共查询到20条相似文献,搜索用时 15 毫秒
1.
Powered by the mitochondrial membrane potential, Ca2+ permeates the mitochondria via a Ca2+ channel termed Ca2+ uniporter and is pumped out by a Na+/Ca2+ exchanger, both of which are located on the inner mitochondrial membrane. Mitochondrial Ca2+ transients are critical for metabolic activity and regulating global Ca2+ responses. On the other hand, failure to control mitochondrial Ca2+ is a hallmark of ischemic and neurodegenerative diseases. Despite their importance, identifying the uniporter and exchanger remains elusive and their inhibitors are non-specific. This review will focus on the mitochondrial exchanger, initially describing how it was molecularly identified and linked to a novel member of the Na+/Ca2+ exchanger superfamily termed NCLX. Molecular control of NCLX expression provides a selective tool to determine its physiological role in a variety of cell types. In lymphocytes, NCLX is essential for refilling the endoplasmic reticulum Ca2+ stores required for antigendependent signaling. Communication of NCLX with the store-operated channel in astroglia controls Ca2+ influx and thereby neuro-transmitter release and cell proliferation. The refilling of the Ca2+ stores in the sarcoplasmic reticulum, which is controlled by NCLX, determines the frequency of action potential and Ca2+ transients in cardiomyocytes. NCLX is emerging as a hub for integrating glucose-dependent Na+ and Ca2+ signaling in pancreatic β cells, and the specific molecular control of NCLX expression resolved the controversy regarding its role in neurons and β cells. Future studies on an NCLX knockdown mouse model and identification of human NCLX mutations are expected to determine the role of mitochondrial Ca2+ efflux in organ activity and whether NCLX inactivation is linked to ischemic and/or neurodegenerative syndromes. Structure-function analysis and protein analysis will identify the NCLX mode of regulation and its partners in the inner membrane of the mitochondria. 相似文献
2.
Palty R Hershfinkel M Yagev O Saar D Barkalifa R Khananshvili D Peretz A Grossman Y Sekler I 《Biochemistry》2006,45(39):11856-11866
Spliced isoforms of the Na+/Ca2+ exchanger, NCLX, truncated at the alpha-repeat region have been identified. The activity and functional organization of such proteins are, however, poorly understood. In the present work, we have studied Na+/Ca2+ exchange mediated by single alpha-repeat constructs (alpha1 and alpha2) of NCLX. Sodium-dependent calcium transport was fluorescently detected in both the reversal and forward modes; calcium-dependent outward currents were also recorded using a whole cell patch configuration in HEK293 cells heterologously expressing either the alpha1 or alpha2 single-domain proteins. In contrast, calcium transport and reversal currents were not detected when cells were transfected with a vector or with an alpha2 mutant (alpha2-S273T). Thus, our data indicate that the single alpha-domain constructs mediate electrogenic Na+/Ca2+ exchange. The alpha1 domain, but not the alpha2, exhibited partial sensitivity to the NCX inhibitor, KB-R7943, while Li+-dependent Ca2+ efflux was detected in cells expressing either the alpha1 or alpha2 construct. The functional organization of the single alpha-domain constructs was assessed using a dominant-negative approach. Coexpression of the alpha1 or alpha2 constructs with the nonfunctional alpha2-S273T mutant had a synergistic inhibitory effect on Na+/Ca2+ transport. Dose-dependence analysis of the inhibition of alpha2 construct activity by the alpha2-S273T mutant indicated that the functional unit is either a dimer or a trimer. Immunoprecipitation analysis indicated that the alpha2 construct indeed interacts with the alpha2-S273T mutant. Taken together, our data indicate that although single alpha1 or alpha2 domain constructs are independently capable of Na+/Ca2+ exchange, oligomerization is required for their activity. Such organization may give rise to transport activity with distinct kinetic parameters and physiological roles. 相似文献
3.
《Cell calcium》2020
Roles of mitochondrial Na+-Ca2+ exchanger, NCLX, were studied in B lymphocytes such as heterozygous NCLX knockout DT40 cells, NCLX knockdown A20 cells, and native mouse spleen B lymphocytes treated with a NCLX blocker, CGP-37157. Cytosolic Ca2+ response to B cell receptor stimulation was impaired in these B lymphocytes, demonstrating importance of mitochondria-ER Ca2+ recycling via NCLX and sarco/endoplasmic reticulum Ca2+-ATPase SERCA, and interaction with store-operated Ca2+ entry. NCLX was also associated with motility and chemotaxis of B lymphocyte. Contrary to B lymphocytes, contribution of NCLX in mouse spleen T lymphocytes was minor. 相似文献
4.
