首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Powered by the mitochondrial membrane potential, Ca2+ permeates the mitochondria via a Ca2+ channel termed Ca2+ uniporter and is pumped out by a Na+/Ca2+ exchanger, both of which are located on the inner mitochondrial membrane. Mitochondrial Ca2+ transients are critical for metabolic activity and regulating global Ca2+ responses. On the other hand, failure to control mitochondrial Ca2+ is a hallmark of ischemic and neurodegenerative diseases. Despite their importance, identifying the uniporter and exchanger remains elusive and their inhibitors are non-specific. This review will focus on the mitochondrial exchanger, initially describing how it was molecularly identified and linked to a novel member of the Na+/Ca2+ exchanger superfamily termed NCLX. Molecular control of NCLX expression provides a selective tool to determine its physiological role in a variety of cell types. In lymphocytes, NCLX is essential for refilling the endoplasmic reticulum Ca2+ stores required for antigendependent signaling. Communication of NCLX with the store-operated channel in astroglia controls Ca2+ influx and thereby neuro-transmitter release and cell proliferation. The refilling of the Ca2+ stores in the sarcoplasmic reticulum, which is controlled by NCLX, determines the frequency of action potential and Ca2+ transients in cardiomyocytes. NCLX is emerging as a hub for integrating glucose-dependent Na+ and Ca2+ signaling in pancreatic β cells, and the specific molecular control of NCLX expression resolved the controversy regarding its role in neurons and β cells. Future studies on an NCLX knockdown mouse model and identification of human NCLX mutations are expected to determine the role of mitochondrial Ca2+ efflux in organ activity and whether NCLX inactivation is linked to ischemic and/or neurodegenerative syndromes. Structure-function analysis and protein analysis will identify the NCLX mode of regulation and its partners in the inner membrane of the mitochondria.  相似文献   

2.
Palty R  Sekler I 《Cell calcium》2012,52(1):9-15
Powered by the steep mitochondrial membrane potential Ca(2+) permeates into the mitochondria via the Ca(2+) uniporter and is then extruded by a mitochondrial Na(+)/Ca(2+) exchanger. This mitochondrial Ca(2+) shuttling regulates the rate of ATP production and participates in cellular Ca(2+) signaling. Despite the fact that the exchanger was functionally identified 40 years ago its molecular identity remained a mystery. Early studies on isolated mitochondria and intact cells characterized the functional properties of a mitochondrial Na(+)/Ca(2+) exchanger, and showed that it possess unique functional fingerprints such as Li(+)/Ca(2+) exchange and that it is displaying selective sensitivity to inhibitors. Purification of mitochondria proteins combined with functional reconstitution led to the isolation of a polypeptide candidate of the exchanger but failed to molecularly identify it. A turning point in the search for the exchanger molecule came with the recent cloning of the last member of the Na(+)/Ca(2+) exchanger superfamily termed NCLX (Na(+)/Ca(2+)/Li(+) exchanger). NCLX is localized in the inner mitochondria membrane and its expression is linked to mitochondria Na(+)/Ca(2+) exchange matching the functional fingerprints of the putative mitochondrial Na(+)/Ca(2+) exchanger. Thus NCLX emerges as the long sought mitochondria Na(+)/Ca(2+) exchanger and provide a critical molecular handle to study mitochondrial Ca(2+) signaling and transport. Here we summarize some of the main topics related to the molecular properties of the Na(+)/Ca(2+) exchanger, beginning with the early days of its functional identification, its kinetic properties and regulation, and culminating in its molecular identification.  相似文献   

3.
大麦根细胞质膜Ca~(2+)-ATP酶和Ca~(2+)转运系统的特性   总被引:1,自引:0,他引:1  
用大麦质膜微囊研究细胞质膜 Ca~(2+)转运过程,发现质膜 Ca~(2+)—ATP酶在反应系统中不存在Mg~(2+)时可正常表现活性。跨膜Ca~(2+)转运按其对Mg~(2+)的需求可分为两个过程,一个是不需Mg~(2+)的、具高Ca~(2+)亲和力和较低的转运能力;另一个则是需Mg~(2+)的、具低Ca~(2+)亲和力和较高的转运能力。前者的动力学特征与Ca~(2+)—ATP酶相近,而后者则相差很大。据此推测,大麦根细胞质膜上除Ca~(2+)—ATP酶外,还存在另一个不同的Ca~(2+)转运系统。由两者分别承担的Ca~(2+)转运过程在细胞钙信使系统中可能起着不同的作用。  相似文献   

