首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNAi-based gene therapy is a powerful approach to treat viral infections because of its high efficiency and sequence specificity. The HIV-1-based lentiviral vector system is suitable for the delivery of RNAi inducers to HIV-1 susceptible cells due to its ability to transduce nondividing cells, including hematopoietic stem cells, and its ability for stable transgene delivery into the host cell genome. However, the presence of anti-HIV short hairpin RNA (shRNA) and microRNA (miRNA) cassettes can negatively affect the lentiviral vector titers. We show that shRNAs, which target the vector genomic RNA, strongly reduced lentiviral vector titers but inhibition of the RNAi pathway via saturation could rescue vector production. The presence of miRNAs in the vector RNA genome (sense orientation) results in a minor titer reduction due to Drosha processing. A major cause for titer reduction of miRNA vectors is due to incompatibility of the cytomegalovirus promoter with the lentiviral vector system. Replacement of this promoter with an inducible promoter resulted in an almost complete restoration of the vector titer. We also showed that antisense poly(A) signal sequences can have a dramatic effect on the vector titer. These results show that not all sequences are compatible with the lentiviral vector system and that care should be taken in the design of lentiviral vectors encoding RNAi inducers.  相似文献   

2.
3.
Encapsidation of retroviral RNA involves specific interactions between viral proteins and cis-acting genomic RNA sequences. Human immunodeficiency virus type 1 (HIV-1) RNA encapsidation determinants appear to be more complex and dispersed than those of murine retroviruses. Feline lentiviral (feline immunodeficiency virus [FIV]) encapsidation has not been studied. To gain comparative insight into lentiviral encapsidation and to optimize FIV-based vectors, we used RNase protection assays of cellular and virion RNAs to determine packaging efficiencies of FIV deletion mutants, and we studied replicative phenotypes of mutant viruses. Unlike the case for other mammalian retroviruses, the sequences between the major splice donor (MSD) and the start codon of gag contribute negligibly to FIV encapsidation. Moreover, molecular clones having deletions in this region were replication competent. In contrast, sequences upstream of the MSD were important for encapsidation, and deletion of the U5 element markedly reduced genomic RNA packaging. The contribution of gag sequences to packaging was systematically investigated with subgenomic FIV vectors containing variable portions of the gag open reading frame, with all virion proteins supplied in trans. When no gag sequence was present, packaging was abolished and marker gene transduction was absent. Inclusion of the first 144 nucleotides (nt) of gag increased vector encapsidation to detectable levels, while inclusion of the first 311 nt increased it to nearly wild-type levels and resulted in high-titer FIV vectors. However, the identified proximal gag sequence is necessary but not sufficient, since viral mRNAs that contain all coding regions, with or without as much as 119 nt of adjacent upstream 5' leader, were excluded from encapsidation. The results identify a mechanism whereby FIV can encapsidate its genomic mRNA in preference to subgenomic mRNAs.  相似文献   

4.
Lentiviral vectors that carry anti-HIV shRNAs: problems and solutions   总被引:3,自引:0,他引:3  
BACKGROUND: HIV-1 replication can be inhibited with RNA interference (RNAi) by expression of short hairpin RNA (shRNA) from a lentiviral vector. Because lentiviral vectors are based on HIV-1, viral sequences in the vector system are potential targets for the antiviral shRNAs. Here, we investigated all possible routes by which shRNAs can target the lentiviral vector system. METHODS: Expression cassettes for validated shRNAs with targets within HIV-1 Leader, Gag-Pol, Tat/Rev and Nef sequences were inserted in the lentiviral vector genome. Third-generation self-inactivating HIV-1-based lentiviral vectors were produced and lentiviral vector capsid production and transduction titer determined. RESULTS: RNAi against HIV-1 sequences within the vector backbone results in a reduced transduction titer while capsid production was unaffected. The notable exception is self-targeting of the shRNA encoding sequence, which does not affect transduction titer. This is due to folding of the stable shRNA hairpin structure, which masks the target for the RNAi machinery. Targeting of Gag-Pol mRNA reduces both capsid production and transduction titer, which was improved with a human codon-optimized Gag-Pol construct. When Rev mRNA was targeted, no reduction in capsid production and transduction titer was observed. CONCLUSIONS: Lentiviral vector titers can be negatively affected when shRNAs against the vector backbone and the Gag-Pol mRNA are expressed during lentiviral vector production. Titer reductions due to targeting of the Gag-Pol mRNA can be avoided with a human codon-optimized Gag-Pol packaging plasmid. The remaining targets in the vector backbone may be modified by point mutations to resist RNAi-mediated degradation during vector production.  相似文献   

