首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emerging infectious diseases of wildlife can have severe effects on host populations and constitute a pressing problem for biodiversity conservation. Paridae pox is an unusually severe form of avipoxvirus infection that has recently been identified as an emerging infectious disease particularly affecting an abundant songbird, the great tit (Parus major), in Great Britain. In this study, we study the invasion and establishment of Paridae pox in a long-term monitored population of wild great tits to (i) quantify the impact of this novel pathogen on host fitness and (ii) determine the potential threat it poses to population persistence. We show that Paridae pox significantly reduces the reproductive output of great tits by reducing the ability of parents to fledge young successfully and rear those young to independence. Our results also suggested that pathogen transmission from diseased parents to their offspring was possible, and that disease entails severe mortality costs for affected chicks. Application of multistate mark-recapture modelling showed that Paridae pox causes significant reductions to host survival, with particularly large effects observed for juvenile survival. Using an age-structured population model, we demonstrate that Paridae pox has the potential to reduce population growth rate, primarily through negative impacts on host survival rates. However, at currently observed prevalence, significant disease-induced population decline seems unlikely, although pox prevalence may be underestimated if capture probability of diseased individuals is low. Despite this, because pox-affected model populations exhibited lower average growth rates, this emerging infectious disease has the potential to reduce the resilience of populations to other environmental factors that reduce population size.  相似文献   

2.
Avian pox is a viral disease with a wide host range. In Great Britain, avian pox in birds of the Paridae family was first diagnosed in a great tit (Parus major) from south-east England in 2006. An increasing number of avian pox incidents in Paridae have been reported each year since, indicative of an emergent infection. Here, we utilise a database of opportunistic reports of garden bird mortality and morbidity to analyse spatial and temporal patterns of suspected avian pox throughout Great Britain, 2006–2010. Reports of affected Paridae (211 incidents) outnumbered reports in non-Paridae (91 incidents). The majority (90%) of Paridae incidents involved great tits. Paridae pox incidents were more likely to involve multiple individuals (77.3%) than were incidents in non-Paridae hosts (31.9%). Unlike the small wart-like lesions usually seen in non-Paridae with avian pox in Great Britain, lesions in Paridae were frequently large, often with an ulcerated surface and caseous core. Spatial analyses revealed strong clustering of suspected avian pox incidents involving Paridae hosts, but only weak, inconsistent clustering of incidents involving non-Paridae hosts. There was no spatial association between Paridae and non-Paridae incidents. We documented significant spatial spread of Paridae pox from an origin in south-east England; no spatial spread was evident for non-Paridae pox. For both host clades, there was an annual peak of reports in August/September. Sequencing of the avian poxvirus 4b core protein produced an identical viral sequence from each of 20 great tits tested from Great Britain. This sequence was identical to that from great tits from central Europe and Scandinavia. In contrast, sequence variation was evident amongst virus tested from 17 non-Paridae hosts of 5 species. Our findings show Paridae pox to be an emerging infectious disease in wild birds in Great Britain, apparently originating from viral incursion from central Europe or Scandinavia.  相似文献   

3.
Associative learning is essential for resource acquisition, predator avoidance and reproduction in a wide diversity of species, and is therefore a key target for evolutionary and comparative cognition research. Automated operant devices can greatly enhance the study of associative learning and yet their use has been mainly restricted to laboratory conditions. We developed a portable, weatherproof, battery-operated operant device and conducted the first fully automated colour-associative learning experiment using free-ranging individuals in the wild. We used the device to run a colour discrimination task in a monitored population of tits (Paridae). Over two winter months, 80 individuals from four species recorded a total of 5,128 trials. Great tits (Parus major) were more likely than other species to visit the devices and engage in trials, but there were no sex or personality biases in the sample of great tits landing at the devices and registering key pecks. Juveniles were more likely than adults to visit the devices and to register trials. Individuals that were successful at solving a novel technical problem in captivity (lever-pulling) learned faster than non-solvers when at the operant devices in the wild, suggesting cross-contextual consistency in learning performance in very different tasks. There was no significant effect of personality or sex on learning rate, but juveniles’ choice accuracy tended to improve at a faster rate than adults. We discuss how customisable automated operant devices, such as the one described here, could prove to be a powerful tool in evolutionary ecology studies of cognitive traits, especially among inquisitive species such as great tits.  相似文献   