Jaime Santo-Domingo reas Wiederkehr Umberto De Marchi 《World journal of biological chemistry》2015,6(4):310-323
Mitochondria sense,shape and integrate signals,and thus function as central players in cellular signal transduction. Ca2+ waves and redox reactions are two such intracellular signals modulated by mitochondria. Mitochondrial Ca2+ transport is of utmost physio-pathological relevance with a strong impact on metabolism and cell fate. Despite its importance,the molecular nature of the proteins involvedin mitochondrial Ca2+ transport has been revealed only recently. Mitochondrial Ca2+ promotes energy metabolism through the activation of matrix dehydrogenases and downstream stimulation of the respiratory chain. These changes also alter the mitochondrial NAD(P)H/NAD(P)+ ratio,but at the same time will increase reactive oxygen species(ROS) production. Reducing equivalents and ROS are having opposite effects on the mitochondrial redox state,which are hard to dissect. With the recent development of genetically encoded mitochondrial-targeted redoxsensitive sensors,real-time monitoring of matrix thiol redox dynamics has become possible. The discoveries of the molecular nature of mitochondrial transporters of Ca2+ combined with the utilization of the novel redox sensors is shedding light on the complex relation between mitochondrial Ca2+ and redox signals and their impact on cell function. In this review,we describe mitochondrial Ca2+ handling,focusing on a number of newly identified proteins involved in mitochondrial Ca2+ uptake and release. We further discuss our recent findings,revealing how mitochondrial Ca2+ influences the matrix redox state. As a result,mitochondrial Ca2+ is able to modulate the many mitochondrial redox-regulated processes linked to normal physiology and disease. 相似文献
5.
Powered by the steep mitochondrial membrane potential Ca(2+) permeates into the mitochondria via the Ca(2+) uniporter and is then extruded by a mitochondrial Na(+)/Ca(2+) exchanger. This mitochondrial Ca(2+) shuttling regulates the rate of ATP production and participates in cellular Ca(2+) signaling. Despite the fact that the exchanger was functionally identified 40 years ago its molecular identity remained a mystery. Early studies on isolated mitochondria and intact cells characterized the functional properties of a mitochondrial Na(+)/Ca(2+) exchanger, and showed that it possess unique functional fingerprints such as Li(+)/Ca(2+) exchange and that it is displaying selective sensitivity to inhibitors. Purification of mitochondria proteins combined with functional reconstitution led to the isolation of a polypeptide candidate of the exchanger but failed to molecularly identify it. A turning point in the search for the exchanger molecule came with the recent cloning of the last member of the Na(+)/Ca(2+) exchanger superfamily termed NCLX (Na(+)/Ca(2+)/Li(+) exchanger). NCLX is localized in the inner mitochondria membrane and its expression is linked to mitochondria Na(+)/Ca(2+) exchange matching the functional fingerprints of the putative mitochondrial Na(+)/Ca(2+) exchanger. Thus NCLX emerges as the long sought mitochondria Na(+)/Ca(2+) exchanger and provide a critical molecular handle to study mitochondrial Ca(2+) signaling and transport. Here we summarize some of the main topics related to the molecular properties of the Na(+)/Ca(2+) exchanger, beginning with the early days of its functional identification, its kinetic properties and regulation, and culminating in its molecular identification. 相似文献
6.
本文应用~23Na-NMR波谱技术,研究了Na~(+)、Ca~(2+)、Cu~(2+)和Zn~(2+)与人体血清白蛋白(HSA)的相互作用。在实验基础上,通过引入两位快交换模型,拟合计算获得了Na~(+)与HSA相互作用的结合常数和处于结合状态Na~(+)的相关时间;实验表明Ca~(2+)能与Na~(+)竞争同HSA结合,拟合计算获得了两者与HSA相互作用结合常数的比值,棕榈酸钠能增强Ca~(2+)同Na~(+)竞争与HSA结合的能力;从实验上未能观察到Cu~(2+)、Zn~(2+)能同Na~(+)竞争与HSA相互作用的证据。 相似文献
7.
