首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We performed high-throughput sequencing of DNA from fossilized faeces to evaluate this material as a source of information on the genome and diet of Pleistocene carnivores. We analysed coprolites derived from the extinct cave hyena (Crocuta crocuta spelaea), and sequenced 90 million DNA fragments from two specimens. The DNA reads enabled a reconstruction of the cave hyena mitochondrial genome with up to a 158-fold coverage. This genome, and those sequenced from extant spotted (Crocuta crocuta) and striped (Hyaena hyaena) hyena specimens, allows for the establishment of a robust phylogeny that supports a close relationship between the cave and the spotted hyena. We also demonstrate that high-throughput sequencing yields data for cave hyena multi-copy and single-copy nuclear genes, and that about 50 per cent of the coprolite DNA can be ascribed to this species. Analysing the data for additional species to indicate the cave hyena diet, we retrieved abundant sequences for the red deer (Cervus elaphus), and characterized its mitochondrial genome with up to a 3.8-fold coverage. In conclusion, we have demonstrated the presence of abundant ancient DNA in the coprolites surveyed. Shotgun sequencing of this material yielded a wealth of DNA sequences for a Pleistocene carnivore and allowed unbiased identification of diet.  相似文献   

2.
Twenty years ago, the field of ancient DNA was launched with the publication of two short mitochondrial (mt) DNA sequences from a single quagga (Equus quagga) museum skin, an extinct South African equid (Higuchi et al. 1984 Nature312, 282-284). This was the first extinct species from which genetic information was retrieved. The DNA sequences of the quagga showed that it was more closely related to zebras than to horses. However, quagga evolutionary history is far from clear. We have isolated DNA from eight quaggas and a plains zebra (subspecies or phenotype Equus burchelli burchelli). We show that the quagga displayed little genetic diversity and very recently diverged from the plains zebra, probably during the penultimate glacial maximum. This emphasizes the importance of Pleistocene climate changes for phylogeographic patterns in African as well as Holarctic fauna.  相似文献   

3.
Ancient DNA studies have revolutionized the study of extinct species and populations, providing insights on phylogeny, phylogeography, admixture and demographic history. However, inferences on behaviour and sociality have been far less frequent. Here, we investigate the complete mitochondrial genomes of extinct Late Pleistocene cave bears and middle Holocene brown bears that each inhabited multiple geographically proximate caves in northern Spain. In cave bears, we find that, although most caves were occupied simultaneously, each cave almost exclusively contains a unique lineage of closely related haplotypes. This remarkable pattern suggests extreme fidelity to their birth site in cave bears, best described as homing behaviour, and that cave bears formed stable maternal social groups at least for hibernation. In contrast, brown bears do not show any strong association of mitochondrial lineage and cave, suggesting that these two closely related species differed in aspects of their behaviour and sociality. This difference is likely to have contributed to cave bear extinction, which occurred at a time in which competition for caves between bears and humans was likely intense and the ability to rapidly colonize new hibernation sites would have been crucial for the survival of a species so dependent on caves for hibernation as cave bears. Our study demonstrates the potential of ancient DNA to uncover patterns of behaviour and sociality in ancient species and populations, even those that went extinct many tens of thousands of years ago.  相似文献   

4.
Despite the abundance of fossil remains for the extinct steppe bison (Bison priscus), an animal that was painted and engraved in numerous European Paleolithic caves, a complete mitochondrial genome sequence has never been obtained for this species. In the present study we collected bone samples from a sector of the Trois-Frères Paleolithic cave (Ariège, France) that formerly functioned as a pitfall and was sealed before the end of the Pleistocene. Screening the DNA content of the samples collected from the ground surface revealed their contamination by Bos DNA. However, a 19,000-year-old rib collected on a rock apart the pathway delineated for modern visitors was devoid of such contaminants and reproducibly yielded Bison priscus DNA. High-throughput shotgun sequencing combined with conventional PCR analysis of the rib DNA extract enabled to reconstruct a complete mitochondrial genome sequence of 16,318 bp for the extinct steppe bison with a 10.4-fold coverage. Phylogenetic analyses robustly established the position of the Bison priscus mitochondrial genome as basal to the clade delineated by the genomes of the modern American Bison bison. The extinct steppe bison sequence, which exhibits 93 specific polymorphisms as compared to the published Bison bison mitochondrial genomes, provides an additional resource for the study of Bovinae specimens. Moreover this study of ancient DNA delineates a new research pathway for the analysis of the Magdalenian Trois-Frères cave.  相似文献   