4.
Suttonella ornithocola, a bacterium in the Cardiobacteriaceae family, is postulated to act as a pathogen targeting the respiratory tract of wild birds in the tit families (Paridae and Aegithalidae). This organism has fastidious culture requirements, which might lead to missed detection; thus, a nested PCR targeting the 16S rRNA gene was designed to provide an additional detection tool. DNA was extracted from combined lung and trachea samples from 114 birds in the Paridae and five in the Aegithalidae. These wild birds were found dead across England and Wales, 2005–2012 inclusive, and examined post-mortem. The PCR detected S. ornithocola in 15 birds from the Paridae family only: 11 blue tits (Cyanistes caeruleus), three great tits (Parus major) and one coal tit (Periparus ater). Derived sequences of the 16S rRNA gene had 100% identity to S. ornithocola from previous studies. Positive cases had a widespread geographical distribution across the study period with recurrent spring seasonality, consistent with an endemic infection. Incident history and pathological findings indicated that S. ornithocola infection was likely to be a significant contributory factor to the deaths of at least two birds (from two sites), was of equivocal significance in four birds (from four sites) and was an incidental finding in nine birds (from eight sites). Nested PCR detected S. ornithocola in ten birds for which microbiological examination of the lung was culture-negative for the bacterium. A combination of molecular, microbiological and histopathological examinations is recommended to further investigate the epidemiology and significance of S. ornithocola infection.  相似文献   

5.
Endemic island species face unprecedented threats, with many populations in decline or at risk of extinction. One important threat is the introduction of novel and potentially devastating diseases, made more pressing due to accelerating global connectivity, urban development, and climatic changes. In the Galápagos archipelago two important wildlife diseases: avian pox (Avipoxvirus spp.) and avian malaria (Plasmodium spp. and related Haemosporidia) challenge endemic species. San Cristóbal island has seen a paucity of disease surveillance in avian populations, despite the island''s connectedness to the continent and the wider archipelago. To survey prevalence and better understand the dynamics of these two diseases on San Cristóbal, we captured 1205 birds of 11 species on the island between 2016 and 2020. Study sites included urban and rural lowland localities as well as rural highland sites in 2019. Of 995 blood samples screened for avian haemosporidia, none tested positive for infection. In contrast, evidence of past and active pox infection was observed in 97 birds and identified as strains Gal1 and Gal2. Active pox prevalence differed significantly with contemporary climatic conditions, being highest during El Niño events (~11% in 2016 and in 2019 versus <1% in the La Niña year of 2018). Pox prevalence was also higher at urban sites than rural (11% to 4%, in 2019) and prevalence varied between host species, ranging from 12% in medium ground finches (Geospiza fortis) to 4% in Yellow Warblers (Setophaga petechial aureola). In the most common infected species (Small Ground Finch: Geospiza fuliginosa), birds recovered from pox had significantly longer wings, which may suggest a selective cost to infection. These results illustrate the threat future climate changes and urbanization may present in influencing disease dynamics in the Galápagos, while also highlighting unknowns regarding species‐specific susceptibilities to avian pox and the transmission dynamics facilitating outbreaks within these iconic species.  相似文献   

6.
Avian malaria studies have taken a prominent place in different aspects of evolutionary ecology. Despite a recent interest in the role of vectors within the complex interaction system of the malaria parasite, they have largely been ignored in most epidemiological studies. Epidemiology of the disease is however strongly related to the vector's ecology and behaviour, and there is a need for basic investigations to obtain a better picture of the natural associations between Plasmodium lineages, vector species and bird hosts. The aim of the present study was to identify the mosquito species involved in the transmission of the haemosporidian parasites Plasmodium spp. in two wild populations of breeding great tits (Parus major) in western Switzerland. Additionally, we compared Plasmodium lineages, based on mitochondrial DNA cytochrome b sequences, between the vertebrate and dipteran hosts, and evaluated the prevalence of the parasite in the mosquito populations. Plasmodium spp. were detected in Culex pipiens only, with an overall 6.6% prevalence. Among the six cytochrome b lineages of Plasmodium identified in the mosquitoes, three were also present in great tits. The results provide evidence for the first time that C. pipiens can act as a natural vector of avian malaria in Europe and yield baseline data for future research on the epidemiology of avian malaria in European countries.  相似文献   