大麦根细胞质膜Ca~(2+)-ATP酶和Ca~(2+)转运系统的特性 总被引:1,自引:0,他引:1
用大麦质膜微囊研究细胞质膜 Ca~(2+)转运过程,发现质膜 Ca~(2+)—ATP酶在反应系统中不存在Mg~(2+)时可正常表现活性。跨膜Ca~(2+)转运按其对Mg~(2+)的需求可分为两个过程,一个是不需Mg~(2+)的、具高Ca~(2+)亲和力和较低的转运能力;另一个则是需Mg~(2+)的、具低Ca~(2+)亲和力和较高的转运能力。前者的动力学特征与Ca~(2+)—ATP酶相近,而后者则相差很大。据此推测,大麦根细胞质膜上除Ca~(2+)—ATP酶外,还存在另一个不同的Ca~(2+)转运系统。由两者分别承担的Ca~(2+)转运过程在细胞钙信使系统中可能起着不同的作用。 相似文献
8.
我们曾报道跨膜Ca~(2+)梯度可通过膜脂影响肌质网Ca~(2+)-ATP 酶的构象和活性。本文就跨膜Ca~(2+)梯度对肌质网Ca~(2+)-ATP 酶的调节是否具有特异性作进一步研究。结果表明这种特异性表现在两方面:一是跨膜Ca~(2+)梯度对肌质网Ca~(2+)-ATP 酶功能的调节不能归结于跨膜Ca~(2+)浓度梯度所导致的膜电位的作用,离子载体FCCP 可消除跨膜电位但并不影响肌质网Ca~(2+)-ATP 酶的活力;二是其它二价金属离子如Sr~(2+)的跨膜梯度对肌质网Ca~(2+)-ATP 酶活力基本无影响。荧光偏振系列探剂n-AS 测定的结果表明跨膜Ca~(2+)与Sr~(2+)梯度对嵌有Ca~(2+)-ATP 酶的脂酶体的中部流动性的影响有较大差异。而Ca~(2+)-ATP 酶的Ca~(2+)结合位点正处于脂双层中部,这进一步提示膜脂参与了跨膜Ca~(2+)梯度对Ca~(2+)-ATP 酶的调节作用。 相似文献
9.
Ca~(2+)通过膜脂影响肌质网Ca~(2+)-ATP酶的活性与Ca~(2+)转运功能 总被引:1,自引:0,他引:1
重建在大豆磷脂脂质体上的兔骨骼肌肌质网Ca~(2+)—ATP酶在ATP驱动下可将溶液中的Ca~(2+)转运到脂酶体内部;外加EGTA则可除去脂酶体外部的Ca~(2+),由此可得到四种含Ca~(2+)状态不同的脂酶体:(1)内、外都无Ca~(2+);(2)仅外部有Ca~(2+);(3)内、外都有Ca~(2+);(4),仅内部有Ca~(2+).用DPH和AS系列萤光探针对这四种含Ca~+状态不同的脂酶体的膜脂流动性进行了测定,结果表明:脂酶体外部加入Ca~(2+),脂双层外表面的流动性降低.当Ca~(2+)进入脂酶体内部后,内表面膜脂的流动性也降低,而且外层膜脂流动性进一步降低.脂酶体内、外的Ca~(2+)含量不同时,Ca~(2+)—ATP酶功能状态也不同.转运到脂酶体内部的ca~(2+)积累到一定浓度后,通过Ca~(2+)泵向内转运的Ca~(2+)及Ca~(2+)—ATP酶活力都受到了抑制.转运进行到第四分钟时的酶活只有第一分钟的9%.但在相同的实验条件下,失去了完整的膜结构的纯化的Ca~(2+)—ATP酶蛋白没有被抑制.这提示完整的膜结构是这种抑制作用所必需的,而且膜两侧Ca~(2+)浓度的梯差可通过影响膜脂来调节Ca~(2+)—ATP酶的功能. 相似文献
10.
