首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete human genome sequences in the public database provide ways to understand the blue print of life. As of June 29, 2006, 27 archaeal, 326 bacterial and 21 eukaryotes is complete genomes are available and the sequencing for 316 bacterial, 24 archaeal, 126 eukaryotic genomes are in progress. The traditional biochemical/molecular experiments can assign accurate functions for genes in these genomes. However, the process is time-consuming and costly. Despite several efforts, only 50-60 % of genes have been annotated in most completely sequenced genomes. Automated genome sequence analysis and annotation may provide ways to understand genomes. Thus, determination of protein function is one of the challenging problems of the post-genome era. This demands bioinformatics to predict functions of un-annotated protein sequences by developing efficient tools. Here, we discuss some of the recent and popular approaches developed in Bioinformatics to predict functions for hypothetical proteins.  相似文献   

2.

Background

The emergence of next generation sequencing (NGS) has provided the means for rapid and high throughput sequencing and data generation at low cost, while concomitantly creating a new set of challenges. The number of available assembled microbial genomes continues to grow rapidly and their quality reflects the quality of the sequencing technology used, but also of the analysis software employed for assembly and annotation.

Methodology/Principal Findings

In this work, we have explored the quality of the microbial draft genomes across various sequencing technologies. We have compared the draft and finished assemblies of 133 microbial genomes sequenced at the Department of Energy-Joint Genome Institute and finished at the Los Alamos National Laboratory using a variety of combinations of sequencing technologies, reflecting the transition of the institute from Sanger-based sequencing platforms to NGS platforms. The quality of the public assemblies and of the associated gene annotations was evaluated using various metrics. Results obtained with the different sequencing technologies, as well as their effects on downstream processes, were analyzed. Our results demonstrate that the Illumina HiSeq 2000 sequencing system, the primary sequencing technology currently used for de novo genome sequencing and assembly at JGI, has various advantages in terms of total sequence throughput and cost, but it also introduces challenges for the downstream analyses. In all cases assembly results although on average are of high quality, need to be viewed critically and consider sources of errors in them prior to analysis.

Conclusion

These data follow the evolution of microbial sequencing and downstream processing at the JGI from draft genome sequences with large gaps corresponding to missing genes of significant biological role to assemblies with multiple small gaps (Illumina) and finally to assemblies that generate almost complete genomes (Illumina+PacBio).  相似文献   

3.
Phylogenomics of prokaryotic ribosomal proteins   总被引:1,自引:0,他引:1  
Yutin N  Puigbò P  Koonin EV  Wolf YI 《PloS one》2012,7(5):e36972
Archaeal and bacterial ribosomes contain more than 50 proteins, including 34 that are universally conserved in the three domains of cellular life (bacteria, archaea, and eukaryotes). Despite the high sequence conservation, annotation of ribosomal (r-) protein genes is often difficult because of their short lengths and biased sequence composition. We developed an automated computational pipeline for identification of r-protein genes and applied it to 995 completely sequenced bacterial and 87 archaeal genomes available in the RefSeq database. The pipeline employs curated seed alignments of r-proteins to run position-specific scoring matrix (PSSM)-based BLAST searches against six-frame genome translations, mitigating possible gene annotation errors. As a result of this analysis, we performed a census of prokaryotic r-protein complements, enumerated missing and paralogous r-proteins, and analyzed the distributions of ribosomal protein genes among chromosomal partitions. Phyletic patterns of bacterial and archaeal r-protein genes were mapped to phylogenetic trees reconstructed from concatenated alignments of r-proteins to reveal the history of likely multiple independent gains and losses. These alignments, available for download, can be used as search profiles to improve genome annotation of r-proteins and for further comparative genomics studies.  相似文献   

4.
Next-generation sequencing(NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting in an exponential increase in draft(partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the "scientific value" of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses the factors that could be leading to the increase in the number of draft deposits and the consequent loss of relevant biological information.  相似文献   

5.
As the more recent next-generation sequencing (NGS) technologies provide longer read sequences, the use of sequencing datasets for complete haplotype phasing is fast becoming a reality, allowing haplotype reconstruction of a single sequenced genome. Nearly all previous haplotype reconstruction studies have focused on diploid genomes and are rarely scalable to genomes with higher ploidy. Yet computational investigations into polyploid genomes carry great importance, impacting plant, yeast and fish genomics, as well as the studies of the evolution of modern-day eukaryotes and (epi)genetic interactions between copies of genes. In this paper, we describe a novel maximum-likelihood estimation framework, HapTree, for polyploid haplotype assembly of an individual genome using NGS read datasets. We evaluate the performance of HapTree on simulated polyploid sequencing read data modeled after Illumina sequencing technologies. For triploid and higher ploidy genomes, we demonstrate that HapTree substantially improves haplotype assembly accuracy and efficiency over the state-of-the-art; moreover, HapTree is the first scalable polyplotyping method for higher ploidy. As a proof of concept, we also test our method on real sequencing data from NA12878 (1000 Genomes Project) and evaluate the quality of assembled haplotypes with respect to trio-based diplotype annotation as the ground truth. The results indicate that HapTree significantly improves the switch accuracy within phased haplotype blocks as compared to existing haplotype assembly methods, while producing comparable minimum error correction (MEC) values. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2–5.  相似文献   

