitutions in the C2 envelope region of HIV-2MIR clones propagated through NP-2/CD4/CCR6 cells. Conversely, CCR6-origin SIVsmE660 clones resulted two amino acid changes in the V1 region and one change in the C2 region. The substitutions in the C2 region for HIV-2MIR and the V1 region of SIVsmE660 may confer selection advantage for CCR6-use. Together, the results describe CCR6 as an independent coreceptor for HIV and SIV in strain-specific manner. The alteration of CCR6 uses by viruses may influence the susceptibility of CD4+ CCR6+ T-cells and dendritic cell subsets in vivo and therefore, is important for viral pathogenesis in establishing latent infections, trafficking, and transmission. However, clinical relevance of CCR6 as coreceptor in HIV/SIV infections should be investigated further.  相似文献   

11.
CCR5 cell-surface expression was studied in relation to CCR5 genotype and clinical course of HIV-1 infection. HIV-1 infected CCR5+/+ individuals had higher percentages of CCR5-expressing CD4+ T cells as compared with HIV-1-infected CCR532/+ individuals. For both genotypic groups, the percentages of CCR5-expressing cells were higher than for the uninfected counterparts (CCR5+/+, HIV+ 28% and HIV- 15% (p < 0.0001); CCR532/+, HIV+ 21% and HIV- 10% (p = 0.001), respectively). In HIV-1-infected individuals, high percentages of CCR5-expressing cells were associated with low CD4+ T cell numbers (p = 0.001), high viral RNA load in serum (p = 0.046), and low T cell function (p = 0.054). As compared with nonprogressors with similar CD4+ T cell numbers, individuals who did progress to AIDS had a higher percentage of CCR5-expressing CD4+ T cells (32% vs 21% (p = 0.002). Longitudinal analysis of CCR5+/+ individuals revealed slight, although not statistically significant, increases in CCR5-expressing CD4+ T cells and CD4+ T cell subsets characterized by the expression of CD45 isoforms, during the course of HIV-1 infection. Preseroconversion, the percentage of CCR5-expressing CD4+ T cells was higher in individuals who subsequently developed AIDS (28%) than in those who did not show disease progression within a similar time frame (20%; p = 0.059). Our data indicate that CCR5 expression increases with progression of disease, possibly as a consequence of continuous immune activation associated with HIV-1 infection. In turn, CCR5 expression may influence the clinical course of infection.  相似文献   

12.
The mucosal immune system, particularly the gastrointestinal tract, is critically involved in the pathogenesis of human immunodeficiency virus (HIV) infection. Since the liver drains most of the substances coming from the intestinal tract, it may also play a role in the pathogenesis of HIV infection. Here we examined the percentages and absolute numbers of T cell subsets in the liver in normal and simian immunodeficiency virus (SIV)-infected macaques. Most of the T cells in the liver were CD8(+) memory cells, and most of these had an effector memory (CD95(+) CD28(-)) phenotype. CD4(+) T cells constituted approximately 20% of the liver T cell population, but the vast majority of these were also memory (CD95(+)) CCR5(+) cells, suggesting they were potential targets for viral infection. After SIV infection, CD4(+) T cells were markedly reduced, and increased proliferation and absolute numbers of CD8(+) T cells were detected in the liver. These data suggest that the liver is a major source of antigenic stimulation for promoting CD8(+) T cells and possibly a source for early CD4(+) T cell infection and destruction.  相似文献   