5.
6.
Effective gene therapy is dependent on safe gene delivery vehicles that can achieve efficient transduction and sustained transgene expression. We are developing a hybrid viral vector system that combines in a single particle the large cloning capacity and efficient cell cycle-independent nuclear gene delivery of adenovirus (Ad) vectors with the long-term transgene expression and lack of viral genes of adeno-associated virus (AAV) vectors. The strategy being pursued relies on coupling the AAV DNA replication mechanism to the Ad encapsidation process through packaging of AAV-dependent replicative intermediates provided with Ad packaging elements into Ad capsids. The generation of these high-capacity AAV/Ad hybrid vectors takes place in Ad early region 1 (E1)-expressing cells and requires an Ad vector with E1 deleted to complement in trans both AAV helper functions and Ad structural proteins. The dependence on a replicating helper Ad vector leads to the contamination of AAV/Ad hybrid vector preparations with a large excess of helper Ad particles. This renders the further propagation and ultimate use of these gene delivery vehicles very difficult. Here, we show that Cre/loxP-mediated genetic selection against the packaging of helper Ad DNA can reduce helper Ad vector contamination by 99.98% without compromising hybrid vector rescue. This allowed amplification of high-capacity AAV/Ad hybrid vectors to high titers in a single round of propagation.  相似文献   

7.
Human immunodeficiency virus type 1 (HIV-1) can be used to generate recombinant viral vectors for delivery of heterologous genes to human CD4-positive lymphocytes. To define the cis-acting sequences required for efficient gene transfer, a number of HIV-1 vectors containing a previously identified packaging signal, long terminal repeats, and additional gag, pol, and env viral sequences were designed. By providing the viral proteins in trans, recombinant viruses were generated and analyzed for their abilities to transfer genes into human T lymphocytes. Inclusion of up to 653 nucleotides derived from the 5' end of the gag gene in the vector improved the efficiency of gene transfer, but inclusion of additional gag or pol sequences did not further improve this efficiency. The increased efficiency of gene transfer associated with the inclusion of 5' gag sequences in the vector arose, at least in part, from an increase in the packaging of vector RNA. The presence of the Rev-responsive element (RRE) increased the efficiency of transfer of vectors containing significant lengths of gag sequence, as expected from the Rev requirement for nucleus-to-cytoplasm transport of unspliced vector RNA containing intact packaging signals. However, the presence of a RRE did not affect the transfer efficiency of smaller vectors lacking significant lengths of gag sequences, arguing against a specific role for the RRE in packaging or vector transfer. These results contribute to an understanding of the minimal cis-acting sequences that operate in the context of HIV-1 vectors for delivering genes into human lymphocytes.  相似文献   

8.
The development of gene delivery vectors based on feline immunodeficiency virus (FIV) is an attractive alternative to vectors based on primate sources for the delivery of genes into humans. To investigate the requirements for efficient transduction of dividing and nondividing cells by vector particles based on FIV, a series of packaging and vector constructs was generated for which viral gene expression was minimized and from which unnecessary cis-acting sequences were deleted. Pseudotyped vector particles produced in 293T cells were used to transduce various target cells, including contact-inhibited human skin fibroblasts and growth-arrested HT1080 cells. FIV vectors in which the U3 promoter was replaced with the cytomegalovirus promoter gave rise to over 50-fold-higher titers than FIV vectors containing the complete FIV 5' long terminal repeat (LTR). Comparison of the transduction efficiencies of vectors containing different portions of the FIV Gag coding region indicates that at least a functional part of the FIV packaging signal (Psi) is located within an area which includes the 5' LTR and the first 350 bp of gag. Transduction efficiencies of vectors prepared without FIV vif and orf2 accessory gene expression did not differ substantially from those of vectors prepared with accessory gene expression in either dividing or nondividing cells. The requirement for FIV rev-RRE was, however, demonstrated by the inefficient production of vector particles in the absence of rev expression. Together, these results demonstrate the efficient transduction of nondividing cells in vitro by a multiply attenuated FIV vector and contribute to an understanding of the minimum requirements for efficient vector production and infectivity. In addition, we describe the ability of an FIV vector to deliver genes in vivo into hamster muscle tissue.  相似文献   