6.
The first bacterial genome was sequenced in 1995, and the first archaeal genome in 1996. Soon after these breakthroughs, an exponential rate of genome sequencing was established, with a doubling time of approximately 20 months for bacteria and approximately 34 months for archaea. Comparative analysis of the hundreds of sequenced bacterial and dozens of archaeal genomes leads to several generalizations on the principles of genome organization and evolution. A crucial finding that enables functional characterization of the sequenced genomes and evolutionary reconstruction is that the majority of archaeal and bacterial genes have conserved orthologs in other, often, distant organisms. However, comparative genomics also shows that horizontal gene transfer (HGT) is a dominant force of prokaryotic evolution, along with the loss of genetic material resulting in genome contraction. A crucial component of the prokaryotic world is the mobilome, the enormous collection of viruses, plasmids and other selfish elements, which are in constant exchange with more stable chromosomes and serve as HGT vehicles. Thus, the prokaryotic genome space is a tightly connected, although compartmentalized, network, a novel notion that undermines the ‘Tree of Life’ model of evolution and requires a new conceptual framework and tools for the study of prokaryotic evolution.  相似文献   

7.

Background

The short reads output by first- and second-generation DNA sequencing instruments cannot completely reconstruct microbial chromosomes. Therefore, most genomes have been left unfinished due to the significant resources required to manually close gaps in draft assemblies. Third-generation, single-molecule sequencing addresses this problem by greatly increasing sequencing read length, which simplifies the assembly problem.

Results

To measure the benefit of single-molecule sequencing on microbial genome assembly, we sequenced and assembled the genomes of six bacteria and analyzed the repeat complexity of 2,267 complete bacteria and archaea. Our results indicate that the majority of known bacterial and archaeal genomes can be assembled without gaps, at finished-grade quality, using a single PacBio RS sequencing library. These single-library assemblies are also more accurate than typical short-read assemblies and hybrid assemblies of short and long reads.

Conclusions

Automated assembly of long, single-molecule sequencing data reduces the cost of microbial finishing to $1,000 for most genomes, and future advances in this technology are expected to drive the cost lower. This is expected to increase the number of completed genomes, improve the quality of microbial genome databases, and enable high-fidelity, population-scale studies of pan-genomes and chromosomal organization.  相似文献   

8.
Venter E  Smith RD  Payne SH 《PloS one》2011,6(11):e27587
Experimental evidence is increasingly being used to reassess the quality and accuracy of genome annotation. Proteomics data used for this purpose, called proteogenomics, can alleviate many of the problematic areas of genome annotation, e.g. short protein validation and start site assignment. We performed a proteogenomic analysis of 46 genomes spanning eight bacterial and archaeal phyla across the tree of life. These diverse datasets facilitated the development of a robust approach for proteogenomics that is functional across genomes varying in %GC, gene content, proteomic sampling depth, phylogeny, and genome size. In addition to finding evidence for 682 novel proteins, 1336 new start sites, and numerous dubious genes, we discovered sites of post-translational maturation in the form of proteolytic cleavage of 1175 signal peptides. The number of novel proteins per genome is highly variable (median 7, mean 15, stdev 20). Moreover, comparison of novel genes with the current genes did not reveal any consistent abnormalities. Thus, we conclude that proteogenomics fulfills a yet to be understood deficiency in gene prediction. With the adoption of new sequencing technologies which have higher error rates than Sanger-based methods and the advances in proteomics, proteogenomics may become even more important in the future.  相似文献   

9.
真菌基因组较其他真核生物基因组结构简单,长度短,易于测序、组装与注释,因此真菌基因组是研究真核生物基因组的模型。为研究真菌基因组组装策略,本研究基于Illumina HiSeq测序平台对烟曲霉菌株An16007基因组测序,分别使用5种de novo组装软件ABySS、SOAP-denovo、Velvet、MaSuRCA和IDBA-UD组装基因组,然后通过Augustus软件进行基因预测,BUSCO软件评估组装结果。研究发现,5种组装软件对基因组组装结果不同,ABySS组装的基因组较其他4种组装软件具有更高的完整性和准确性,且预测的基因数量较高,因此,ABySS更适合本研究基因组的组装。本研究提供了真菌de novo测序、组装及组装质量评估的技术流程,为基因组<100 Mb的真菌或其他生物基因组的研究提供参考。  相似文献   

