首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In the present study, we investigated time course changes of water status including relative water content (RWC), leaf osmotic potential (ΨΠ), stomatal conductance (gs), proline (Pro), chlorophyll fluorescence (Fv/Fm) and total chlorophyll content in the Arabidopsis thaliana under PEG-induced drought stress after exogenous ABA treatment. To a better explanation for the role of ABA in the water status of A. thaliana to drought stress, wild-type (Columbia) and ABA-deficient mutant (aba2) of A. thaliana were used in the present study. Moreover, three weeks old Arabidopsis seedlings were applied exogenously with 50 μM ABA and exposed to drought stress induced by 40% PEG8000 (−0.73 MPa) for 6 h, 12 h and 24 h (hours). Our findings indicate that RWC of wild-type and aba2 started to decrease in the first 12 h and 6 h of PEG-induced drought stress, respectively. However, exogenous treatment of 50 μM ABA increased their RWC under drought stress. On the other hand, while ΨΠ of both genotypes started to decrease in the first 6 h of drought stress, these declines in ΨΠ were prevented by ABA treatment under stress throughout the experiment; it was more pronounced in aba2 at 24 h. While the highest increase in gs was obtained in aba2 after 24 h stress, ABA-induced highest decrease in gs was obtained in the same genotype during 12 h, as compared to PEG-treated group alone. On the other hand, Pro content increased in all treatment groups of ABA-deficient mutant aba2 at 12 h and 24 h. However, Pro content in ABA + PEG treated aba2 plants was higher than in PEG- and ABA-treated plants alone at the end of the 24 h. Drought stress decreased Fv/Fm and total chlorophyll contents of both genotypes while 50 μM ABA alleviated these reductions during drought stress, as compared to PEG stressed plants. On the other hand, 50 μM ABA treatment alone did not create any remarkable effect on Fv/Fm and total chlorophyll contents.These findings indicate that exogenous ABA showed an alleviative effect against damage of drought stress on relative water content, osmotic potential, stomatal conductance, proline, chlorophyll fluorescence and total chlorophyll content of both genotypes during 24 h of drought stress treatment.  相似文献   

2.
Previous studies suggest that the sensitivity of leaf mitochondrial respiration and the pool of soluble sugars to water stress could influence the response of leaf isoprene emission to drought by affecting the availability of extra-chloroplastic carbon for isoprene synthesis. We measured rates of isoprene emission and CO2 exchange, and the concentration of nonstructural carbohydrates in leaves of Quercus pubescens Willd. seedlings subjected to either normal watering (control plants, C) or drought (droughted plants, D). Stopping of watering caused predawn leaf water potential (Ψpd) to decline between −2.3 and −5.1 MPa among D plants, whereas Ψpd remained higher than −0.45 MPa in C plants. Isoprene emission (Is), net CO2 assimilation (An) and dark mitochondrial respiration (Rd) decreased with increasing water deficit, with declines in these variables relative to the respective means of C plants being An > Is > Rd. This resulted in positive pairwise correlations between the three variables. The concentration of nonstructural carbohydrates did not change between treatments, but the concentration of soluble sugars increased and that of starch decreased in D plants as compared with C plants. As a consequence, there was a negative correlation between Is and the concentration of soluble sugars, which supports a limited use of cytosolic sugars in sustaining isoprene synthesis at high to severe water stress. Our data also indicate that competition between Is and Rd for the same carbon substrates had little importance for isoprene emission at high to severe water stress, as compared to the overall constraint on isoprene metabolism probably imposed by the shortage of photosynthetic carbon, energy and reducing equivalents.  相似文献   

