首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The endoplasmic reticulum (ER) adapts to stress by activating a signalling cascade known as the ER stress response. While ER stress signalling is a central component of the cellular defence against environmental insult, persistent activation is thought to contribute to the progression of various metabolic complications via loss of protein function and cell death. Despite its importance however, whether and how ER stress impacts morbidity and mortality in conditions of hypermetabolism remain unclear. In this study, we discovered that chronic ER stress response plays a role in mediating adverse outcomes that occur after major trauma. Using a murine model of thermal injury, we show that induction of ER stress with Tunicamycin not only increased mortality but also resulted in hepatic damage and hepatic steatosis. Importantly, post‐burn treatment with chaperone ER stress inhibitors attenuated hepatic ER stress and improved organ function following injury. Our study identifies ER stress as a potential hub of the signalling network affecting multiple aspects of metabolism after major trauma and as a novel potential molecular target to improve the clinical outcomes of severely burned patients.  相似文献   

2.
Autophagy is a major pathway for the delivery of proteins or organelles to be degraded in the vacuole and recycled. It can be induced by abiotic stresses, senescence, and pathogen infection. Recent research has shown that autophagy is activated by ER stress. Here we review the major progress that has been made in the study of autophagy and ER stress in plants, and describe the links between ER stress and autophagy to guide further study on how autophagy is regulated in response to ER stress.  相似文献   

3.
4.
FAD mutations in presenilin-1 (PS1) cause attenuation of the induction of the endoplasmic reticulum (ER)-resident chaperone GRP78/BiP under ER stress, due to disturbed function of IRE1, the sensor for accumulation of unfolded protein in the ER lumen. PERK, an ER-resident transmembrane protein kinase, is also a sensor for the unfolded protein response (UPR), causing phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) to inhibit translation initiation. Here, we report that the FAD mutant PS1 disturbs the UPR by attenuating both the activation of PERK and the phosphorylation of eIF2alpha. Consistent with the results of a disturbed UPR, inhibition of protein synthesis under ER stress was impaired in cells expressing PS1 mutants. These results suggest that mutant PS1 impedes general translational attenuation regulated by PERK and eIF2alpha, resulting in an increased load of newly synthesized proteins into the ER and subsequently increasing vulnerability to ER stress.  相似文献   

5.
Mutations in DJ-1 gene have been linked to autosomal recessive early onset parkinsonism (AR-EOP). Although the mechanism of neuronal cell death due to DJ-1 mutation has not been fully elucidated, loss of DJ-1 function was considered to cause the phenotype. Here, we demonstrated that the down regulation of endogenous DJ-1 of the neuronal cell line by siRNA enhanced the cell death which was induced by oxidative stress, ER stress, and proteasome inhibition, but not by pro-apoptotic stimulus. The cell death with hydrogen peroxide was dramatically rescued by over-expression of wild-type DJ-1, but not by that of L166P mutant DJ-1. Furthermore, DJ-1 rescued the cell death caused by over-expression of Pael receptor, which was a substrate of Parkin, another gene product for autosomal recessive juvenile parkinsonism. These results suggest that loss of protective activity of DJ-1 from neuro-toxicity induced by these stresses contributes to neuronal cell death in AR-EOP with mutant DJ-1.  相似文献   

6.
7.
A recent report claimed that endoplasmic reticulum (ER) stress activates the ER trans-membrane receptor IRE1α, leading to increased caspase-2 levels via degradation of microRNAs, and consequently induction of apoptosis. This observation casts caspase-2 into a central role in the apoptosis triggered by ER stress. We have used multiple cell types from caspase-2-deficient mice to test this hypothesis but failed to find significant impact of loss of caspase-2 on ER-stress-induced apoptosis. Moreover, we did not observe increased expression of caspase-2 protein in response to ER stress. Our data strongly argue against a critical role for caspase-2 in ER-stress-induced apoptosis.  相似文献   

8.
HIV-protease inhibitors (PIs) markedly decreased mortality of HIV-infected patients. However, their use has been associated with occurence of metabolic abnormalities the causes of which are not well understood. We report here that lopinavir, one of the most prescribed PI, dose-dependently co-induced insulin resistance and ER stress in human adipocytes obtained from differentiation of precursor cells.Insulin resistance was subsequent to IRS1 phosphorylation defects and resulted in a concentration-dependent decrease of glucose uptake. The major ER stress pathway involved was the phosphorylation of eIF2-α. Salubrinal, a selective eIF2-α dephosphorylation inhibitor, induced insulin resistance by targeting IRS1 phosphorylation at serine 312 and acted synergistically with LPV when both drugs were used in combination.This study points out the key role of eIF2-α phosphorylation in the development of PI-associated insulin resistance and ER stress. Thus, this protein represents a promising therapeutic target for development of new PIs devoid of adverse metabolic effects.  相似文献   