7.
Senescence has been hypothesized to arise in part from age-related declines in immune performance, but the patterns and drivers of within-individual age-related changes in immunity remain virtually unexplored in natural populations. Here, using a long-term epidemiological study of wild European badgers (Meles meles), we (i) present evidence of a within-individual age-related decline in the response of a key immune-signalling cytokine, interferon-gamma (IFNγ), to ex vivo lymphocyte stimulation, and (ii) investigate three putative drivers of individual variation in the rate of this decline (sex, disease and immune cell telomere length; ICTL). That the within-individual rate of age-related decline markedly exceeded that at the population level suggests that individuals with weaker IFNγ responses are selectively lost from this population. IFNγ responses appeared to decrease with the progression of bovine tuberculosis infection (independent of age) and were weaker among males than females. However, neither sex nor disease influenced the rate of age-related decline in IFNγ response. Similarly, while ICTL also declines with age, variation in ICTL predicted neither among- nor within-individual variation in IFNγ response. Our findings provide evidence of within-individual age-related declines in immune performance in a wild mammal and highlight the likely complexity of the mechanisms that generate them.  相似文献   

8.
Antipredator strategies vary remarkably between individuals within populations. Parents tend to take greater risks when brood value is increased. Moreover, individuals consistently differ in a whole suite of correlated behaviours that may cause distinctive responses to predators. It is likely that individual differences in antipredator behaviour may co‐vary with proxies for fitness such as reproductive success. We used a 4‐year data from wild great tits (Parus major) to test whether passive and active antipredator strategies (females with no response vs. those giving hissing calls towards a nest predator) during the incubation stage can reflect variation in breeding success. Although clutch size did not depend on hissing behaviour, the number of surviving offspring from eggs and neonates to fledglings was higher for non‐hissing than hissing birds. We conclude that females with distinct antipredator strategies can prioritize different fitness components.  相似文献   

9.
Island populations harbour a comparatively species-poor pathogen community, often resulting in naïve host species that experience compromised immunity when faced with novel diseases. Over 95% of the Galápagos avifauna have survived 400 years of human settlement, yet currently face threats due to introduced diseases such as avian poxvirus. On Hawaii, declining populations of birds and even some extinctions have been attributed to avian poxvirus, and hence, identifying the prevalence and fitness costs of avian poxvirus on the Galápagos is a conservation priority. Surveys of avian poxvirus in Darwin's finches on Santa Cruz Island between 2000 and 2004 found a 33% annual increase in the prevalence of pox lesions in ground finches. Comparisons of pox prevalence on three islands (Santa Cruz, Floreana, and Isabela) were made in 2004, which indicated significant variation in pox prevalence across islands (Isabela>Santa Cruz>Floreana). Darwin's finch species were found to be differentially affected by poxvirus, with a higher prevalence in ground finches than in tree finches. There was a significant effect of habitat, even within species, with higher prevalence in the lowlands than highlands. Pox prevalence was not correlated with sex or body condition. However, male small ground finches Geospiza fuliginosa with evidence of pox were less likely to have a mate (16.6% paired) compared with males without pox (77% paired), indicating fitness costs associated with poxvirus infection.  相似文献   

10.
Island populations harbour a comparatively species‐poor pathogen community, often resulting in naïve host species that experience compromised immunity when faced with novel diseases. Over 95% of the Galápagos avifauna have survived 400 years of human settlement, yet currently face threats due to introduced diseases such as avian poxvirus. On Hawaii, declining populations of birds and even some extinctions have been attributed to avian poxvirus, and hence, identifying the prevalence and fitness costs of avian poxvirus on the Galápagos is a conservation priority. Surveys of avian poxvirus in Darwin's finches on Santa Cruz Island between 2000 and 2004 found a 33% annual increase in the prevalence of pox lesions in ground finches. Comparisons of pox prevalence on three islands (Santa Cruz, Floreana, and Isabela) were made in 2004, which indicated significant variation in pox prevalence across islands (Isabela>Santa Cruz>Floreana). Darwin's finch species were found to be differentially affected by poxvirus, with a higher prevalence in ground finches than in tree finches. There was a significant effect of habitat, even within species, with higher prevalence in the lowlands than highlands. Pox prevalence was not correlated with sex or body condition. However, male small ground finches Geospiza fuliginosa with evidence of pox were less likely to have a mate (16.6% paired) compared with males without pox (77% paired), indicating fitness costs associated with poxvirus infection.  相似文献   