Mitochondria buffer large changes in [Ca(2+)](i)following an excitotoxic glutamate stimulus. Mitochondrial sequestration of [Ca(2+)](i)can beneficially stimulate oxidative metabolism and ATP production. However, Ca(2+)overload may have deleterious effects on mitochondrial function and cell survival, particularly Ca(2+)-dependent production of reactive oxygen species (ROS) by the mitochondria. We recently demonstrated that the mitochondrial Na(+)-Ca(2+)exchanger in neurons is selectively inhibited by CGP-37157, a benzothiazepine analogue of diltiazem. In the present series of experiments we investigated the effects of CGP-37157 on mitochondrial functions regulated by Ca(2+). Our data showed that 25 microM CGP-37157 quenches DCF fluorescence similar to 100 microM glutamate and this effect was enhanced when the two stimuli were applied together. CGP-37157 did not increase ROS generation and did not alter glutamate or 3mM hydrogen-peroxide-induced increases in ROS as measured by DHE fluorescence. CGP-37157 induces a slight decrease in intracellular pH, much less than that of glutamate. In addition, CGP-37157 does not enhance intracellular acidification induced by glutamate. Although it is possible that CGP-37157 can enhance mitochondrial respiration both by blocking Ca(2+)cycling and by elevating intramitochondrial Ca(2+), we did not observe any changes in ATP levels or toxicity either in the presence or absence of glutamate. Finally, mitochondrial Ca(2+)uptake during an excitotoxic glutamate stimulus was only slightly enhanced by inhibition of mitochondrial Ca(2+)efflux. Thus, although CGP-37157 alters mitochondrial Ca(2+)efflux in neurons, the inhibition of Na(+)-Ca(2+)exchange does not profoundly alter glutamate-mediated changes in mitochondrial function or mitochondrial Ca(2+)content. 相似文献
11.
Hleihel W Lafoux A Ouaini N Huchet-Cadiou C 《Canadian journal of physiology and pharmacology》2008,86(1-2):46-54
The aim of this study was to investigate the effects of adenosine on reverse mode Na+/Ca(2+) exchange. In intact ferret cardiac trabeculae, Na+-free contractures were investigated after treating preparations with ryanodine, a sarcoplasmic reticulum Ca(2+) -channel inhibitor, and thapsigargin, a sarcoplasmic reticulum Ca(2+) -pump inhibitor added to suppress the sarcoplasmic reticulum function. The effects of adenosine (50-100 nmol/L), adenosine deaminase (ADA, 0.1-0.5 U/L), the A1 and A2A receptor agonists CCPA (3-100 nmol/L) and CGS 21680 (25-100 nmol/L), and the A1 and A2A receptor antagonists DPCPX (25 nmol/L) and ZM 241385 (25 nmol/L) were tested on Na+-free contractures. The application of adenosine (50-100 nmol/L) had no significant effect on the characteristics of the Na+-free contractures. However, the results show that treatment with ADA (0.3 U/L), adenosine (> or =50 nmol/L) and CCPA, a specific A1 receptor agonist (3-100 nmol/L), all reduced the Na+-free contracture amplitude. In the presence of ADA, the effects of adenosine and CCPA were also reduced by a specific antagonist of A1 receptors (DPCPX, 25 nmol/L). Furthermore, adenosine, ADA, and CCPA did not affect the properties of the contractile apparatus in Triton-skinned fibres. It is therefore proposed that endogenous adenosine reduced the reverse mode of the Na+/Ca(2+) exchanger by acting on A1 receptors present in the sarcolemmal membrane. 相似文献
12.
A23187和EGTA对光周期诱导菊花成花及其过程中叶片Ca2+分布和碳水化合物的影响 总被引:2,自引:0,他引:2
以切花菊品种‘神马’为试材,研究光周期诱导菊花成花过程中Ca2+载体A23187和Ca2+螯合剂EGTA处理对花芽分化及其过程中叶片Ca2+分布和蔗糖、可溶性糖及淀粉含量变化的影响.结果表明:对照叶片Ca2+含量在花芽未分化期(Ⅰ)处于较低水平,而在花芽分化启动期(Ⅱ)迅速增加并达到高峰,之后下降;Ca2+亚细胞定位表明,在未分化期(Ⅰ)Ca2+沉淀主要分布在液泡、细胞壁和细胞间隙中,细胞质内较少,而在花芽分化启动期(Ⅱ)细胞质内积累大量的Ca2+沉淀.A23187处理的菊花花芽分化开始和结束时间比对照分别提前2 d和3 d,叶片Ca2+含量比对照显著增加;EGTA处理的叶片Ca2+含量比对照显著减少,花芽分化开始和结束时间分别比对照推迟4 d和8 d;A23187和EGTA处理的叶片Ca2+在花芽分化启动期(Ⅱ)均向细胞质流入并密集.A23187处理的蔗糖和可溶性糖含量在处理2 d时达到峰值,比对照达到峰值的时间提前2 d,与Ca2+达到峰值的时间一致,而EGTA处理的蔗糖和可溶性糖含量在处理2 d时没有明显变化,8 d时才迅速增加达到峰值,即所有处理的蔗糖、可溶性总糖含量在花芽分化启动期(Ⅱ)均增加并达到高峰,之后有所减少,但其在整个花芽分化过程均高于光周期诱导前的含量;对照和A23187处理的淀粉含量在处理2 d时开始减少,而EGTA则在处理8 d后开始减少,至花芽分化结束所有处理的淀粉含量均保持较低水平(低于诱导前).表明Ca2+碳水化合物参与了光周期诱导的菊花成花过程. 相似文献
13.