4.
Mitochondria buffer large changes in [Ca(2+)](i)following an excitotoxic glutamate stimulus. Mitochondrial sequestration of [Ca(2+)](i)can beneficially stimulate oxidative metabolism and ATP production. However, Ca(2+)overload may have deleterious effects on mitochondrial function and cell survival, particularly Ca(2+)-dependent production of reactive oxygen species (ROS) by the mitochondria. We recently demonstrated that the mitochondrial Na(+)-Ca(2+)exchanger in neurons is selectively inhibited by CGP-37157, a benzothiazepine analogue of diltiazem. In the present series of experiments we investigated the effects of CGP-37157 on mitochondrial functions regulated by Ca(2+). Our data showed that 25 microM CGP-37157 quenches DCF fluorescence similar to 100 microM glutamate and this effect was enhanced when the two stimuli were applied together. CGP-37157 did not increase ROS generation and did not alter glutamate or 3mM hydrogen-peroxide-induced increases in ROS as measured by DHE fluorescence. CGP-37157 induces a slight decrease in intracellular pH, much less than that of glutamate. In addition, CGP-37157 does not enhance intracellular acidification induced by glutamate. Although it is possible that CGP-37157 can enhance mitochondrial respiration both by blocking Ca(2+)cycling and by elevating intramitochondrial Ca(2+), we did not observe any changes in ATP levels or toxicity either in the presence or absence of glutamate. Finally, mitochondrial Ca(2+)uptake during an excitotoxic glutamate stimulus was only slightly enhanced by inhibition of mitochondrial Ca(2+)efflux. Thus, although CGP-37157 alters mitochondrial Ca(2+)efflux in neurons, the inhibition of Na(+)-Ca(2+)exchange does not profoundly alter glutamate-mediated changes in mitochondrial function or mitochondrial Ca(2+)content.  相似文献   

5.
The aim of this study was to investigate the effects of adenosine on reverse mode Na+/Ca(2+) exchange. In intact ferret cardiac trabeculae, Na+-free contractures were investigated after treating preparations with ryanodine, a sarcoplasmic reticulum Ca(2+) -channel inhibitor, and thapsigargin, a sarcoplasmic reticulum Ca(2+) -pump inhibitor added to suppress the sarcoplasmic reticulum function. The effects of adenosine (50-100 nmol/L), adenosine deaminase (ADA, 0.1-0.5 U/L), the A1 and A2A receptor agonists CCPA (3-100 nmol/L) and CGS 21680 (25-100 nmol/L), and the A1 and A2A receptor antagonists DPCPX (25 nmol/L) and ZM 241385 (25 nmol/L) were tested on Na+-free contractures. The application of adenosine (50-100 nmol/L) had no significant effect on the characteristics of the Na+-free contractures. However, the results show that treatment with ADA (0.3 U/L), adenosine (> or =50 nmol/L) and CCPA, a specific A1 receptor agonist (3-100 nmol/L), all reduced the Na+-free contracture amplitude. In the presence of ADA, the effects of adenosine and CCPA were also reduced by a specific antagonist of A1 receptors (DPCPX, 25 nmol/L). Furthermore, adenosine, ADA, and CCPA did not affect the properties of the contractile apparatus in Triton-skinned fibres. It is therefore proposed that endogenous adenosine reduced the reverse mode of the Na+/Ca(2+) exchanger by acting on A1 receptors present in the sarcolemmal membrane.  相似文献   

6.
选取健康的性成熟雄性宽体沙鳅,运用JSM 6510LV型扫描电镜、H-7500型透射电镜及Motic-BA210数码显微镜分别观察了宽体沙鳅精子的超微结构及不同浓度Na~+、K~+、Ca~(2+)对其精子活力的影响。结果显示,宽体沙鳅精子头部圆球形,无顶体,细胞核后端有一植入窝凹陷,凹陷深度为细胞核长径的1/6。中片由中心粒复合体和袖套组成。中心粒复合体分为近端中心粒和基体,两者呈"L"型排列;袖套呈两侧不对称分布,一侧狭长,另一侧肥厚。尾部主要由轴丝组成,为典型的"9+2"型双联微管结构,微管动力蛋白臂明显。以Na Cl、KCl和Ca Cl_2浓度分别为75 mmol·L~(-1)、0.5 mmol·L~(-1)和5 mmol·L~(-1)作为宽体沙鳅精子的激活介质,效果最佳。建议实际生产中选取合适的激活介质进行人工授精。  相似文献   