11.
Infectious wildlife diseases have enormous global impacts, leading to human pandemics, global biodiversity declines and socio-economic hardship. Understanding how infection persists and is transmitted in wildlife is critical for managing diseases, but our understanding is limited. Our study aim was to better understand how infectious disease persists in wildlife populations by integrating genetics, ecology and epidemiology approaches. Specifically, we aimed to determine whether environmental or host factors were stronger drivers of Salmonella persistence or transmission within a remote and isolated wild pig (Sus scrofa) population. We determined the Salmonella infection status of wild pigs. Salmonella isolates were genotyped and a range of data was collected on putative risk factors for Salmonella transmission. We a priori identified several plausible biological hypotheses for Salmonella prevalence (cross sectional study design) versus transmission (molecular case series study design) and fit the data to these models. There were 543 wild pig Salmonella observations, sampled at 93 unique locations. Salmonella prevalence was 41% (95% confidence interval [CI]: 37–45%). The median Salmonella DICE coefficient (or Salmonella genetic similarity) was 52% (interquartile range [IQR]: 42–62%). Using the traditional cross sectional prevalence study design, the only supported model was based on the hypothesis that abundance of available ecological resources determines Salmonella prevalence in wild pigs. In the molecular study design, spatial proximity and herd membership as well as some individual risk factors (sex, condition score and relative density) determined transmission between pigs. Traditional cross sectional surveys and molecular epidemiological approaches are complementary and together can enhance understanding of disease ecology: abundance of ecological resources critical for wildlife influences Salmonella prevalence, whereas Salmonella transmission is driven by local spatial, social, density and individual factors, rather than resources. This enhanced understanding has implications for the control of diseases in wildlife populations. Attempts to manage wildlife disease using simplistic density approaches do not acknowledge the complexity of disease ecology.  相似文献   

12.
Predators may either learn to avoid aposematic prey or may avoidit because of an innate bias. Learned as well as innate avoidancehas been observed in birds, but the existing evidence is basedon experiments with rather few unrelated model species. We comparedthe origin of avoidance in European species of tits (Paridae).First, we tested whether wild-caught birds (blue tits, greattits, crested tits, coal tits, willow tits, and marsh tits)avoid aposematic (red and black) adult firebugs Pyrrhocorisapterus (Heteroptera) more than nonaposematic (brown painted)ones. Larger proportion of birds avoided aposematic than brown-paintedfirebugs in majority of species (except coal tits). Second,we tested whether naive hand-reared birds of 4 species (bluetits, great tits, crested tits, and coal tits) attack or avoidaposematic and nonaposematic firebugs, both novel for them.Behavior of the naive blue tits and coal tits was similar tothat of the wild-caught birds; majority of them did not attackthe firebugs. Contrastingly, the naive great tits and crestedtits behaved differently than the wild-caught conspecific adults;majority of the wild-caught birds avoided the aposematic firebugs,whereas the naive birds usually did not show any initial avoidanceand had to learn to avoid the aposematic prey. Our results showthat the origin of avoidance may be different even in closelyrelated species. Because blue tits and coal tits avoided notonly aposematic firebugs but also their brown-painted form,we interpret their behavior as innate neophobia rather thaninnate bias against the warning coloration.  相似文献   

13.
There is growing interest in avian influenza (AI) epidemiology to predict disease risk in wild and domestic birds, and prevent transmission to humans. However, understanding the epidemic dynamics of highly pathogenic (HPAI) viruses remains challenging because they have rarely been detected in wild birds. We used modeling to integrate available scientific information from laboratory and field studies, evaluate AI dynamics in individual hosts and waterfowl populations, and identify key areas for future research. We developed a Susceptible-Exposed-Infectious-Recovered (SEIR) model and used published laboratory challenge studies to estimate epidemiological parameters (rate of infection, latency period, recovery and mortality rates), considering the importance of age classes, and virus pathogenicity. Infectious contact leads to infection and virus shedding within 1–2 days, followed by relatively slower period for recovery or mortality. We found a shorter infectious period for HPAI than low pathogenic (LP) AI, which may explain that HPAI has been much harder to detect than LPAI during surveillance programs. Our model predicted a rapid LPAI epidemic curve, with a median duration of infection of 50–60 days and no fatalities. In contrast, HPAI dynamics had lower prevalence and higher mortality, especially in young birds. Based on field data from LPAI studies, our model suggests to increase surveillance for HPAI in post-breeding areas, because the presence of immunologically naïve young birds is predicted to cause higher HPAI prevalence and bird losses during this season. Our results indicate a better understanding of the transmission, infection, and immunity-related processes is required to refine predictions of AI risk and spread, improve surveillance for HPAI in wild birds, and develop disease control strategies to reduce potential transmission to domestic birds and/or humans.  相似文献   