《四川动物》2016,(1)
选取健康的性成熟雄性宽体沙鳅,运用JSM 6510LV型扫描电镜、H-7500型透射电镜及Motic-BA210数码显微镜分别观察了宽体沙鳅精子的超微结构及不同浓度Na~+、K~+、Ca~(2+)对其精子活力的影响。结果显示,宽体沙鳅精子头部圆球形,无顶体,细胞核后端有一植入窝凹陷,凹陷深度为细胞核长径的1/6。中片由中心粒复合体和袖套组成。中心粒复合体分为近端中心粒和基体,两者呈"L"型排列;袖套呈两侧不对称分布,一侧狭长,另一侧肥厚。尾部主要由轴丝组成,为典型的"9+2"型双联微管结构,微管动力蛋白臂明显。以Na Cl、KCl和Ca Cl_2浓度分别为75 mmol·L~(-1)、0.5 mmol·L~(-1)和5 mmol·L~(-1)作为宽体沙鳅精子的激活介质,效果最佳。建议实际生产中选取合适的激活介质进行人工授精。 相似文献
14.
Reconstitution of the mitochondrial non-selective Na+/H+ (K+/H+) antiporter into proteoliposomes 总被引:1,自引:0,他引:1
Mitochondria contain two Na+/H+ antiporters, one of which transports K+ as well as Na+. The physiological role of this non-selective Na+/H+ (K+/H+) antiporter is to provide mitochondrial volume homeostasis. The properties of this carrier have been well documented in intact mitochondria, and it has been identified as an 82,000-dalton inner membrane protein. The present studies were designed to solubilize and reconstitute this antiporter in order to permit its isolation and molecular characterization. Proteins from mitoplasts made from rat liver mitochondria were extracted with Triton X-100 in the presence of cardiolipin and reconstituted into phospholipid vesicles. The reconstituted proteoliposomes exhibited electroneutral 86Rb+ transport which was reversibly inhibited by Mg2+ and quinine with K0.5 values of approximately 150 and 300 microM, respectively. Incubation of reconstituted vesicles with dicyclohexylcarbodiimide resulted in irreversible inhibition of 86Rb+ uptake into proteoliposomes. Incubation of vesicles with [14C]dicyclohexylcarbodiimide resulted in labeling of an 82,000-dalton protein. These properties, which are also characteristic of the native Na+/H+ (K+/H+) antiporter, lead us to conclude that this mitochondrial carrier has been reconstituted into proteoliposomes with its known native properties intact. 相似文献
15.
The mitochondrial membrane potential that powers the generation of ATP also facilitates mitochondrial Ca(2+) shuttling. This process is fundamental to a wide range of cellular activities, as it regulates ATP production, shapes cytosolic and endoplasmic recticulum Ca(2+) signaling, and determines cell fate. Mitochondrial Ca(2+) transport is mediated primarily by two major transporters: a Ca(2+) uniporter that mediates Ca(2+) uptake and a Na(+)/Ca(2+) exchanger that subsequently extrudes mitochondrial Ca(2+). In this minireview, we focus on the specific role of the mitochondrial Na(+)/Ca(2+) exchanger and describe its ion exchange mechanism, regulation by ions, and putative partner proteins. We discuss the recent molecular identification of the mitochondrial exchanger and how its activity is linked to physiological and pathophysiological processes. 相似文献
16.