7.
以切花菊品种‘神马’为试材,研究光周期诱导菊花成花过程中Ca2+载体A23187和Ca2+螯合剂EGTA处理对花芽分化及其过程中叶片Ca2+分布和蔗糖、可溶性糖及淀粉含量变化的影响.结果表明:对照叶片Ca2+含量在花芽未分化期(Ⅰ)处于较低水平,而在花芽分化启动期(Ⅱ)迅速增加并达到高峰,之后下降;Ca2+亚细胞定位表明,在未分化期(Ⅰ)Ca2+沉淀主要分布在液泡、细胞壁和细胞间隙中,细胞质内较少,而在花芽分化启动期(Ⅱ)细胞质内积累大量的Ca2+沉淀.A23187处理的菊花花芽分化开始和结束时间比对照分别提前2 d和3 d,叶片Ca2+含量比对照显著增加;EGTA处理的叶片Ca2+含量比对照显著减少,花芽分化开始和结束时间分别比对照推迟4 d和8 d;A23187和EGTA处理的叶片Ca2+在花芽分化启动期(Ⅱ)均向细胞质流入并密集.A23187处理的蔗糖和可溶性糖含量在处理2 d时达到峰值,比对照达到峰值的时间提前2 d,与Ca2+达到峰值的时间一致,而EGTA处理的蔗糖和可溶性糖含量在处理2 d时没有明显变化,8 d时才迅速增加达到峰值,即所有处理的蔗糖、可溶性总糖含量在花芽分化启动期(Ⅱ)均增加并达到高峰,之后有所减少,但其在整个花芽分化过程均高于光周期诱导前的含量;对照和A23187处理的淀粉含量在处理2 d时开始减少,而EGTA则在处理8 d后开始减少,至花芽分化结束所有处理的淀粉含量均保持较低水平(低于诱导前).表明Ca2+碳水化合物参与了光周期诱导的菊花成花过程.  相似文献   

8.
The mitochondrial membrane potential that powers the generation of ATP also facilitates mitochondrial Ca(2+) shuttling. This process is fundamental to a wide range of cellular activities, as it regulates ATP production, shapes cytosolic and endoplasmic recticulum Ca(2+) signaling, and determines cell fate. Mitochondrial Ca(2+) transport is mediated primarily by two major transporters: a Ca(2+) uniporter that mediates Ca(2+) uptake and a Na(+)/Ca(2+) exchanger that subsequently extrudes mitochondrial Ca(2+). In this minireview, we focus on the specific role of the mitochondrial Na(+)/Ca(2+) exchanger and describe its ion exchange mechanism, regulation by ions, and putative partner proteins. We discuss the recent molecular identification of the mitochondrial exchanger and how its activity is linked to physiological and pathophysiological processes.  相似文献   

9.
Mitochondria contain two Na+/H+ antiporters, one of which transports K+ as well as Na+. The physiological role of this non-selective Na+/H+ (K+/H+) antiporter is to provide mitochondrial volume homeostasis. The properties of this carrier have been well documented in intact mitochondria, and it has been identified as an 82,000-dalton inner membrane protein. The present studies were designed to solubilize and reconstitute this antiporter in order to permit its isolation and molecular characterization. Proteins from mitoplasts made from rat liver mitochondria were extracted with Triton X-100 in the presence of cardiolipin and reconstituted into phospholipid vesicles. The reconstituted proteoliposomes exhibited electroneutral 86Rb+ transport which was reversibly inhibited by Mg2+ and quinine with K0.5 values of approximately 150 and 300 microM, respectively. Incubation of reconstituted vesicles with dicyclohexylcarbodiimide resulted in irreversible inhibition of 86Rb+ uptake into proteoliposomes. Incubation of vesicles with [14C]dicyclohexylcarbodiimide resulted in labeling of an 82,000-dalton protein. These properties, which are also characteristic of the native Na+/H+ (K+/H+) antiporter, lead us to conclude that this mitochondrial carrier has been reconstituted into proteoliposomes with its known native properties intact.  相似文献   