14.
Very little is known about the causes and correlates for variation of individual condition in the wild. However, such knowledge is essential for understanding the mechanisms that mediate environmental effects to populations. We studied the variation of several hematological condition indices (hematocrit, albumin, globulin and triglyceride concentrations, albumin/globulin ratio, lymphocyte and heterophile concentrations and heterophile/lymphocyte ratio) and body mass in brood-rearing great tits (Parus major) in relation to habitat, multiple breeding and gender. Although great tits prefer deciduous forest to coniferous forests, individuals breeding in coniferous forests tended to be in a superior health state than those breeding in deciduous habitat. We suggest that this difference in adult condition can be caused by differences in breeding densities between habitats. Although there was some variation in condition indices between breeding attempts, none of these parameters measured at the end of the first breeding attempt predicted the probability of double breeding. We also found that females were in poorer condition and probably more stressed than males, both during the first and the second breeding attempt. These findings demonstrate that hematological parameters can be used to assess spatial and temporal variation of individual condition in the wild.  相似文献   

15.
Doñana National Park (DNP) in southern Spain is a UNESCO Biosphere Reserve where commercial hunting and wildlife artificial feeding do not take place and traditional cattle husbandry still exists. Herein, we hypothesized that Mycobacterium bovis infection prevalence in wild ungulates will depend on host ecology and that variation in prevalence will reflect variation in the interaction between hosts and environmental risk factors. Cattle bTB reactor rates increased in DNP despite compulsory testing and culling of infected animals. In this study, 124 European wild boar, 95 red deer, and 97 fallow deer were sampled from April 2006 to April 2007 and analyzed for M. bovis infection. Modelling and GIS were used to identify risk factors and intra and inter-species relationships. Infection with M. bovis was confirmed in 65 (52.4%) wild boar, 26 (27.4%) red deer and 18 (18.5%) fallow deer. In the absence of cattle, wild boar M. bovis prevalence reached 92.3% in the northern third of DNP. Wild boar showed more than twice prevalence than that in deer (p<0.001). Modelling revealed that M. bovis prevalence decreased from North to South in wild boar (p<0.001) and red deer (p<0.01), whereas no spatial pattern was evidenced for fallow deer. Infection risk in wild boar was dependent on wild boar M. bovis prevalence in the buffer area containing interacting individuals (p<0.01). The prevalence recorded in this study is among the highest reported in wildlife. Remarkably, this high prevalence occurs in the absence of wildlife artificial feeding, suggesting that a feeding ban alone would have a limited effect on wildlife M. bovis prevalence. In DNP, M. bovis transmission may occur predominantly at the intra-species level due to ecological, behavioural and epidemiological factors. The results of this study allow inferring conclusions on epidemiological bTB risk factors in Mediterranean habitats that are not managed for hunting purposes. Our results support the need to consider wildlife species for the control of bTB in cattle and strongly suggest that bTB may affect animal welfare and conservation.  相似文献   

16.
Understanding the ecology and evolution of parasites is contingent on identifying the selection pressures they face across their infection landscape. Such a task is made challenging by the fact that these pressures will likely vary across time and space, as a result of seasonal and geographical differences in host susceptibility or transmission opportunities. Avian haemosporidian blood parasites are capable of infecting multiple co‐occurring hosts within their ranges, yet whether their distribution across time and space varies similarly in their different host species remains unclear. Here, we applied a new PCR method to detect avian haemosporidia (genera Haemoproteus, Leucocytozoon, and Plasmodium) and to determine parasite prevalence in two closely related and co‐occurring host species, blue tits (Cyanistes caeruleus, N = 529) and great tits (Parus major, N = 443). Our samples were collected between autumn and spring, along an elevational gradient in the French Pyrenees and over a three‐year period. Most parasites were found to infect both host species, and while these generalist parasites displayed similar elevational patterns of prevalence in the two host species, this was not always the case for seasonal prevalence patterns. For example, Leucocytozoon group A parasites showed inverse seasonal prevalence when comparing between the two host species, being highest in winter and spring in blue tits but higher in autumn in great tits. While Plasmodium relictum prevalence was overall lower in spring relative to winter or autumn in both species, spring prevalence was also lower in blue tits than in great tits. Together, these results reveal how generalist parasites can exhibit host‐specific epidemiology, which is likely to complicate predictions of host–parasite co‐evolution.  相似文献   