3.
The effects of the natural phytochemicals trans-cinnamic acid (CA) and ferulic acid (FA) at concentrations of 1–20 mM (CA) and 1–25 mM (FA) on sclerotial production by Aspergillus flavus and Aspergillus parasiticus were evaluated. Studies on sclerotium number and size were carried out in different growth media and water potentials (MPa). High concentrations of CA (20 mM, ?0.75 MPa; 10 mM, ?3.5 MPa) and FA (10, 20, 25 mM, ?0.75 and ?3.5 MPa) significantly reduced sclerotial production of Aspergillus strains. Overall, CA at concentrations of 10 and 20 mM on Czapek Dox medium (CD), maize meal extract agar (MMEA) and maize meal extract agar with sucrose and NaNO3 (MMEA S/N) inhibited sclerotium most in the four species assayed. The data show that the sclerotia characteristics of A. flavus and A. parasiticus were influenced by natural phytochemicals and modifications of growth media and water potential. CA and FA could be used at high concentrations to prevent the survival of Aspergillus species in grain.  相似文献   

4.
Three different drought stress levels (water potential of the nutrient solution, Ψs = −0.6, −1.2 and −1.8 MPa, respectively), and a control treatment (Ψs = −0.1 MPa), were applied during 2 weeks to three almond species, followed by 3 weeks of recovery. The selected test species were Prunus dulcis (Miller) D.Webb (bitter almond) and two wild almond species, P. lycioides (Spach) C.K. Schneider and P. scoparia (Spach) C.K. Schneider. All three are species native to Iran, and can be used as rootstock, but only P. dulcis is actually used for commercial almond production.In the absence of drought stress, maximum net assimilation rate (Amax) is highest for P. scoparia and lowest for P. dulcis. For all species Amax was above 16 μmol CO2 m−2 s−1. A similar relationship between Amax and dark respiration rate (Rd), was observed for all species. This relationship suggests that optimisation of the carbon budget is independent of species.The three investigated species seem to have a different reaction to a similar stress, indicating different drought stress coping strategies. P. scoparia lost all its leaves during the experiment, while P. lycioides only kept some leaves, however, the remaining leaves were almost totally wilted and did not allow for any photosynthesis measurement. P. scoparia did not recover during the experiment, as no new leaves were developed once Ψs was restored to pre-drought stress levels. However, this species has green stems, indicating that stem photosynthesis might play an important role in the plants’ overall carbon balance. This species is an opportunistic one (sensu [Higgins, S.S., Larsen, F.E., Bendel, R.B., Radamaker, G.K., Bassman, J.H., Bidlake, W.R., Alwir, A., 1992. Comparative gas-exchange characteristics of potted, glasshouse-grown almond, apple, fig, grape, olive, peach and Asian pear. Sci. Hortic. 52 (4), 313–329]), where assimilation is seriously limited by non-stomatal processes as evidenced by measurements of intercellular CO2 concentration, eventually resulting in total leaf loss. All P. lycioides leaves almost completely wilted during the experiment, but this species recovered rather quickly. Leaves, newly formed at the end of the experiment, obtained maximal assimilation rates under control Ψs levels, equivalent to those measured in the control treatment. Finally, P. dulcis did keep at least part of its leaves during drought stress. However, assimilation rates after 2 weeks of drought treatment and 3 weeks of recovery were only about half of those measured in the control treatment. Of the three investigated species, non-stomatal limitation of assimilation seems to be the least important in P. dulcis.Intrinsic water use efficiency, defined as the ratio of assimilation rate over stomatal conductance, increased for P. dulcis with increasing drought stress, while a different pattern was observed for P. lycioides and P. scoparia, indicating non-stomatal processes prevail over stomatal limitations of the assimilation process. It was concluded that P. dulcis is the species most tolerant to drought. P. scoparia tries to avoid drought, whereas P. lycioides has an intermediate behaviour. Besides P. dulcis, also P. lycioides seems to have some potential for use as rootstock for commercial almond production.  相似文献   