13.
14.
Immature plasmacytoid dendritic cells are the principal alpha interferon-producing cells (IPC), responsible for primary antiviral immunity. IPC express surface molecules CD4, CCR5, and CXCR4, which are known coreceptors required for human immunodeficiency virus (HIV) infection. Here we show that IPC are susceptible to and replicate HIV type 1 (HIV-1). Importantly, viral replication is triggered upon activation of IPC with CD40 ligand, a signal physiologically delivered by CD4 T cells. Immunohistochemical staining of tonsil from HIV-infected individuals reveals HIV p24(+) IPC, consistent with in vivo infection of these cells. IPC exposed in vitro to HIV produce alpha interferon, which partially inhibits viral replication. Nevertheless, IPC efficiently transmit HIV-1 to CD4 T-cells, and such transmission is also augmented by CD40 ligand activation. IPC produce RANTES/CCL5 and MIP-1alpha/CCL3 when exposed to HIV in vitro. IPC also induce na?ve CD4 T cells to proliferate and would therefore preferentially infect these cells. These results indicate that IPC may play an important role in the dissemination of HIV.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) transmission by the parenteral route is similar to mucosal transmission in the predominance of virus using the CCR5 coreceptor (R5 virus), but it is unclear whether blood dendritic cells (DCs), monocytes, or T cells are the cells initially infected. We used ex vivo HIV-1 infection of sorted blood mononuclear cells to model the in vivo infection of blood leukocytes. Using quantitative real-time PCR to detect full-length HIV-1 DNA, both sorted CD11c+ myeloid and CD11c plasmacytoid DCs were more frequently infected than other blood mononuclear cells, including CD16+ or CD14+ monocytes or resting CD4+ T cells. There was a strong correlation between CCR5 coreceptor use and preferential DC infection across a range of HIV-1 isolates. After infection of unsorted blood mononuclear cells, HIV-1 was initially detected in the CD11c+ DCs and later in other leukocytes, including clustering DCs and activated T cells. DC infection with R5 virus was productive, as shown by efficient transmission to CD4+ T cells in coculture. Blood DCs infected with HIV-1 in vitro and cultured alone expressed only low levels of multiply spliced HIV-1 RNA unless cocultured with CD4+ T cells. Early selective infection of immature blood DCs by R5 virus and upregulation of viral expression during DC-T-cell interaction and transmission provide a potential pathway for R5 selection following parenteral transmission.  相似文献   

16.
Microglia are the main human immunodeficiency virus (HIV) reservoir in the central nervous system and most likely play a major role in the development of HIV dementia (HIVD). To characterize human adult microglial chemokine receptors, we analyzed the expression and calcium signaling of CCR5, CCR3, and CXCR4 and their roles in HIV entry. Microglia expressed higher levels of CCR5 than of either CCR3 or CXCR4. Of these three chemokine receptors, only CCR5 and CXCR4 were able to transduce a signal in microglia in response to their respective ligands, MIP-1β and SDF-1α, as recorded by single-cell calcium flux experiments. We also found that CCR5 is the predominant coreceptor used for infection of human adult microglia by the HIV type 1 dementia isolates HIV-1DS-br, HIV-1RC-br, and HIV-1YU-2, since the anti-CCR5 antibody 2D7 was able to dramatically inhibit microglial infection by both wild-type and single-round luciferase pseudotype reporter viruses. Anti-CCR3 (7B11) and anti-CXCR4 (12G5) antibodies had little or no effect on infection. Last, we found that virus pseudotyped with the DS-br and RC-br envelopes can infect cells transfected with CD4 in conjunction with the G-protein-coupled receptors APJ, CCR8, and GPR15, which have been previously implicated in HIV entry.  相似文献   