10.
原核生物蛋白质基因组学研究进展   总被引:1,自引:0,他引:1  
随着基因组测序技术的不断发展,大量微生物基因组序列可以在短时间内得以准确鉴定。为了进一步探究基因组的结构与功能,基于序列特征与同源特征的基因组注释算法广泛应用于新测序物种。然而受基因组测序质量以及算法本身准确性偏低等问题的影响,现有的基因组注释存在着相当比例的假基因以及注释错误,尤其是蛋白质N端的注释错误。为了弥补基因组注释的不足,以基因芯片或RNA-seq为核心的转录组测序技术和以串联质谱为核心的蛋白质组测序技术可以高通量地对基因的转录和翻译产物进行精确测定,进而实现预测基因结构的实验验证。然而,原核生物细胞中存在的大量非编码RNA给转录组测序技术引入了污染数据,限制了其对基因组注释的应用。相对而言,以串联质谱技术为核心的蛋白质组学测序可以在短时间内鉴定到生物体内大量的蛋白质,实现注释基因的验证甚至校准。已成为基因组注释和重注释的重要依据,并因而衍生了"蛋白质基因组学"的新研究方向。文中首先介绍传统的基于序列预测和同源比对的基因组注释算法,指出其中存在的不足。在此基础上,结合转录组学与蛋白质组学的技术特点,分析蛋白质组学对于原核生物基因组注释的优势,总结现阶段大规模蛋白质基因组学研究的进展情况。最后从信息学角度指出当前蛋白质组数据进行基因组重注释存在的问题与相应的解决方案,进而探讨未来蛋白质基因组学的发展方向。  相似文献   

11.
Rational classification of proteins encoded in sequenced genomes is critical for making the genome sequences maximally useful for functional and evolutionary studies. The database of Clusters of Orthologous Groups of proteins (COGs) is an attempt on a phylogenetic classification of the proteins encoded in 21 complete genomes of bacteria, archaea and eukaryotes (http://www. ncbi.nlm. nih.gov/COG). The COGs were constructed by applying the criterion of consistency of genome-specific best hits to the results of an exhaustive comparison of all protein sequences from these genomes. The database comprises 2091 COGs that include 56-83% of the gene products from each of the complete bacterial and archaeal genomes and approximately 35% of those from the yeast Saccharomyces cerevisiae genome. The COG database is accompanied by the COGNITOR program that is used to fit new proteins into the COGs and can be applied to functional and phylogenetic annotation of newly sequenced genomes.  相似文献   

12.
KS Lee  RN Kim  BH Yoon  DS Kim  SH Choi  DW Kim  SH Nam  A Kim  A Kang  KH Park  JE Jung  SH Chae  HS Park 《Bioinformation》2012,8(11):532-534
Recently, next generation sequencing (NGS) technologies have led to a revolutionary increase in sequencing speed and costefficacy. Consequently, a vast number of contigs from many recently sequenced bacterial genomes remain to be accurately mapped and annotated, requiring the development of more convenient bioinformatics programs. In this paper, we present a newly developed web-based bioinformatics program, Bacterial Genome Mapper, which is suitable for mapping and annotating contigs that have been assembled from bacterial genome sequence raw data. By constructing a multiple alignment map between target contig sequences and two reference bacterial genome sequences, this program also provides very useful comparative genomics analysis of draft bacterial genomes. AVAILABILITY: The database is available for free at http://mbgm.kribb.re.kr.  相似文献   

13.
Insertion sequences (ISs) are simple transposable elements present in most bacterial and archaeal genomes and play an important role in genomic evolution. The recent expansion of sequenced genomes offers the opportunity to study ISs comprehensively, but this requires efficient and accurate tools for IS annotation. We have developed an open-source program called OASIS, or Optimized Annotation System for Insertion Sequences, which automatically annotates ISs within sequenced genomes. OASIS annotations of 1737 bacterial and archaeal genomes offered an unprecedented opportunity to examine IS evolution. At a broad scale, we found that most IS families are quite widespread; however, they are not present randomly across taxa. This may indicate differential loss, barriers to exchange and/or insufficient time to equilibrate across clades. The number of ISs increases with genome length, but there is both tremendous variation and no increase in IS density for genomes >2 Mb. At the finer scale of recently diverged genomes, the proportion of shared IS content falls sharply, suggesting loss and/or emergence of barriers to successful cross-infection occurs rapidly. Surprisingly, even after controlling for 16S rRNA sequence divergence, the same ISs were more likely to be shared between genomes labeled as the same species rather than as different species.  相似文献   