9.
10.
ER stress contributes to ischemia-induced cardiomyocyte apoptosis   总被引:6,自引:0,他引:6  
Myocardial ischemia is a severe stress condition that leads to loss of cardiomyocytes. The cell loss is attributed to apoptosis, although the exact mechanisms involved are only partially defined, which limits therapeutic opportunities. Here, we show caspase activation and apoptosis in neonatal rat cardiomyocyte cultures subjected to simulated ischemia by serum, glucose, and oxygen deprivation (SGO). Caspase activation was preceded by endoplasmic reticulum (ER) stress and the activation of the unfolded protein response (UPR), detected by the induction of Grp78, induction and splicing of XBP1, and phosphorylation of eukaryotic initiation factor 2-alpha (eIF2alpha). At a later time the ER stress response switched from UPR and cytoprotective response to a pro-apoptotic response as demonstrated by the upregulation of CHOP and processing of pro-caspase-12. Thus, we provide evidence that the ER can generate and propagate apoptotic signals in response to ischemic stress and this pathway is therefore a novel target for prevention of ischemia-mediated cardiomyocyte loss.  相似文献   

11.
Proteins are folded properly in the endoplasmic reticulum (ER). Various stress such as hypoxia, ischemia and starvation interfere with the ER function, causing ER stress, which is defined by the accumulation of unfolded protein (UP) in the ER. ER stress is prevented by the UP response (UPR) and ER-associated degradation (ERAD). These signaling pathways are activated by three major ER molecules, ATF6, IRE-1 and PERK. Using HaCaT cells, we investigated ER signaling in human keratinocytes irradiated by environmental doses of ultraviolet B (UVB). The expression of Ero1-Lα, an upstream signaling molecule of ER stress, decreased at 1-4 h after 10 mJ/cm2 irradiation, indicating that the environmental dose of UVB-induced ER stress in HaCaT cells, without growth retardation. Furthermore, expression of intact ATF6 was decreased and it was translocated to the nuclei. The expression of XBP-1, a downstream molecule of IRE-1, which is an ER chaperone whose expression is regulated by XBP-1, and UP ubiquitination were induced by 10 mJ/cm2 UVB at 4 h. PERK, which regulates apoptosis, was not phosphorylated. Our results demonstrate that UVB irradiation generates UP in HaCaT cells and that the UPR and ERAD systems are activated to protect cells from UVB-induced ER stress. This is the first report to show ER signaling in UVB-irradiated keratinocytes.  相似文献   

12.
13.
14.
15.
Endoplasmic reticulum (ER) stress, which is caused by the accumulation of misfolded proteins in the ER, elicits an adaptive response, the unfolded protein response (UPR). One component of the UPR, the endoplasmic reticulum-associated protein degradation (ERAD) system, has an important function in the survival of ER stressed cells. Here, we show that HRD1, a component of the ERAD system, is upregulated in pancreatic islets of the Akita diabetes mouse model and enhances intracellular degradation of misfolded insulin. High ER stress in beta-cells stimulated mutant insulin degradation through HRD1 to protect beta-cells from ER stress and ensuing death. If HRD1 serves the same function in humans, it may serve as a target for therapeutic intervention in diabetes.  相似文献   

16.
Inositol-requiring enzyme 1 (IRE1) is an evolutionarily conserved sensor of endoplasmic reticulum (ER) stress and mediates a key branch of the unfolded protein response in eukaryotic cells. It is an ER-resident transmembrane protein that possesses Ser/Thr protein kinase and endoribonuclease (RNase) activities in its cytoplasmic region. IRE1 is activated through dimerization/oligomerization and autophosphorylation at multiple sites, acting through its RNase activity to restore the functional capacity of the ER. However, it remains poorly defined in vivo how the autophosphorylation events of endogenous IRE1 govern its dynamic activation and functional output. Here, we generated a mouse model harboring a S724A knock-in mutation (Ern1S724A/S724A) and investigated the importance of phosphorylation at Ser724 within the kinase activation loop of murine IRE1α. We found that in mouse embryonic fibroblast cells and in primary hepatocytes, S724A mutation resulted in markedly reduced IRE1α autophosphorylation in parallel with blunted activation of its RNase activity to catalyze X-box binding protein 1 (Xbp1) mRNA splicing. Furthermore, ablation of IRE1α phosphorylation at Ser724 exacerbated ER stress–induced hepatic steatosis in tunicamycin-treated Ern1S724A/S724A mice. This was accompanied by significantly decreased hepatic production of spliced XBP1 protein but increased CCAAT-enhancer–binding protein homologous protein (CHOP) level, along with suppressed expression of key metabolic regulators of fatty acid β-oxidation and lipid secretion. These results demonstrate a critical role of phosphorylation at Ser724 of IRE1α in dynamically controlling its kinase activity, and thus its autophosphorylation state, which is coupled to activation of its RNase activity in counteracting hepatic steatosis under ER stress conditions.  相似文献   