10.
Mitochondrial Ca(2+) uptake plays a fundamental role in the regulation of energy production and cell survival. Under physiological conditions, mitochondrial Ca(2+) uptake occurs by a uniport mechanism driven electrophoretically by the membrane potential created by the respiratory chain. The activity and the biochemical properties of the mitochondrial calcium uniporter (MCU) were extensively characterized for decades but the molecular identity of the channel has remained elusive. Here, we review the recent discovery of the mitochondria Ca(2+) uniporter that represents a groundbreaking result for the molecular understanding of mitochondrial Ca(2+) homeostasis and will provide insight into the role of mitochondrial Ca(2+) deregulation in the pathogenesis of human disorders.  相似文献   

11.
实验研究了在胡萝卜、烟草愈伤组织形成过程中,激素诱导作用与钙离子的关系。结果表明:在含有正常浓度的激素和Ca~(2+)的培养基中,0.1—1mmol/L Ca~(2+)螯合剂EGTA抑制愈伤组织鲜重增长78.0%—88.4%; 10—50μmol/L尼群地平及10—60μmol/L异博定等细胞膜钙通道阻断剂分别抑制愈伤组织鲜重增长19.1%—81.9%及17.6%—70.3%。除去上述Ca~(2+)螯合剂及Ca~(2+)通道阻断剂后,受抑制的外植体基本上可恢复生长。在无激素培养基中,10—30μmol/L Ca~(2+)载体A_(23187)可使外植体膨大,使外植体脱分化细胞增多,并出现分生细胞团,初步说明A_(23187)诱导的Ca~(2+)内流可以部分地模拟激素的作用。以膜显示剂氯四环素探测胞内Ca~(2+)分布时发现分裂细胞、脱分化细胞、分生细胞团及愈伤组织区域的细胞荧光较强。以上事实说明在愈伤组织形成中激素诱导效应与细胞内Ca~(2+)有密切关系。  相似文献   

12.
Cysteine residues play an important role in many proteins, either in enzymatic activity or by mediating inter- or intramolecular interactions. The Na(+)/Ca(2+)-K(+) exchanger plays a critical role in Ca(2+) homeostasis in retinal rod (NCKX1) and cone (NCKX2) photoreceptors by extruding Ca(2+) that enters rod and cone cells via the cGMP-gated channels. NCKX1 and NCKX2 contain five highly conserved cysteine residues. The objectives of this study were threefold: (1) to examine the importance of cysteine residues in NCKX2 protein function; (2) to examine their role in the interaction between NCKX2 and the CNGA subunit of the cGMP-gated channel; and (3) to generate a functional cysteine-free NCKX2 protein. The latter will facilitate structural studies taking advantage of the unique chemistry of the thiol group following insertion of cysteine residues at specific positions in the cysteine-free background. We generated a cysteine-free NCKX2 mutant protein that showed normal protein synthesis and processing and approximately 50% wild-type cation transport function. Cysteine residues were also not critical for the formation of NCKX2 homo-oligmers or NCKX2 hetero-oligomers with the CNGA subunit of the cGMP-gated channel. Our results appear to rule out a critical importance of an intramolecular disulfide linkage in NCKX2 protein synthesis and folding as had been reported before.  相似文献   

13.
We investigated the role of intracellular Mg2+(Mgi2+) on the ATP regulation ofNa+/Ca2+ exchanger in squid axons and bovineheart. In squid axons and nerve vesicles, the ATP-upregulated exchangerremains activated after removal of cytoplasmic Mg2+, evenin the absence of ATP. Rapid and complete deactivation of theATP-stimulated exchange occurs upon readmission ofMgi2+. At constant ATP concentration, the effectof intracellular Mg2+ concentration([Mg2+]i) on the ATP regulation of exchangeris biphasic: activation at low [Mg2+]i,followed by deactivation as [Mg2+]i isincreased. No correlation was found between the above results and thelevels of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] measured innerve membrane vesicles. Incorporation ofPtdIns(4,5)P2 into membrane vesicles activates Na+/Ca2+ exchange in mammalian heart but not insquid nerve. Moreover, an exogenous phosphatase prevents MgATPactivation in squid nerves but not in mammalian heart. It is concludedthat 1) Mgi2+ is an essentialcofactor for the deactivation part of ATP regulation of the exchangerand 2) the metabolic pathway of ATP upregulation of theNa+/Ca2+ exchanger is different in mammalianheart and squid nerves.