17.
The precise role of viral protein R (Vpr), an HIV-1-encoded protein, during HIV-1 infection and its contribution to the development of AIDS remain unclear. Previous reports have shown that Vpr has the ability to cause G2 cell cycle arrest and apoptosis in HIV-1-infected cells in vitro. In addition, vpr is highly conserved in transmitted/founder HIV-1s and in all primate lentiviruses, which are evolutionarily related to HIV-1. Although these findings suggest an important role of Vpr in HIV-1 pathogenesis, its direct evidence in vivo has not been shown. Here, by using a human hematopoietic stem cell-transplanted humanized mouse model, we demonstrated that Vpr causes G2 cell cycle arrest and apoptosis predominantly in proliferating CCR5+ CD4+ T cells, which mainly consist of regulatory CD4+ T cells (Tregs), resulting in Treg depletion and enhanced virus production during acute infection. The Vpr-dependent enhancement of virus replication and Treg depletion is observed in CCR5-tropic but not CXCR4-tropic HIV-1-infected mice, suggesting that these effects are dependent on the coreceptor usage by HIV-1. Immune activation was observed in CCR5-tropic wild-type but not in vpr-deficient HIV-1-infected humanized mice. When humanized mice were treated with denileukin diftitox (DD), to deplete Tregs, DD-treated humanized mice showed massive activation/proliferation of memory T cells compared to the untreated group. This activation/proliferation enhanced CCR5 expression in memory CD4+ T cells and rendered them more susceptible to CCR5-tropic wild-type HIV-1 infection than to vpr-deficient virus. Taken together, these results suggest that Vpr takes advantage of proliferating CCR5+ CD4+ T cells for enhancing viremia of CCR5-tropic HIV-1. Because Tregs exist in a higher cycling state than other T cell subsets, Tregs appear to be more vulnerable to exploitation by Vpr during acute HIV-1 infection.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1) infection of dendritic cells (DCs) has been documented in vivo and may be an important contributor to HIV-1 transmission and pathogenesis. HIV-1-specific CD4+ T cells respond to HIV antigens presented by HIV-1-infected DCs and in this process become infected, thereby providing a mechanism through which HIV-1-specific CD4+ T cells could become preferentially infected in vivo. HIV-2 disease is attenuated with respect to HIV-1 disease, and host immune responses are thought to be contributory. Here we investigated the susceptibility of primary myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) to infection by HIV-2. We found that neither CCR5-tropic primary HIV-2 isolates nor a lab-adapted CXCR4-tropic HIV-2 strain could efficiently infect mDCs or pDCs, though these viruses could infect primary CD4+ T cells in vitro. HIV-2-exposed mDCs were also incapable of transferring virus to autologous CD4+ T cells. Despite this, we found that HIV-2-specific CD4+ T cells contained more viral DNA than memory CD4+ T cells of other specificities in vivo. These data suggest that either infection of DCs is not an important contributor to infection of HIV-2-specific CD4+ T cells in vivo or that infection of DCs by HIV-2 occurs at a level that is undetectable in vitro. The frequent carriage of HIV-2 DNA within HIV-2-specific CD4+ T cells, however, does not appear to be incompatible with preserved numbers and functionality of HIV-2-specific CD4+ T cells in vivo, suggesting that additional mechanisms contribute to maintenance of HIV-2-specific CD4+ T-cell help in vivo.  相似文献   

19.
The requirement of human immunodeficiency virus (HIV)-induced CCR5 activation for infection by R5 HIV type 1 (HIV-1) strains remains controversial. Ectopic CCR5 expression in CD4(+)-transformed cells or pharmacological inhibition of G(alpha)i proteins coupled to CCR5 left unsolved whether CCR5-dependent cell activation is necessary for the HIV life cycle. In this study, we investigated the role played by HIV-induced CCR5-dependent cell signaling during infection of primary CD4-expressing leukocytes. Using lentiviral vectors, we restored CCR5 expression in T lymphocytes and macrophages from individuals carrying the homozygous 32-bp deletion of the CCR5 gene (ccr5 Delta32/Delta32). Expression of wild-type (wt) CCR5 in ccr5 Delta32/Delta32 cells permitted infection by R5 HIV isolates. We assessed the capacity of a CCR5 derivative carrying a mutated DRY motif (CCR5-R126N) in the second intracellular loop to work as an HIV-1 coreceptor. The R126N mutation is known to disable G protein coupling and agonist-induced signal transduction through CCR5 and other G protein-coupled receptors. Despite its inability to promote either intracellular calcium mobilization or cell chemotaxis, the inactive CCR5-R126N mutant provided full coreceptor function to several R5 HIV-1 isolates in primary cells as efficiently as wt CCR5. We conclude that in a primary, CCR5-reconstituted CD4(+) cell environment, G protein signaling is dispensable for R5 HIV-1 isolates to actively infect primary CD4(+) T lymphocytes or macrophages.  相似文献   

20.
CD8(+) T cells are believed to play an important role in the control of human immunodeficiency virus type 1 (HIV-1) infection. However, despite intensive efforts, it has not been possible to consistently link the overall magnitude of the CD8(+) T-cell response with control of HIV-1. Here, we have investigated the association of different CD8(+) memory T-cell subsets responding to HIV-1 in early infection with future control of HIV-1 viremia. Our results demonstrate that both a larger proportion and an absolute number of HIV-1-specific CD8(+) CCR7(-) CD45RA(+) effector memory T cells (T(EMRA) cells) were associated with a lower future viral load set point. In contrast, a larger absolute number of HIV-1-specific CD8(+) CCR7(-) CD45RA(-) effector memory T cells (T(EM)) was not related to the viral load set point. Overall, the findings suggest that CD8(+) T(EMRA) cells have superior antiviral activity and indicate that both qualitative and quantitative aspects of the CD8(+) T-cell response need to be considered when defining the characteristics of protective immunity to HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号