14.
The falling cost of genome sequencing is having a marked impact on the research community with respect to which genomes are sequenced and how and where they are annotated. Genome annotation projects have generally become small-scale affairs that are often carried out by an individual laboratory. Although annotating a eukaryotic genome assembly is now within the reach of non-experts, it remains a challenging task. Here we provide an overview of the genome annotation process and the available tools and describe some best-practice approaches.  相似文献   

15.
Metagenomics facilitates the study of the genetic information from uncultured microbes and complex microbial communities. Assembling complete genomes from metagenomics data is difficult because most samples have high organismal complexity and strain diversity. Some studies have attempted to extract complete bacterial, archaeal, and viral genomes and often focus on species with circular genomes so they can help confirm completeness with circularity. However, less than 100 circularized bacterial and archaeal genomes have been assembled and published from metagenomics data despite the thousands of datasets that are available. Circularized genomes are important for (1) building a reference collection as scaffolds for future assemblies, (2) providing complete gene content of a genome, (3) confirming little or no contamination of a genome, (4) studying the genomic context and synteny of genes, and (5) linking protein coding genes to ribosomal RNA genes to aid metabolic inference in 16S rRNA gene sequencing studies. We developed a semi-automated method called Jorg to help circularize small bacterial, archaeal, and viral genomes using iterative assembly, binning, and read mapping. In addition, this method exposes potential misassemblies from k-mer based assemblies. We chose species of the Candidate Phyla Radiation (CPR) to focus our initial efforts because they have small genomes and are only known to have one ribosomal RNA operon. In addition to 34 circular CPR genomes, we present one circular Margulisbacteria genome, one circular Chloroflexi genome, and two circular megaphage genomes from 19 public and published datasets. We demonstrate findings that would likely be difficult without circularizing genomes, including that ribosomal genes are likely not operonic in the majority of CPR, and that some CPR harbor diverged forms of RNase P RNA. Code and a tutorial for this method is available at https://github.com/lmlui/Jorg and is available on the DOE Systems Biology KnowledgeBase as a beta app.  相似文献   

16.
17.
With the onset of modern DNA sequencing technologies, genomics is experiencing a revolution in terms of quantity and quality of sequencing data. Rapidly growing numbers of sequenced genomes and metagenomes present a tremendous challenge for bioinformatics tools that predict protein-coding regions. Experimental evidence of expressed genomic regions, both at the RNA and protein level, is becoming invaluable for genome annotation and training of gene prediction algorithms. Evidence of gene expression at the protein level using mass spectrometry-based proteomics is increasingly used in refinement of raw genome sequencing data. In a typical "proteogenomics" experiment, the whole proteome of an organism is extracted, digested into peptides and measured by a mass spectrometer. The peptide fragmentation spectra are identified by searching against a six-frame translation of the raw genomic assembly, thus enabling the identification of hitherto unpredicted protein-coding genomic regions. Application of mass spectrometry to genome annotation presents a range of challenges to the standard workflows in proteomics, especially in terms of proteome coverage and database search strategies. Here we provide an overview of the field and argue that the latest mass spectrometry technologies that enable high mass accuracy at high acquisition rates will prove to be especially well suited for proteogenomics applications.  相似文献   

18.
Methanoculleus marisnigri Romesser et al. 1981 is a methanogen belonging to the order Methanomicrobiales within the archaeal phylum Euryarchaeota. The type strain, JR1, was isolated from anoxic sediments of the Black Sea. M. marisnigri is of phylogenetic interest because at the time the sequencing project began only one genome had previously been sequenced from the order Methanomicrobiales. We report here the complete genome sequence of M. marisnigri type strain JR1 and its annotation. This is part of a Joint Genome Institute 2006 Community Sequencing Program to sequence genomes of diverse Archaea.  相似文献   

19.
20.
Recognition of protein-coding genes, a classical bioinformatics issue, is an absolutely needed step for annotating newly sequenced genomes. The Z-curve algorithm, as one of the most effective methods on this issue, has been successfully applied in annotating or re-annotating many genomes, including those of bacteria, archaea and viruses. Two Z-curve based ab initio gene-finding programs have been developed: ZCURVE (for bacteria and archaea) and ZCURVE_V (for viruses and phages). ZCURVE_C (for 57 bacteria) and Zfisher (for any bacterium) are web servers for re-annotation of bacterial and archaeal genomes. The above four tools can be used for genome annotation or re-annotation, either independently or combined with the other gene-finding programs. In addition to recognizing protein-coding genes and exons, Z-curve algorithms are also effective in recognizing promoters and translation start sites. Here, we summarize the applications of Z-curve algorithms in gene finding and genome annotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号