17.
18.
N-Acetylglucosaminyltransferase-V (GnT-V) is a key enzyme in the processing of N-glycans during synthesis of glycoproteins. We have reported that down-regulating GnT-V could induce endoplasmic reticulum stress (ER stress) in 7721 cells, a human hepatocarcinoma cell line. In a search for mechanisms of ER stress, we found that there was a prominent decline of glucose uptake in antisense GnT-V transfectant, furthermore, a decrease of tri- or tetra-antannary sugar chain of glucose transporter 1 (GLUT1). However, distribution of GLUT1 in antisense GnT-V transfectant was not affected. Glucose deprivation has been known to activate ER stress in tumor cells. Therefore, the data presented in this study indicate that the glycosylation change and decrease of transport activity of GLUT1 may be one possible mechanism of ER stress induced by down-regulating GnT-V, and GnT-V may contribute to the regulation of glucose uptake by modifying glycosylation of GLUT1 in some tumor cells.  相似文献   

19.
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an unknown molecular pathogenesis. A recent molecular focus has been the mutated neuroligin 3, neuroligin 3(R451C), in gain-of-function studies and for its role in induced impairment of synaptic function, but endoplasmic reticulum (ER) stress induced by mutated molecules also deserves investigation. We previously found two missense mutations, H246N and Y251S, in the gene-encoding synaptic cell adhesion molecule-1 (CADM1) in ASD patients, including cleavage of the mutated CADM1 and its intracellular accumulation. In this study, we found that the mutated CADM1 showed slightly reduced homophilic interactions in vitro but that most of its interactions persist. The mutated CADM1 also showed morphological abnormalities, including shorter dendrites, and impaired synaptogenesis in neurons. Wild-type CADM1 was partly localized to the ER of C2C5 cells, whereas mutated CADM1 mainly accumulated in the ER despite different sensitivities toward 4-phenyl butyric acid with chemical chaperone activity and rapamycin with promotion activity for degradation of the aggregated protein. Modeling analysis suggested a direct relationship between the mutations and the conformation alteration. Both mutated CADM1 and neuroligin 3(R451C) induced upregulation of C/EBP-homologous protein (CHOP), an ER stress marker, suggesting that in addition to the trafficking impairment, this CHOP upregulation may also be involved in ASD pathogenesis.  相似文献   

20.
The inducible T-REx system and other inducible expression systems have been developed in order to control the expression levels of recombinant protein in mammalian cells. In order to study the effects of heterologous protein expression on mammalian host behavior, the gene for recombinant Human transferrin (hTf) was integrated into HEK-293 cells and expressed under the control of the T-REx inducible technology (293-TetR-Hyg-hTf) or using a constitutive promoter (293-CMV-hTf). A number of inducible clones with variable expression levels were identified for the T-REx system with levels of hTf for the high expressing clones nearly double those obtained using the constitutive cytomegalovirus (CMV) promoter. The level of transferrin produced was found to increase proportionately with tetracycline concentration between 0 and 1 mug/mL with no significant increases in transferrin production above 1 mug/mL. As a result, the optimal induction time and tetracycline concentrations were determined to be the day of plating and 1 mug/mL, respectively. Interestingly, the cells induced to express transferrin, 293-TetR-Hyg-hTf, exhibited lower viable cell densities and percent viabilities than the uninduced cultures for multiple clonal isolates. In addition, the induction of transferrin expression was found to cause an increase in the expression of the ER-stress gene, BiP, that was not observed in the uninduced cells. However, both uninduced and induced cell lines containing the hTf gene exhibited longer survival in culture than the control cells, possibly as a result of the positive effects of hTf on cell survival. Taken together, these results suggest that the high level expression of complex proteins in mammalian cells can limit the viable cell densities of cells in culture as a result of cellular stresses caused by generating proteins that may be difficult to fold or are otherwise toxic to cells. The application of inducible systems such as the T-REx technology will allow us to optimize protein production while limiting the negative effects that result from these cellular stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号