5.
Potted plants of Asteriscus maritimus (L.) Less were submitted to water stress (during two consecutive cycles, irrigation water was withheld for 5 days followed by a recovery period of 25 days) and saline stress (150 days of exposure to 0, 70 and 140 mM NaCl daily irrigation) in order to assess the effect on leaf water relations and growth parameters. Plants under saline and water stress conditions showed lower biomass and an early reduction in leaf expansion growth. Both stresses promoted a substantial degree of stomatal regulation; but, in spite of this, the plants showed signs of leaf tissue dehydration, decreases in RWC and Ψpd values. However, salt-treated plants, developed a NaCl inclusion mechanisms, underwent osmotic adjustment, which was able to maintain leaf turgor. Under both stress conditions gl was independent to plant water status in the range between –0.8 and 1.0 MPa. Under water stress conditions, midday leaf water potential showed a threshold value (around −1.1 MPa), below which leaf conductance remained constant. In the salt-treated plants, the gradual closure of the stomata over a wide range of Ψmd may be important in maintaining some level of photosynthesis.  相似文献   

6.
The introduced shrub Tamarix ramosissima invades riparian zones, but loses competitiveness under flooding. Metabolic effects of flooding could be important for T. ramosissima, but have not been previously investigated. Photosynthesis rates, stomatal conductance, internal (intercellular) CO2, transpiration, and root alcohol dehydrogenase (ADH) activity were compared in T. ramosissima across soil types and under drained and flooded conditions in a greenhouse. Photosynthesis at 1500 μmol quanta m−2 s−1 (A1500) in flooded plants ranged from 2.3 to 6.2 μmol CO2 m−2 s−1 during the first week, but A1500 increased to 6.4–12.7 μmol CO2 m−2 s−1 by the third week of flooding. Stomatal conductance (gs) at 1500 μmol quanta m−2 s−1 also decreased initially during flooding, where gs was 0.018 to 0.099 mol H2O m−2 s−1 during the first week, but gs increased to 0.113–0.248 mol H2O m−2 s−1 by the third week of flooding. However, photosynthesis in flooded plants was reduced by non-stomatal limitations, and subsequent increases indicate metabolic acclimation to flooding. Root ADH activities were higher in flooded plants compared to drained plants, indicating oxygen stress. Lower photosynthesis and greater oxygen stress could account for the susceptibility of T. ramosissima at the onset of flooding. Soil type had no effect on photosynthesis or on root ADH activity. In the field, stomatal conductance, leaf water potential, transpiration, and leaf δ13C were compared between T. ramosissima and other flooded species. T. ramosissima had lower stomatal conductance and water potential compared to Populus deltoides and Phragmites australis. Differences in physiological responses for T. ramosissima could become important for ecological concerns.  相似文献   

7.
Cumulative ozone uptake (COU, mmol m−2) and O3 flux (FO3, nmol m−2 s−1) were related to physiological, morphological and biochemical characteristics of field-grown mature evergreen Norway spruce [Picea abies (L.) Karst.], Cembran pine [Pinus cembra L.], and deciduous European larch [Larix decidua Mill.] trees at treeline. The threshold COU causing a statistically significant decline in photosynthetic capacity (Amax) ranged between 19.6 mmol m−2 in current-year needles of evergreen conifers and 22.0 6 mmol m−2 in short-shoot needles of deciduous L. decidua subjected to exposure periods of ≥84 and ≥43 days, respectively. The higher O3 sensitivity of deciduous L. decidua than of evergreen P abies and P. cembra was associated with differences in FO3 and specific leaf area (SLA), both being significantly higher in L. decidua. FO3 was 5.9 nmol m−2 s−1 in L. decidua and 2.7 nmol m−2 s−1 in evergreen conifers. Species-dependent differences were also related to detoxification capacity expressed through total surface area based concentrations of reduced ascorbate and α-tocopherol that both increased with SLA. Findings suggest that differences in O3 sensitivity between evergreen and deciduous conifers can be attributed to foliage type specific differences in SLA, the latter determining physiological and biochemical characteristics of the treeline conifers.  相似文献   