5.
Sequences are reported for portions of two mitochondrial genes from a domestic horse and a plains zebra and compared to those published for a quagga and a mountain zebra. The extinct quagga and plains zebra sequences are identical at all silent sites, whereas the horse sequence differs from both of them by 11 silent substitutions. Postmortem changes in quagga DNA may account for the two coding substitutions between the quagga and plains zebra sequences. The hypothesis that the closest relative of the quagga is the domestic horse receives no support from these data. From the extent of sequence divergence between horse and zebra mitochondrial DNAs (mtDNAs), as well as from information about the fossil record, we estimate that the mean rate of mtDNA divergence in Equus is similar to that in other mammals, i.e., roughly 2% per million years.  相似文献   

6.
To reconstruct the phylogenetic position of the extinct cave lion (Panthera leo spelaea), we sequenced 1 kb of the mitochondrial cytochrome b gene from two Pleistocene cave lion DNA samples (47 and 32 ky B.P.). Phylogenetic analysis shows that the ancient sequences form a clade that is most closely related to the extant lions from Africa and Asia; at the same time, cave lions appear to be highly distinct from their living relatives. Our data show that these cave lion sequences represent lineages that were isolated from lions in Africa and Asia since their dispersal over Europe about 600 ky B.P., as they are not found among our sample of extant populations. The cave lion lineages presented here went extinct without mitochondrial descendants on other continents. The high sequence divergence in the cytochrome b gene between cave and modern lions is notable.  相似文献   

7.
The cave bear spread from Western Europe to the Near East during the Riss glaciation (250 KYA) before becoming extinct approximately 12 KYA. During that period, the climatic conditions were highly dynamic, oscillating between glacial and temperate episodes. Such events have constrained the geographic repartition of species, the movements of populations and shaped their genetic diversity. We retrieved and analyzed ancient DNA from 21 samples from five European caves ranging from 40 to 130 KYA. Combined with available data, our data set accounts for a total of 41 sequences of cave bear, coming from 18 European caves. We distinguish four haplogroups at the level of the mitochondrial DNA control region. The large population size of cave bear could account for the maintenance of such polymorphism. Extensive gene flow seems to have connected European populations because two haplogroups cover wide geographic areas. Furthermore, the extensive sampling of the deposits of the Scladina cave located in Belgium allowed us to correlate changes in climatic conditions with the intrapopulational genetic diversity over 90 KY.  相似文献   

8.
With ancient DNA technology, DNA sequences have been added to the list of characters available to infer the phyletic position of extinct species in evolutionary trees. We have sequenced the entire 12S rRNA and partial cytochrome b (cyt b) genes of one 60-70,000-year-old sample, and partial 12S rRNA and cyt b sequences of two 40-45,000-year-old samples of the extinct woolly rhinoceros (Coelodonta antiquitatis). Based on these two mitochondrial markers, phylogenetic analyses show that C. antiquitatis is most closely related to one of the three extant Asian rhinoceros species, Dicerorhinus sumatrensis. Calculations based on a molecular clock suggest that the lineage leading to C. antiquitatis and D. sumatrensis diverged in the Oligocene, 21-26 MYA. Both results agree with morphological models deduced from palaeontological data. Nuclear inserts of mitochondrial DNA were identified in the ancient specimens. These data should encourage the use of nuclear DNA in future ancient DNA studies. It also further establishes that the degraded nature of ancient DNA does not completely protect ancient DNA studies based on mitochondrial data from the problems associated with nuclear inserts.  相似文献   

9.

Background

The derivation of domestic cattle from the extinct wild aurochs (Bos primigenius) has been well-documented by archaeological and genetic studies. Genetic studies point towards the Neolithic Near East as the centre of origin for Bos taurus, with some lines of evidence suggesting possible, albeit rare, genetic contributions from locally domesticated wild aurochsen across Eurasia. Inferences from these investigations have been based largely on the analysis of partial mitochondrial DNA sequences generated from modern animals, with limited sequence data from ancient aurochsen samples. Recent developments in DNA sequencing technologies, however, are affording new opportunities for the examination of genetic material retrieved from extinct species, providing new insight into their evolutionary history. Here we present DNA sequence analysis of the first complete mitochondrial genome (16,338 base pairs) from an archaeologically-verified and exceptionally-well preserved aurochs bone sample.