9.
10.
More than two decades have passed since genetically modified HIV was used for gene delivery. Through continuous improvements these early marker gene-carrying HIVs have evolved into safer and more effective lentiviral vectors. Lentiviral vectors offer several attractive properties as gene-delivery vehicles, including: (i) sustained gene delivery through stable vector integration into host genome; (ii) the capability of infecting both dividing and non-dividing cells; (iii) broad tissue tropisms, including important gene- and cell-therapy-target cell types; (iv) no expression of viral proteins after vector transduction; (v) the ability to deliver complex genetic elements, such as polycistronic or intron-containing sequences; (vi) potentially safer integration site profile; and (vii) a relatively easy system for vector manipulation and production. Accordingly, lentivector technologies now have widespread use in basic biology and translational studies for stable transgene overexpression, persistent gene silencing, immunization, in vivo imaging, generating transgenic animals, induction of pluripotent cells, stem cell modification and lineage tracking, or site-directed gene editing. Moreover, in the present high-throughput '-omics' era, the commercial availability of premade lentiviral vectors, which are engineered to express or silence genome-wide genes, accelerates the rapid expansion of this vector technology. In the present review, we assess the advances in lentiviral vector technology, including basic lentivirology, vector designs for improved efficiency and biosafety, protocols for vector production and infection, targeted gene delivery, advanced lentiviral applications and issues associated with the vector system.  相似文献   

11.
12.
13.
Murine leukemia virus (MLV)-based vector RNA can be packaged and propagated by the proteins of spleen necrosis virus (SNV). We recently demonstrated that MLV proteins cannot support the replication of an SNV-based vector; RNA analysis revealed that MLV proteins cannot efficiently package SNV-based vector RNA. The domain in Gag responsible for the specificity of RNA packaging was identified using chimeric gag-pol expression constructs. A competitive packaging system was established by generating a cell line that expresses one viral vector RNA containing the MLV packaging signal (Psi) and another viral vector RNA containing the SNV packaging signal (E). The chimeric gag-pol expression constructs were introduced into the cells, and vector titers as well as the efficiency of RNA packaging were examined. Our data confirm that Gag is solely responsible for the selection of viral RNAs. Furthermore, the nucleocapsid (NC) domain in the SNV Gag is responsible for its ability to interact with both SNV E and MLV Psi. Replacement of the SNV NC with the MLV NC generated a chimeric Gag that could not package SNV RNA but retained its ability to package MLV RNA. A construct expressing SNV gag-MLV pol supported the replication of both MLV and SNV vectors, indicating that the gag and pol gene products from two different viruses can functionally cooperate to perform one cycle of retroviral replication. Viral titer data indicated that SNV cis-acting elements are not ideal substrates for MLV pol gene products since infectious viruses were generated at a lower efficiency. These results indicate that the nonreciprocal recognition between SNV and MLV extends beyond the Gag-RNA interaction and also includes interactions between Pol and other cis-acting elements.  相似文献   

14.
siRNA-mediated RNA degradation has been demonstrated to act as an antiviral system in many species. Here we describe inhibition of retrovirus production by multiple siRNAs designed to target various regions of the viral genomes. Using murine leukemia virus (MuLV) as a model, we demonstrate that the virus production can be inhibited by 77% in siLTR2 (a siRNA targeting the U3 region of MuLV) expression vector transfected cells. Coexpression of siLTR2 with siPsi2 (a siRNA targeting the 3' Psi (packaging signal sequence) results in 93% suppression of the virus production, suggesting that an increased inhibition of the virus production can be achieved by coexpression of multiple siRNAs to target different regions of the viral RNA simultaneously. Our results also indicate that not all sequences of the viral RNA are equally accessible to siRNA. We show that U3 region of MuLV is more accessible to siRNA, whereas the packaging signal sequence, especially the region adjacent to 5'LTR, is less accessible to siRNA, partly as a result of the binding of Gag precursors. Furthermore, we demonstrate that coexpression of siLTR2 with siPsi2 in virus producer cells leads to 88% knockdown of viral titer, showing the benefit of coexpression of multiple siRNAs for potent suppression of virus production in the setting of an established infection. Moreover, we demonstrate that infection of MuLV in cells that stably coexpress siLTR2 with siPsi2 diminishes by 77%. Taken together, we establish that siRNA-mediated gene silencing can suppress multiple steps of the retrovirus life cycle, offering a potential for both treating virus-associated diseases and preventing viral infection.  相似文献   