8.
We investigated the burst swimming performance of five species of Antarctic fish at −1.0°C. The species studied belonged to the suborder, Notothenioidei, and from the families, Nototheniidae and Bathydraconidae. Swimming performance of the fish was assessed over the initial 300 ms of a startle response using surgically attached miniature accelerometers. Escape responses in all fish consisted of a C-type fast start; consisting of an initial pronounced bending of the body into a C-shape, followed by one or more complete tail-beats and an un-powered glide. We found significant differences in the swimming performance of the five species of fish examined, with average maximum swimming velocities (Umax) ranging from 0.91 to 1.39 m s−1 and maximum accelerations (Amax) ranging from 10.6 to 15.6 m s−2. The cryopelagic species, Pagothenia borchgrevinki, produced the fastest escape response, reaching a Umax and Amax of 1.39 m s−1 and 15.6 m s−2, respectively. We also compared the body shapes of each fish species with their measures of maximum burst performance. The dragonfish, Gymnodraco acuticeps, from the family Bathdraconidae, did not conform to the pattern observed for the other four fish species belonging to the family Nototheniidae. However, we found a negative relationship between buoyancy of the fish species and burst swimming performance.  相似文献   

9.
Ortho-hydroxylation of cinnamates is a key step in coumarin biosynthesis in plants. Ortho-hydroxylated cinnamates undergo trans/cis isomerization of the side-chain and then lactonization to form coumarins. Sweet potato [Ipomoea batatas (L.) Lam.] accumulates umbelliferone and scopoletin after biotic and abiotic stresses. To elucidate molecular aspects of ortho-hydroxylation involved in umbelliferone formation in sweet potato, isolation and characterization of cDNAs encoding 2-oxoglutarate-dependent dioxygenases (2OGD) was performed from sweet potato tubers treated with a chitosan elicitor. Five cDNAs (designated as Ib) encoding a protein of 358 amino acid residues were cloned, and these were categorized into two groups, Ib1 and Ib2, based on their amino acid sequences. Whether the recombinant Ib proteins had any enzymatic activity toward cinnamates was examined. Ib1 proteins exhibited ortho-hydroxylation activity toward feruloyl coenzyme A (CoA) to form scopoletin (Km = ∼10 μM, kcat = ∼2.7 s−1). By contrast, Ib2 proteins catalyzed ortho-hydroxylation of feruloyl-CoA (Km = 7.3–14.0 μM, kcat = 0.28–0.55 s−1) and also of p-coumaroyl-CoA (Km = 6.1–15.2 μM, kcat = 0.28–0.64 s−1) to form scopoletin and umbelliferone, respectively. Fungal and chitosan treatments increased levels of umbelliferone and its glucoside (skimmin) in the tubers, and expression of the Ib2 gene was induced concomitantly.  相似文献   

10.
《Inorganica chimica acta》2006,359(5):1351-1356
Energy-transfer rate-constants from photo-excited [Ru(N–N)3]2+ (N–N = 2,2′-bipyridine (bpy), 4,4′-dimethyl-2,2′-bipyridine (4dmb), 5,5′-dimethyl-2,2′-bipyridine (5dmb)) to [Cr(O–O)3]3− (O–O2− = ox2− ((COO)2), mal2− (CH2(COO)2)) and [Cr(CN)6]3− in encounter complexes were evaluated in aqueous solutions containing alkali metal ion. The rate constant depends on the molecular size of the ruthenium(II) complex: 1.8 × 108 s−1 for [Ru(bpy)3]2+ (molecular radius, r = 5.8 Å), 1.4 × 108 s−1 for [Ru(5dmb)3]2+ (r = 6.1 Å) and 0.96 × 108 s−1 for [Ru(4dmb)3]2+ (r = 6.7 Å) in the system of [Ru(N–N)3]2+–[Cr(ox)3]3− in aqueous solution. However, the rate constant is much more sensitive to the chromate(III) complex than to ruthenium(II) complex; 1.8 × 108 s−1 and 0.43 × 108 s−1 for [Cr(ox)3]3− (r = 4.0 Å) and [Cr(mal)3]3− (r = 4.2 Å) in the [Ru(bpy)3]2+–[Cr(O–O)3]3− systems, respectively. We conclude that the congeniality between the donor’s and acceptor’s ligands in encounter complex plays an important role in energy transfer in aqueous solution.  相似文献   