钙池排空操纵的外钙内流决定甘草诱导MGC-803细胞凋亡 总被引:4,自引:0,他引:4
用 EGTA螯合胞外 Ca2 +和异搏定抑制钙通道 ,研究胞外 Ca2 +在甘草诱导 MGC- 80 3细胞中的作用 .流式细胞仪检测凋亡峰和 DNA ladder分析均表明 ,EGTA和异博定阻断细胞凋亡 .分别以 PI或 Rh1 2 3活染后的相应荧光强度表示细胞膜通透性和线粒性膜电位 (ΔΨm) .结果表明 ,细胞膜通透性增强和线粒体 ΔΨm 下降均为细胞凋亡的早期事件 ,EGTA和异博定均可抑制细胞膜通透性增强 ,但 EGTA促进线粒体 ΔΨm 下降 ,而异博定作用相反 .进一步经 PI和 Hoechst33342荧光双染后同时观察细胞膜通透性和细胞核形态 .结果表明 ,凋亡细胞均可 PI着色 ,EGTA和异博定完全阻断染色质凝聚 ,但不能完全抑制细胞膜通透性变化 .借助 Ca2 +探针 Fluo- 3/AM研究凋亡时胞内游离钙的时相变化 ,发现 Ca2 +升高也是细胞凋亡的早期事件 . EGTA和异博定轻微促进凋亡早期 Ca2 +升高 ,但抑制随后 Ca2 +的继续升高 .所有结果提示 ,钙池排空操纵的外 Ca2 +内流在甘草诱导 MGC- 80 3细胞凋亡中发挥决定性的作用 . 相似文献
17.
1,25-(OH)_2D_3对HL-60细胞具有促分化作用。本文报道了1,25-(OH)_2D_3在促进HL-60细胞分化前后胞液Ca~(2+)浓度、磷酸化酶a和微粒体Ca~(2+)-ATP酶活性的改变。结果表明,1,25-(OH)_2D_3加入HL-60细胞培养液后72小时,细胞NBT染色阳性率高于70%,形态向正常分化的细胞转化。同对,胞液Ca~(2+)浓度和微粒体Ca~(2+)-ATP酶活性明显降低,而磷酸化酶a活性显著升高。结果提示,在1,25-(OH)2_D_3作用下,HL-60细胞不仅杀菌功能增强,细胞内胞液Ca~(2+)浓度趋向正常,与钙恒稳有关的酶活性也同样发生改变。即1,25-(OH)_2D_3对HL-60细胞的诱导作用伴有钙恒稳的改变。这些变化与DMSO的作用相同。 相似文献
18.
本文测定了数种蝙蝠葛碱衍生物对钙调素(CaM)激活的人红细胞膜Ca~(2+)-Mg~(2+)-ATPase活力的影响。结果表明,这些化合物对该酶都有不同程度的抑制作用,其机制表现为竞争性抑制,过量的CaM能完全逆转这些化合物所引起的抑制。当Ca~(2+)-Mg~(2+)-ATPase被胰蛋白酶(trypsin)限制性酶解完全活化后,其活力不再受CaM激活,但仍被这些化合物所抑制。 相似文献
19.
目的:探讨在低氧性脑损伤发生过程中,Na+Ca2+ 交换体在细胞内钙超载中的作用。方法:采用全细胞膜片钳方法,在急性分离海马神经元上观察低氧对Na+Ca2+ 交换电流的电流电压(IV) 曲线的影响。结果:在整个膜电位水平,Na+Ca2+ 交换电流幅值均不同程度的增加,在正膜电位水平呈现一显著的外向电流。10 mV 时,电流幅值从(92 .83 ±20.8)pA上升到(130 .67 ±26.88)pA( P<0 .05) ,而在50 m V,其电流幅值从(- 74 .67 ±11 .84)pA上升到(- 58 .5±10 .71)pA(P< 0 .05)。结论:低氧时Na+Ca2+ 交换电流呈外向性,这种改变有利于低氧后通过Na+Ca2+ 交换的外向转运方式排出细胞内钠,并交换钙进入细胞 相似文献
20.
Mitochondrial Ca(2+) uptake plays a fundamental role in the regulation of energy production and cell survival. Under physiological conditions, mitochondrial Ca(2+) uptake occurs by a uniport mechanism driven electrophoretically by the membrane potential created by the respiratory chain. The activity and the biochemical properties of the mitochondrial calcium uniporter (MCU) were extensively characterized for decades but the molecular identity of the channel has remained elusive. Here, we review the recent discovery of the mitochondria Ca(2+) uniporter that represents a groundbreaking result for the molecular understanding of mitochondrial Ca(2+) homeostasis and will provide insight into the role of mitochondrial Ca(2+) deregulation in the pathogenesis of human disorders. 相似文献