Methodology

DNA extracts were generated from an aurochs humerus bone sample recovered from a cave site located in Derbyshire, England and radiocarbon-dated to 6,738±68 calibrated years before present. These extracts were prepared for both Sanger and next generation DNA sequencing technologies (Illumina Genome Analyzer). In total, 289.9 megabases (22.48%) of the post-filtered DNA sequences generated using the Illumina Genome Analyzer from this sample mapped with confidence to the bovine genome. A consensus B. primigenius mitochondrial genome sequence was constructed and was analysed alongside all available complete bovine mitochondrial genome sequences.

Conclusions

For all nucleotide positions where both Sanger and Illumina Genome Analyzer sequencing methods gave high-confidence calls, no discrepancies were observed. Sequence analysis reveals evidence of heteroplasmy in this sample and places this mitochondrial genome sequence securely within a previously identified aurochsen haplogroup (haplogroup P), thus providing novel insights into pre-domestic patterns of variation. The high proportion of authentic, endogenous aurochs DNA preserved in this sample bodes well for future efforts to determine the complete genome sequence of a wild ancestor of domestic cattle.  相似文献   

10.
Genetic analyses using museum specimens and ancient DNA from fossil samples are becoming increasingly important in phylogenetic and especially population genetic studies. Recent progress in ancient DNA sequencing technologies has substantially increased DNA sequence yields and, in combination with barcoding methods, has enabled large-scale studies using any type of DNA. Moreover, more and more studies now use nuclear DNA sequences in addition to mitochondrial ones. Unfortunately, nuclear DNA is, due to its much lower copy number in living cells compared to mitochondrial DNA, much more difficult to obtain from low-quality samples. Therefore, a DNA extraction method that optimizes DNA yields from low-quality samples and at the same time allows processing many samples within a short time frame is immediately required. In fact, the major bottleneck in the analysis process using samples containing low amounts of degraded DNA now lies in the extraction of samples, as column-based methods using commercial kits are fast but have proven to give very low yields, while more efficient methods are generally very time-consuming. Here, we present a method that combines the high DNA yield of batch-based silica extraction with the time-efficiency of column-based methods. Our results on Pleistocene cave bear samples show that DNA yields are quantitatively comparable, and in fact even slightly better than with silica batch extraction, while at the same time the number of samples that can conveniently be processed in parallel increases and both bench time and costs decrease using this method. Thus, this method is suited for harvesting the power of high-throughput sequencing using the DNA preserved in the millions of paleontological and museums specimens.  相似文献   

11.
The European cave bear (Ursus spelaeus), which became extinct around 15,000 years ago, had several morphologically different forms. Most conspicuous of these were small Alpine cave bears found at elevations of 1,600 to 2,800 m. Whereas some paleontologists have considered these bears a distinct form, or even a distinct species, others have disputed this. By a combination of morphological and genetic methods, we have analyzed a population of small cave bears from Ramesch Cave (2,000 m altitude) and one of larger cave bears from Gamssulzen Cave (1,300 m), situated approximately 10 km apart in the Austrian Alps (Figure 1A). We find no evidence of mitochondrial gene flow between these caves during the 15,000 years when they were both occupied by cave bears, although mitochondrial DNA sequences identical to those from Gamssulzen Cave could be recovered from a site located about 200 km to the south in Croatia. We also find no evidence that the morphology of the bears in the two caves changed to become more similar over time. We suggest that the two cave bear forms may have represented two reproductively isolated subspecies or species.  相似文献   