11.
Benthic dinoflagellates of the genus Ostreopsis are found all over the world in temperate, subtropical, and tropical coastal regions. Our recent studies revealed that a putative “cryptic” species of Ostreopsis ovata is present widely along Japanese coasts. This organism, Ostreopsis sp. 1, possesses palytoxin analogs and thus its toxic blooms may be responsible for potential toxification of marine organisms. To evaluate the bloom dynamics of Ostreopsis sp. 1, the present study examined the growth responses of Ostreopsis sp. 1 strain s0716 to various light intensities (photon flux densities: μmol photons m−2 s−1) using a newly devised photoirradiation-culture system. This novel system has white light-emitting diodes (LEDs) capable of more closely simulating the wavelength spectrum of light entering the oceanic water column than do fluorescent tubes and halogen lamps. In this system, the light intensity of the white LEDs was reduced through two polarizing filters by varying the rotation angles of the filters. Thereby, the new system was capable of culturing microalgae under well-controlled light intensity conditions. Ostreopsis sp. 1 grew proportionally when light intensity was increased from 49.5 to 199 μmol photons m−2 s−1, but its growth appeared to be inhibited slightly at ≥263 μmol photons m−2 s−1. The relationship between observed growth rates and light intensity was calculated at R > 0.99 (P < 0.01) using a regression analysis with a modified equation of the photosynthesis-light intensity (P-L) model. The equation determined the critical light intensities for growth of Ostreopsis sp. 1 and the organism's growth potential as follows: (1) the threshold light intensity for growth: 29.8 μmol photons m−2 s−1; (2) the optimum light intensity (Lm) giving the maximum growth rate (μmax = 0.659 divisions day−1): 196 μmol photons m−2 s−1; (3) the optimum light intensity range (Lopt) giving ≥95% μmax: 130–330 μmol photons m−2 s−1; (4) the semi-optimum range (Lsopt) giving ≥80% μmax: 90 to over 460 μmol photons m−2 s−1. The Lsopt represents 4.5–23% ambient light intensity present in surface waters off of a temperate region of the Japanese coast, Tosa Bay; putatively, this semi-optimum range of light intensity appears at depth of 12.9–27.8 m. Considering these issues, our data indicate that Ostreopsis sp. 1 in coastal environments may form blooms at ca. ∼28 m depth in regions along Japanese coasts.  相似文献   

12.
A study was conducted to understand the potential of Landsat-8 in the estimation of gross primary production (GPP) and to quantify the productivity of maize crop cultivated under hyper-arid conditions of Saudi Arabia. The GPP of maize crop was estimated by using the Vegetation Photosynthesis Model (VPM) utilizing remote sensing data from Landsat-8 reflectance (GPPVPM) as well as the meteorological data provided by Eddy Covariance (EC) system (GPPEC), for the period from August to November 2015. Results revealed that the cumulative GPPEC for the entire growth period of maize crop was 1871 g C m−2. However, the cumulative GPP determined as a function of the enhanced vegetation index – EVI (GPPEVI) was 1979 g C m−2, and that determined as a function of the normalized difference vegetation index – NDVI (GPPNDVI) was 1754 g C m−2. These results indicated that the GPPEVI was significantly higher than the GPPEC (R2 = 0.96, P = 0.0241 and RMSE = 12.6%). While, the GPPNDVI was significantly lower than the GPPEC (R2 = 0.93, P = 0.0384 and RMSE = 19.7%). However, the recorded relative error between the GPPEC and both the GPPEVI and the GPPNDVI was −6.22% and 5.76%, respectively. These results demonstrated the potential of the landsat-8 driven VPM model for the estimation of GPP, which is relevant to the productivity and carbon fluxes.  相似文献   