  相似文献   

14.
Actin-dependent regulation of the cardiac Na(+)/Ca(2+) exchanger   总被引:1,自引:0,他引:1  
In the present study, the bovine cardiac Na+/Ca2+ exchanger (NCX1.1) was expressed in Chinese hamster ovary cells. The surface distribution of the exchanger protein, externally tagged with the hemagglutinin (HA) epitope, was associated with underlying actin filaments in regions of cell-to-cell contact and also along stress fibers. After we treated cells with cytochalasin D, NCX1.1 protein colocalized with patches of fragmented filamentous actin (F-actin). In contrast, an HA-tagged deletion mutant of NCX1.1 that was missing much of the exchanger's central hydrophilic domain (241–680) did not associate with F-actin. In cells expressing the wild-type exchanger, cytochalasin D inhibited allosteric Ca2+ activation of NCX activity as shown by prolongation of the lag phase of low Ca2+ uptake after initiation of the reverse (i.e., Ca2+ influx) mode of NCX activity. Other agents that perturbed F-actin structure (methyl--cyclodextrin, latrunculin B, and jasplakinolide) also increased the duration of the lag phase. In contrast, when reverse-mode activity was initiated after allosteric Ca2+ activation, both cytochalasin D and methyl--cyclodextrin (Me--CD) stimulated NCX activity by 70%. The activity of the (241–680) mutant, which does not require allosteric Ca2+ activation, was also stimulated by cytochalasin D and Me--CD. The increased activity after these treatments appeared to reflect an increased amount of exchanger protein at the cell surface. We conclude that wild-type NCX1.1 associates with the F-actin cytoskeleton, probably through interactions involving the exchanger's central hydrophilic domain, and that this association interferes with allosteric Ca2+ activation. cytochalasin; methyl--cyclodextrin; allosteric calcium activation  相似文献   

15.
16.
钙离子在植物抵抗非生物胁迫中的作用   总被引:3,自引:0,他引:3  
钙离子(Ca2+)是植物生长发育所必需的一种大量元素,它同时作为重要信使参与调节植物对环境胁迫的抗逆过程。本文综述了钙离子相关的植物抗逆研究领域最新进展,如Ca2+调节胞内[Na+]/[K+]、调节胞内脱落酸(abscisic acid,ABA)浓度、稳定细胞壁及细胞膜、识别Ca2+/Ca2+依赖蛋白激酶系统以及起始抗逆基因转录,为后续植物细胞Ca2+在环境胁迫下的浓度、分布的实时变化等研究提供一定的基础支撑。  相似文献   

17.
The Na(+)/H(+) exchanger (NHE) inhibitor cariporide has a cardioprotective effect in various animal models of myocardial ischemia-reperfusion. Recent studies have suggested that cariporide interacts with mitochondrial Ca(2+) overload and the mitochondrial permeability transition (MPT); however, the precise mechanisms remain unclear. Therefore, we examined whether cariporide affects mitochondrial Ca(2+) overload and MPT. Isolated adult rat ventricular myocytes were used to study the effects of cariporide on hypercontracture induced by ouabain or phenylarsine oxide (PAO). Mitochondrial Ca(2+) concentration ([Ca(2+)](m)) and the mitochondrial membrane potential (DeltaPsi(m)) were measured by loading myocytes with rhod-2 and JC-1, respectively. We also examined the effect of cariporide on the MPT using tetramethylrhodamine methyl ester (TMRM) and oxidative stress generated by laser illumination. Cariporide (1 microM) prevented ouabain-induced hypercontracture (from 40 +/- 2 to 24 +/- 2%, P < 0.05) and significantly attenuated ouabain-induced [Ca(2+)](m) overload (from 149 +/- 6 to 121 +/- 5% of the baseline value, P < 0.05) but did not affect DeltaPsi(m). These results indicate that cariporide attenuates the [Ca(2+)](m) overload without the accompanying depolarization of DeltaPsi(m). Moreover, cariporide increased the time taken to induce the MPT (from 79 +/- 11 to 137 +/- 20 s, P < 0.05) and also attenuated PAO-induced hypercontracture (from 59 +/- 3 to 50 +/- 4%, P < 0.05). Our data indicate that cariporide attenuates [Ca(2+)](m) overload and MPT. Thus these effects might potentially contribute to the mechanisms of cardioprotection afforded by NHE inhibitors.  相似文献   