12.
We conducted a phylogeographic study on the cold-adapted leaf beetle Chrysomela lapponica, that feeds on willow or birch, by sampling several populations throughout most of the geographic distribution of the species, and by sequencing for each individual one mitochondrial and two nuclear DNA fragments. Patterns of DNA sequence variation from the mitochondrial and nuclear loci, as displayed in the median-joining networks, appear to display contradicting historical signal: a deep genealogical divergence is observed with the mitochondrial genome between the Alpine population and all other populations found in the Euro-Siberian distribution of the species, that is completely absent with both nuclear loci. We use coalescence simulations of DNA sequence evolution to test the hypothesis that this apparent conflict is compatible with a neutral model of sequence evolution (i.e., to check whether the stochastic nature of the coalescence process can explain these patterns). Because the simulations show that this is highly unlikely, we consider two alternative hypotheses: (1) introgression of the mitochondrial genome of another species and (2) the effect of natural selection. Although introgression is the most plausible explanation, we fail to identify the source species of the introgressed mitochondrial genome among all known species closely related to C. lapponica. We therefore suggest that the putative introgression event is ancient and the source species is either extinct or currently outside the geographic range of C. lapponica explored in this study. The observed DNA sequence variation also suggests that a host-plant shift from willow to birch has occurred recently and independently in each of the three birch-feeding populations. This emphasizes further the relative ease with which these beetles can escape their ancestral host-plant specialization on willow, but shows at the same time that host-plant shifts are highly constrained, as they only occur between willow and birch.  相似文献   

13.
The cave bear, Ursus spelaeus, represents one of the most frequently found paleontological remains from the Pleistocene in Europe. The species has always been confined to Europe and was contemporary with the brown bear, Ursus arctos. Relationships between the cave bear and the two lineages of brown bears defined in Europe, as well as the origins of the two species, remain controversial, mainly due to the wide morphological diversity of the fossil remains, which makes interpretation difficult [1, 2]. Sequence analysis of ancient DNA is a useful tool for resolving such problems because it provides an independent source of data [3]. We previously amplified a short DNA fragment of the mitochondrial DNA control region (mt control region) of a 40,000-year-old Ursus spelaeus sample [4]. In this paper, we describe the DNA analysis of two mtDNA regions, the control region and the cytochrome b gene. Control region sequences were obtained from ten samples of cave bears ranging from 130,000 to 20,000 years BP, and one particularly well-conserved sample gave a complete cyt b sequence. Our data demonstrate that cave bears split largely before the lineages of brown bears around 1.2 million years ago. Given its abundance, its wide distribution in space and time, and its large morphological diversity, the cave bear is a promising model for direct observation of the evolution of sequences throughout time, extinction periods, and the differentiation of populations shaped by climatic fluctuations during the Pleistocene.  相似文献   

14.
The genetic diversity of present-day brown bears (Ursus arctos) has been extensively studied over the years and appears to be geographically structured into five main clades. The question of the past diversity of the species has been recently addressed by ancient DNA studies that concluded to a relative genetic stability over the last 35,000 years. However, the post-last glacial maximum genetic diversity of the species still remains poorly documented, notably in the Old World. Here, we analyse Atlas brown bears, which became extinct during the Holocene period. A divergent brown bear mitochondrial DNA lineage not present in any of the previously studied modern or ancient bear samples was uncovered, suggesting that the diversity of U. arctos was larger in the past than it is now. Specifically, a significant portion (with respect to sequence divergence) of the intraspecific diversity of the brown bear was lost with the extinction of the Atlas brown bear after the Pleistocene/Holocene transition.  相似文献   

15.
We have sequenced the complete mitochondrial genome of the extinct American mastodon (Mammut americanum) from an Alaskan fossil that is between 50,000 and 130,000 y old, extending the age range of genomic analyses by almost a complete glacial cycle. The sequence we obtained is substantially different from previously reported partial mastodon mitochondrial DNA sequences. By comparing those partial sequences to other proboscidean sequences, we conclude that we have obtained the first sequence of mastodon DNA ever reported. Using the sequence of the mastodon, which diverged 24–28 million years ago (mya) from the Elephantidae lineage, as an outgroup, we infer that the ancestors of African elephants diverged from the lineage leading to mammoths and Asian elephants approximately 7.6 mya and that mammoths and Asian elephants diverged approximately 6.7 mya. We also conclude that the nuclear genomes of the African savannah and forest elephants diverged approximately 4.0 mya, supporting the view that these two groups represent different species. Finally, we found the mitochondrial mutation rate of proboscideans to be roughly half of the rate in primates during at least the last 24 million years.  相似文献   