13.
《Aquatic Botany》2005,83(3):187-192
We investigated the effect of intraspecific competition on growth parameters and photosynthesis of the salt marsh species Atriplex prostrata Boucher in order to distinguish the effects of density-dependent growth inhibition from salt stress. High plant density caused a reduction of 30% in height, 82% in stem dry mass, 80% in leaf dry mass, and 95% in root dry mass. High density also induced a pronounced 72% reduction in leaf area, 29% decrease in length of mature internodes and 50% decline in net photosynthetic rate. The alteration of net photosynthesis paralleled growth inhibition, decreasing from 7.6 ± 0.9 μmol CO2 m−2 s−1 at low density to 3.5 ± 0.4 μmol CO2 m−2 s−1 at high density, indicating growth inhibition caused by intraspecific competition is mainly due to a decline in net photosynthesis rate. Plants grown at high density also exhibited a reduction in stomatal conductance from 0.7 ± 0.1 mol H2O m−2 s−1 at low density to 0.3 ± 0.1 mol H2O m−2 s−1 at high density and a reduction in transpiration rate from 6.0 ± 0.3 mmol H2O m−2 s−1 at low density to 4.3 ± 0.3 mmol H2O m−2 s−1 at high density. Biomass production was inhibited by an increase in plant density, which reduced the rate of photosynthesis, stomatal conductance and leaf area of plants.  相似文献   

14.
The physiological reasons associated with differential sensitivity of C3 and C4 plant species to soil compaction stress are not well explained and understood. The responses of growth characteristics, changes in leaf water potential and gas exchange in maize and triticale to a different soil compaction were investigated. In the present study seedlings of triticale and maize, representative of C3 and C4 plants were subjected to low (L – 1.10 g cm−3), moderate (M – 1.34 g cm−3) and severe (S – 1.58 g cm−3) soil compaction level. Distinct differences in distribution of roots in the soil profile were observed. Plants of treatments M or S in comparison to treatment L, showed a decrease in leaf number, dry mass of stem, leaves and roots, and an increase in the shoot to root ratio. A drastic decrease in root biomass in M and S treatments in the soil profile on depth from 15 to 40 cm was observed. Any level of soil compaction did not influence the number of seminal and seminal-adventitious roots but decreased their length. The number and total length of nodal roots decreased with compaction. Changes of growth traits in M and S treatments in comparison to the L were greater for maize than for triticale and were accompanied by daily changes in water potential (ψ) and gas exchange parameters (PN, E, gs). Differences between M and S treatments in daily changes in ψ for maize were in most cases statistically insignificant, whereas for triticale, they were statistically significant. Differences in the responses of maize and triticale to soil compaction were found in PN, E and gs in particular for the measurements taken at 12:00 and 16:00. The highest correlation coefficients were obtained for the relationship between leaf water potential and stomatal conductance, both for maize and triticale, which indicates the close association between stomata behavior and changes in leaf water status.  相似文献   

15.
16.
《Mycological Research》2006,110(6):725-733
The effects of osmotic and matric potential on mycelial growth, sclerotial production and germination of isolates of Rhizoctonia solani [anastomosis groups (AGs) 2-1 and 3] from potato were studied on potato dextrose agar (PDA) adjusted osmotically with sodium chloride, potassium chloride, glycerol, and matrically with polyethylene glycol (PEG) 6000. All isolates from AGs 2-1 and AG-3 exhibited fastest mycelial growth on unamended PDA (−0.4 MPa), and growth generally declined with decreasing osmotic and matric potentials. Growth ceased between −3.5 and −4.0 MPa on osmotically adjusted media, and at −2.0 MPa on matrically adjusted media, with slight differences between isolates and osmotica. Sclerotium yield declined with decreasing osmotic potential, and formation by AG 2-1 and AG-3 isolates ceased between −1.5 and −3.0 MPa and −2.5 and −3.5 MPa, respectively. On matrically adjusted media, sclerotial formation by AG 2-1 isolates ceased at −0.8 MPa, whereas formation by AG-3 isolates ceased at the lower matric potential of −1.5 MPa. Sclerotial germination also declined with decreasing osmotic and matric potential, with total inhibition occurring over the range −3.0 to −4.0 MPa on osmotically adjusted media, and at −2.0 MPa on matrically adjusted media. In soil, mycelial growth and sclerotial germination of AG-3 isolates declined with decreasing total water potential, with a minimum potential of −6.3 MPa permitting both growth and germination. The relevance of these results to the behaviour of R. solani AGs in soil and their pathogenicity on potato is discussed.  相似文献   