15.
Gene delivery by lentivirus vectors   总被引:13,自引:0,他引:13  
The capacity to efficiently transduce nondividing cells, shuttle large genetic payloads, and maintain stable long-term transgene expression are attributes that have brought lentiviral vectors to the forefront of gene delivery vehicles for research and therapeutic applications in a clinical setting. Our discussion initiates with advances in lentiviral vector development and how these sophisticated lentiviral vectors reflect improvements in safety, regarding the prevention of replication competent lentiviruses (RCLs), vector mobilization, and insertional mutagenesis. Additionally, we describe conventional molecular regulatory systems to manage gene expression levels in a spatial and temporal fashion in the context of a lentiviral vector. State of the art technology for lentiviral vector production by transient transfection and packaging cell lines are explicitly presented with current practices used for concentration, purification, titering, and determining the safety of a vector stock. We summarize lentiviral vector applications that have received a great deal of attention in recent years including the generation of transgenic animals and the stable delivery of RNA interference molecules. Concluding remarks address some of the successes in preclinical animals, and the recent transition of lentiviral vectors to human clinical trials as therapy for a variety of infectious and genetic diseases.  相似文献   

16.
目的:构建介导大鼠结缔组织生长因子(CTGF)基因沉默的慢病毒载体转移质粒pGCL-CTGF,为进一步包装慢病毒载体奠定基础。方法:以大鼠CTGF基因为靶基因,根据RNA干扰(RNAi)序列设计原则,设计4对有小发夹结构的RNAi靶点序列,退火形成双链DNA,双酶切后定向克隆到慢病毒载体转移质粒pGCL-GFP中,构建4个含靶基因片段的重组慢病毒载体转移质粒pGCL-CTGF,并对质粒进行PCR及测序鉴定。结果:CTGF的短发夹RNA(shRNA)片段被成功克隆到慢病毒载体转移质粒pGCL-GFP中,4个插入序列与设计的靶基因片段完全一致。结论:构建了能够表达4个含CTGF靶基因片段的慢病毒载体转移质粒,为进一步包装介导CTGF基因沉默的慢病毒载体奠定了基础。  相似文献   

17.
18.
Retroviral genomes consist of two identical RNA molecules associated at their 5' ends by the dimer linkage structure located in the packaging element (Psi or E) necessary for RNA dimerization in vitro and packaging in vivo. In murine leukemia virus (MLV)-derived vectors designed for gene transfer, the Psi + sequence of 600 nucleotides directs the packaging of recombinant RNAs into MLV virions produced by helper cells. By using in vitro RNA dimerization as a screening system, a sequence of rat VL30 RNA located next to the 5' end of the Harvey mouse sarcoma virus genome and as small as 67 nucleotides was found to form stable dimeric RNA. In addition, a purine-rich sequence located at the 5' end of this VL30 RNA seems to be critical for RNA dimerization. When this VL30 element was extended by 107 nucleotides at its 3' end and inserted into an MLV-derived vector lacking MLV Psi +, it directed the efficient encapsidation of recombinant RNAs into MLV virions. Because this VL30 packaging signal is smaller and more efficient in packaging recombinant RNAs than the MLV Psi + and does not contain gag or glyco-gag coding sequences, its use in MLV-derived vectors should render even more unlikely recombinations which could generate replication-competent viruses. Therefore, utilization of the rat VL30 packaging sequence should improve the biological safety of MLV vectors for human gene transfer.  相似文献   

19.
20.
BACKGROUND: Genetically modified keratinocytes generate transplantable self-renewing epithelia suitable for delivery of therapeutic polypeptides. However, the variety of viral vectors and experimental conditions currently used make fragmented or contradictory the information on the transduction efficiency of the human primary keratinocytes. To compare the suitability of the most currently used viral vectors for efficient gene transfer to human keratinocytes, we have performed a comparative study using a panel of recombinant constructs. METHODS: For each vector, the transduction efficiency and the persistence of the transgene expression were quantified by fluorescence microscopy and flow cytometry analysis of the infected cells. RESULTS: We show that: (1) canine and human adenoviral vectors achieve a highly efficient but transient transduction of both primary and immortalized keratinocytes; (2) the adenovirus-associated virus (AAV) vectors transduce immortalized keratinocytes, albeit with a short-lived gene expression (<4 days), but fail to infect primary keratinocytes; and (3) under appropriate conditions, the oncoretroviral and lentiviral vectors can permanently transduce up to 100% of primary keratinocytes, but the highly clonogenic keratinocytes are more efficiently targeted by lentiviral vectors. CONCLUSIONS: Therefore, AAV vectors are unsuitable to transduce primary keratinocytes, while human and canine adenoviral vectors appears to be appropriate to achieve short-term delivery of therapeutic products. Recombinant retroviruses provide sustained expression of the transgene, but the lentiviral vectors are the most suitable for ex vivo gene therapy because of their ability to transduce clonogenic primary keratinocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号