16.
The information from ancient DNA (aDNA) provides an unparalleled opportunity to infer phylogenetic relationships and population history of extinct species and to investigate genetic evolution directly. However, the degraded and fragmented nature of aDNA has posed technical challenges for studies based on conventional PCR amplification. In this study, we present an approach based on next generation sequencing to efficiently sequence the complete mitochondrial genome (mitogenome) of two extinct passenger pigeons (Ectopistes migratorius) using de novo assembly of massive short (90 bp), paired-end or single-end reads. Although varying levels of human contamination and low levels of postmortem nucleotide lesion were observed, they did not impact sequencing accuracy. Our results demonstrated that the de novo assembly of shotgun sequence reads could be a potent approach to sequence mitogenomes, and offered an efficient way to infer evolutionary history of extinct species.  相似文献   

17.
Recently two developments have had a major impact on the field of ancient DNA (aDNA). First, new advances in DNA sequencing, in combination with improved capture/enrichment methods, have resulted in the recovery of orders of magnitude more DNA sequence data from ancient animals. Second, there has been an increase in the range of tissue types employed in aDNA. Hair in particular has proven to be very successful as a source of DNA because of its low levels of contamination and high level of ancient endogenous DNA. These developments have resulted in significant advances in our understanding of recently extinct animals: namely their evolutionary relationships, physiology, and even behaviour. Hair has been used to recover the first complete ancient nuclear genome, that of the extinct woolly mammoth, which then facilitated the expression and functional analysis of haemoglobins. Finally, we speculate on the consequences of these developments for the possibility of recreating extinct animals.  相似文献   

18.
To elucidate the history of living and extinct elephantids, we generated 39,763 bp of aligned nuclear DNA sequence across 375 loci for African savanna elephant, African forest elephant, Asian elephant, the extinct American mastodon, and the woolly mammoth. Our data establish that the Asian elephant is the closest living relative of the extinct mammoth in the nuclear genome, extending previous findings from mitochondrial DNA analyses. We also find that savanna and forest elephants, which some have argued are the same species, are as or more divergent in the nuclear genome as mammoths and Asian elephants, which are considered to be distinct genera, thus resolving a long-standing debate about the appropriate taxonomic classification of the African elephants. Finally, we document a much larger effective population size in forest elephants compared with the other elephantid taxa, likely reflecting species differences in ancient geographic structure and range and differences in life history traits such as variance in male reproductive success.  相似文献   

19.
Nuclear DNA sequences from late Pleistocene megafauna   总被引:6,自引:1,他引:5  
We report the retrieval and characterization of multi- and single-copy nuclear DNA sequences from Alaskan and Siberian mammoths (Mammuthus primigenius). In addition, a nuclear copy of a mitochondrial gene was recovered. Furthermore, a 13,000-year-old ground sloth and a 33,000- year-old cave bear yielded multicopy nuclear DNA sequences. Thus, multicopy and single-copy genes can be analyzed from Pleistocene faunal remains. The results also show that under some circumstances, nucleotide sequence differences between alleles found within one individual can be distinguished from DNA sequence variation caused by postmortem DNA damage. The nuclear sequences retrieved from the mammoths suggest that mammoths were more similar to Asian elephants than to African elephants.   相似文献   

20.
The mitochondrial genomes of two isolates of the wheat pathogen Mycosphaerella graminicola were sequenced completely and compared to identify polymorphic regions. This organism is of interest because it is phylogenetically distant from other fungi with sequenced mitochondrial genomes and it has shown discordant patterns of nuclear and mitochondrial diversity. The mitochondrial genome of M. graminicola is a circular molecule of approximately 43,960bp containing the typical genes coding for 14 proteins related to oxidative phosphorylation, one RNA polymerase, two rRNA genes and a set of 27 tRNAs. The mitochondrial DNA of M. graminicola lacks the gene encoding the putative ribosomal protein (rps5-like), commonly found in fungal mitochondrial genomes. Most of the tRNA genes were clustered with a gene order conserved with many other ascomycetes. A sample of 35 additional strains representing the known global mt diversity was partially sequenced to measure overall mitochondrial variability within the species. Little variation was found, confirming previous RFLP-based findings of low mitochondrial diversity. The mitochondrial sequence of M. graminicola is the first reported from the family Mycosphaerellaceae or the order Capnodiales. The sequence also provides a tool to better understand the development of fungicide resistance and the conflicting pattern of high nuclear and low mitochondrial diversity in global populations of this fungus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号