17.
Marine toxic dinoflagellates of the genus Gambierdiscus are the causative agents of ciguatera fish poisoning (CFP), a form of seafood poisoning that is widespread in tropical, subtropical and temperate regions worldwide. The distributions of Gambierdiscus australes, Gambierdiscus scabrosus and two phylotypes of Gambierdiscus spp. type 2 and type 3 have been reported for the waters surrounding the main island of Japan. To explore the bloom dynamics and the vertical distribution of these Japanese species and phylotypes of Gambierdiscus, the effects of light intensity on their growth were tested, using a photoirradiation-culture system. The relationship between the observed growth rates and light intensity conditions for the four species/phylotypes were formulated at R > 0.92 (p < 0.01) using regression analysis and photosynthesis-light intensity (P-L) model. Based on this equation, the optimum light intensity (Lmax) and the semi-optimum light intensity range (Ls-opt) that resulted in the maximum growth rate (μmax) and ≥80% μ max values of the four species/phylotypes, respectively, were as follows: (1) the Lmax and Ls-opt of G. australes were 208 μmol photons m−2 s−1 and 91–422 μmol photons m−2 s−1, respectively; (2) those of G. scabrosus were 252 and 120–421 μmol photons m−2 s−1, respectively; (3) those of Gambierdiscus sp. type 2 were 192 and 75–430 μmol photons m−2 s−1, respectively; and (4) those of Gambierdiscus sp. type 3 were ≥427 and 73–427 μmol photons m−2 s−1, respectively. All four Gambierdiscus species/phylotypes required approximately 10 μmol photons m−2 s−1 to maintain growth. The light intensities in coastal waters at a site in Tosa Bay were measured vertically at 1 m intervals once per season. The relationships between the observed light intensity and depth were formulated using Beer’s Law. Based on these equations, the range of the attenuation coefficients at Tosa Bay site was determined to be 0.058–0.119 m−1. The values 1700 μmol photons m−2 s−1, 500 μmol photons m−2 s−1, and 200 μmol photons m−2 s−1 were substituted into the equations to estimate the vertical profiles of light intensity at sunny midday, cloudy midday and rainy midday, respectively. Based on the regression equations coupled with the empirically determined attenuation coefficients for each of the four seasons, the ranges of the projected depths of Lmax and Ls-opt for the four Gambierdiscus species/phylotypes under sunny midday conditions, cloudy midday conditions, and rainy midday conditions were 12–38 m and 12–54 m, 1–16 m and 1–33 m, and 0 m and 0–16 m, respectively. These results suggest that light intensity plays an important role in the bloom dynamics and vertical distribution of Gambierdiscus species/phylotypes in Japanese coastal waters.  相似文献   

18.
《Process Biochemistry》2010,45(2):164-170
A pilot-scale (1.2 m3) anaerobic sequencing batch biofilm reactor (ASBBR) containing mineral coal for biomass attachment was fed with sulfate-rich wastewater at increasing sulfate concentrations. Ethanol was used as the main organic source. Tested COD/sulfate ratios were of 1.8 and 1.5 for sulfate loading rates of 0.65–1.90 kgSO42−/cycle (48 h-cycle) or of 1.0 in the trial with 3.0 gSO42− l−1. Sulfate removal efficiencies observed in all trials were as high as 99%. Molecular inventories indicated a shift on the microbial composition and a decrease on species diversity with the increase of sulfate concentration. Beta-proteobacteria species affiliated with Aminomonas spp. and Thermanaerovibrio spp. predominated at 1.0 gSO42− l−1. At higher sulfate concentrations the predominant bacterial group was Delta-proteobacteria mainly Desulfovibrio spp. and Desulfomicrobium spp. at 2.0 gSO42− l−1, whereas Desulfurella spp. and Coprothermobacter spp. predominated at 3.0 gSO42− l−1. These organisms have been commonly associated with sulfate reduction producing acetate, sulfide and sulfur. Methanogenic archaea (Methanosaeta spp.) was found at 1.0 and 2.0 gSO42− l−1. Additionally, a simplified mathematical model was used to infer on metabolic pathways of the biomass involved in sulfate reduction.  相似文献   