18.
The Na(+)-Ca(2+) exchanger is a plasma membrane protein expressed at high levels in cardiomyocytes. It extrudes 1 Ca(2+) for 3 Na(+) ions entering the cell, regulating intracellular Ca(2+) levels and thereby contractility. Na(+)-Ca(2+) exchanger activity is regulated by intracellular Ca(2+), which binds to a region (amino acids 371-508) within the large cytoplasmic loop between transmembrane segments 5 and 6. Regulatory Ca(2+) activates the exchanger and removes Na(+)-dependent inactivation. The physiological role of intracellular Ca(2+) regulation of the exchanger is not yet established. Yellow (YFP) and cyan (CFP) fluorescent proteins were linked to the NH(2)- and CO(2)H-termini of the exchanger Ca(2+) binding domain (CBD) to generate a construct (YFP-CBD-CFP) capable of responding to changes in intracellular Ca(2+) concentrations by FRET efficiency measurements. The two fluorophores linked to the CBD are sufficiently close to generate FRET. FRET efficiency was reduced with increasing Ca(2+) concentrations. Titrations of Ca(2+) concentration versus FRET efficiency indicate a K(D) for Ca(2+) of approximately 140 nM, which increased to approximately 400 nM in the presence of 1 mM Mg(2+). Expression of YFP-CBD-CFP in myocytes, generated changes in FRET associated with contraction, suggesting that NCX is regulated by Ca(2+) on a beat-to-beat basis during excitation-contraction coupling.  相似文献   

19.
The activity of the cardiac Na(+)/Ca(2+) exchanger (NCX1.1) undergoes continuous modulation during the contraction-relaxation cycle because of the accompanying changes in the electrochemical gradients for Na(+) and Ca(2+). In addition, NCX1.1 activity is also modulated via secondary, ionic regulatory mechanisms mediated by Na(+) and Ca(2+). In an effort to evaluate how ionic regulation influences exchange activity under pulsatile conditions, we studied the behavior of the cloned NCX1.1 during frequency-controlled changes in intracellular Na(+) and Ca(+) (Na(i)(+) and Ca(i)(2+)). Na(+)/Ca(2+) exchange activity was measured by the giant excised patch-clamp technique with conditions chosen to maximize the extent of Na(+)- and Ca(2+)-dependent ionic regulation so that the effects of variables such as pulse frequency and duration could be optimally discerned. We demonstrate that increasing the frequency or duration of solution pulses leads to a progressive decline in pure outward, but not pure inward, Na(+)/Ca(2+) exchange current. However, when the exchanger is permitted to alternate between inward and outward transport modes, both current modes exhibit substantial levels of inactivation. Changes in regulatory Ca(2+), or exposure of patches to limited proteolysis by alpha-chymotrypsin, reveal that this "coupling" is due to Na(+)-dependent inactivation originating from the outward current mode. Under physiological ionic conditions, however, evidence for modulation of exchange currents by Na(i)(+)-dependent inactivation was not apparent. The current approach provides a novel means for assessment of Na(+)/Ca(2+) exchange ionic regulation that may ultimately prove useful in understanding its role under physiological and pathophysiological conditions.  相似文献   

20.
<正>Characterized by multicellular migratory behavior and cooperative ability,collective cell migration plays critical roles in developmental,physiological and pathological processes,such as organogenesis,wound healing and tumor metastasis (Friedl and Gilmour,2009).Molecular features of collective cell migration including collective polarization,coordinated cytoskeletal activity,and guidance signaling have been recently investigated in a variety of in vivo and in vitro model systems (Scarpa and Mayor,2016),but many other aspects of regulatory mechanisms remain unexplored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号