17.
Animals use social information in a wide variety of contexts. Its extensive use by individuals to locate food patches has been documented in a number of species, and various mechanisms of discovery have been identified. However, less is known about whether individuals differ in their access to, and use of, social information to find food. We measured the social network of a wild population of three sympatric tit species (family Paridae) and then recorded individual discovery of novel food patches. By using recently developed methods for network-based diffusion analysis, we show that order of arrival at new food patches was predicted by social associations. Models based only on group searching did not explain this relationship. Furthermore, network position was correlated with likelihood of patch discovery, with central individuals more likely to locate and use novel foraging patches than those with limited social connections. These results demonstrate the utility of social network analysis as a method to investigate social information use, and suggest that the greater probability of receiving social information about new foraging patches confers a benefit on more socially connected individuals.  相似文献   

18.
Hole-nesting tits belonging to the family Paridae produce a hissing display that resembles the exhalatory hiss of a snake. When a predatory animal enters the nest hole of a tit, tits often hiss vigorously, while lunging their head forward and shaking their wings and tail, until the intruder retreats. We assessed the acoustic similarity between such hiss calls from 6 species of tits, snake hisses, and tit syllables used in alarm vocalizations, as well as white noise as a control. Tit hiss calls showed a high degree of similarity with snake hisses from 3 different snake families. Tit hisses had lower similarity to syllable alarm calls, suggesting convergence of tit hisses in their spectral structure. Hiss calls would only be effective in protecting nest boxes if nest predators responded to these calls. In order to test this hypothesis, we trained individual Swinhoe’s striped squirrels, Tamiops swinhoei hainanus, a common predator of egg and nestling tits, to feed at feeders in proximity to nest boxes. We compared the aversive response of squirrels to tit’s hiss calls and white noise, presented in random order. Squirrels showed a higher degree of avoidance of feeders when hiss calls were played back than when white noise was presented. In conclusion, our study suggests that hole-nesting birds have evolved convergent snake-like hiss calls, and that predators avoid to prey on the contents of nest boxes from which snake-like hisses emerge.  相似文献   

19.
Major histocompatibility complex (Mhc) genes are frequently used as a model for adaptive genetic diversity. Although associations between Mhc and disease resistance are frequently documented, little is known about the fitness consequences of Mhc variation in wild populations. Further, most work to date has involved testing associations between Mhc genotypes and fitness components. However, the functional diversity of the Mhc, and hence the mechanism by which selection on Mhc acts, depends on how genotypes map to the functional properties of Mhc molecules. Here, we test three hypotheses that relate Mhc diversity to fitness: (i) the maximal diversity hypothesis, (ii) the optimal diversity hypothesis and (iii) effect of specific Mhc types. We combine mark–recapture methods with analysis of long‐term breeding data to investigate the effects of Mhc class I functional diversity (Mhc supertypes) on individual fitness in a wild great tit (Parus major) population. We found that the presence of three different Mhc supertypes was associated with three different components of individual fitness: survival, annual recruitment and lifetime reproductive success (LRS). Great tits possessing Mhc supertype 3 experienced higher survival rates than those that did not, whereas individuals with Mhc supertype 6 experienced higher LRS and were more likely to recruit offspring each year. Conversely, great tits that possessed Mhc supertype 5 had reduced LRS. We found no evidence for a selective advantage of Mhc diversity, in terms of either maximal or optimal supertype diversity. Our results support the suggestion that specific Mhc types are an important determinant of individual fitness.  相似文献   

20.

Objectives

To assess if a probabilistic model could be used to estimate the combined prevalence of infection with any species of intestinal nematode worm when only the separate prevalence of each species is reported, and to estimate the extent to which simply taking the highest individual species prevalence underestimates the combined prevalence.

Methods

Data were extracted from community surveys that reported both the proportion infected with individual species and the combined proportion infected, for a minimum sample of 100 individuals. The predicted combined proportion infected was calculated based on the assumption that the probability of infection with one species was independent of infection with another species, so the probability of combined infections was multiplicative.

Findings

Thirty-three reports describing 63 data sets from surveys conducted in 20 countries were identified. A strong correlation was found between the observed and predicted combined proportion infected (r = 0.996, P<0.001). When the observed and predicted values were plotted against each other, a small correction of the predicted combined prevalence by dividing by a factor of 1.06 achieved a near perfect correlation between the two sets of values. The difference between the single highest species prevalence and the observed combined prevalence was on average 7% or smaller at a prevalence of ≤40%, but at prevalences of 40–80%, the difference was about 12%.

Conclusions

A simple probabilistic model of combined infection with a small correction factor is proposed as a novel method to estimate the number of individuals that would benefit from mass deworming when data are reported only for separate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号