19.
《Aquatic Botany》2005,83(2):129-140
Bisexual populations of the charophyte Chara canescens (Desv. et Loisel. in Loisel., 1810) containing male and female individuals are rarely found. Two experiments were carried out to study whether male and female algae from the same site exhibit different physiological capacities, especially with respect to light acclimation.Algae from two different shore levels and from laboratory cultures acclimated to six irradiance conditions (35–500 μmol photons m−2 s−1) were compared. Field measurements showed that both female and male algae of C. canescens are able to acclimate to daily changes in solar irradiance. The quantum yield of Photosystem II (PSII) decreased with increasing irradiance in the morning and increased with decreasing irradiance in the afternoon. Growth experiments showed increasing growth rates from 35 μmol photons m−2 s−1 (∼7 mg FW) up to 500 μmol photons m−2 s−1 (∼27 mg FW) in female and male C. canescens. The irradiance saturation point for photosynthesis (Ek) was about 140 μmol m−2 s−1 for both sexes within the whole range of acclimation irradiances. The maximum photosynthesis rate at saturating irradiances (Pmax) of male algae was highest at Ek, whereas Pmax of female algae was highest at 500 μmol photons m−2 s−1. The photosynthetic efficiency in the light-limited range (α) increased in female C. canescens and decreased in male C. canescens. The ratio of the non-photochemical quenching parameter (NPQ) to the relative electron transport rates rETR(MT) increased in both sexes with irradiance, but showed a steeper increase in male than in female algae. Pigment analysis showed similar acclimation pattern for male and female C. canescens. Chl a/Chl b ratios of both sexes were constant over the whole range of Eg, whereas Chl a/carotenoid ratios in male and female C. canescens decreased from 70 μmol photons m−2 s−1 upwards. Pigment analysis pointed out that the carotenes α-, β- and γ-carotene were more prominent in male than in female algae.Our results indicate that female C. canescens are more efficient in light acclimation than male algae from the same site. Nevertheless, further investigations of bisexual C. canescens populations resolving CO2-uptake mechanisms and/or genetic differences are needed.  相似文献   

20.
Stipa tenacissima L. (alpha grass) steppes are one of the most representative ecosystems in arid Mediterranean ecosystems. On the one hand these steppes, which are perpetually exposed to climate and strong anthropogenic pressure, have undergone severe degradation. On the other hand, the ability of S. tenacissima to regenerate naturally is significantly reduced. In this study the germination response and seedling emergence of S. tenacissima are examined in relation to the main environmental factors (water stress and temperature) under laboratory-controlled conditions. The main aim of this paper was to investigate the influence of temperature over a temperature range (10 °C–30 °C) and water stress induced by the solutions of polyethylene glycol (PEG)-6000 (0 to − 1.6 MPa) for a period of 30 days, on the germination behavior of S. tenacissima seeds. The results showed that temperatures between 10° and 20 °C seem to be favorable for the germination of this species, with optimum temperatures among accessions found in 20 °C. When seeds were water-stressed, germination severely decreased at − 0.8 MPa, indicating that the accession resistance limits to the water stress, and was completely inhibited at − 1.6 MPa. Consequently, the final germination percentage (FGP) decreased and the mean time germination (MTG) increased. Based on the empirical data of the germination rate, we estimated that the parameters of the thermal time and hydrotime models showed different values in all accessions which proves the difference between accession adaptive capacities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号