首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jin  Ming-Xian  Mi  Hualing 《Photosynthetica》2002,40(2):161-164
Kinetics of non-photochemical reduction of the photosynthetic intersystem electron transport chain by exogenous NADPH was examined in osmotically lysed spinach chloroplasts by chlorophyll (Chl) fluorescence measurements under anaerobic condition. Upon the addition of NADPH, the apparent F0 increased sigmoidally, and the value of the maximal slope was calculated to give the reduction rate of plastoquinone (PQ) pool. Application of 5 µM antimycin A lowered significantly both the ceiling and the rate of the NADPH-induced Chl fluorescence increase, while the suppressive effect of 10 µM rotenone was slighter. This indicated that dark reduction of the PQ pool by NADPH in spinach chloroplasts under O2-limitation condition could be attributed mainly to the pathway catalysed sequentially by ferredoxin-NADP+ oxidoreductase (FNR) and ferredoxin-plastoquinone reductase (FQR), rather than that mediated by NAD(P)H dehydro- genase (NDH).  相似文献   

2.
Light and temperature affect state transitions through changes in the plastoquinone (PQ) redox state in photosynthetic organisms. We demonstrated that light and/or heat treatment induced preferential photosystem (PS) I excitation by binding light-harvesting complex II (LHCII) proteins. The photosystem of wheat was in state 1 after dark overnight treatment, wherein PQ was oxidized and most of LHCII was not bound to PSI. At the onset of the light treatment [25 °C in the light (100 µmol photons m?2 s?1)], two major LHCIIs, Lhcb1 and Lhcb2 were phosphorylated, and the PSI–LHCII supercomplex formed within 5 min, which coincided with an increase in the PQ oxidation rate. Heat treatment at 40 °C of light-adapted wheat led to further LHCII protein phosphorylation of, resultant cyclic electron flow promotion, which was accompanied by ultrafast excitation of PSI and structural changes of thylakoid membranes, thereby protecting PSII from heat damage. These results suggest that LHCIIs are required for the functionality of wheat plant PSI, as it keeps PQ oxidized by regulating photochemical electron flow, thereby helping acclimation to environmental changes.  相似文献   

3.
To assess the role of redox state of photosystem II (PSII) acceptor side electron carriers in PSII photochemical activity, we studied sub-millisecond fluorescence kinetics of the wild type Synechocystis PCC 6803 and its mutants with natural variability in the redox state of the plastoquinone (PQ) pool. In cyanobacteria, dark adaptation tends to reduce PQ pool and induce a shift of the cyanobacterial photosynthetic apparatus to State 2, whereas illumination oxidizes PQ pool, leading to State 1 (Mullineaux, C. W., and Holzwarth, A. R. (1990) FEBS Lett., 260, 245-248). We show here that dark-adapted Ox mutant with naturally reduced PQ is characterized by slower QA reoxidation and O2 evolution rates, as well as lower quantum yield of PSII primary photochemical reactions (Fv/Fm) as compared to the wild type and SDH–mutant, in which the PQ pool remains oxidized in the dark. These results indicate a large portion of photochemically inactive PSII reaction centers in the Ox mutant after dark adaptation. While light adaptation increases Fv/Fm in all tested strains, indicating PSII activation, by far the greatest increase in Fv/Fm and O2 evolution rates is observed in the Ox mutant. Continuous illumination of Ox mutant cells with low-intensity blue light, that accelerates QA reoxidation, also increases Fv/Fm and PSII functional absorption cross-section (590 nm); this effect is almost absent in the wild type and SDH–mutant. We believe that these changes are caused by the reorganization of the photosynthetic apparatus during transition from State 2 to State 1. We propose that two processes affect the PSII activity during changes of light conditions: 1) reversible inactivation of PSII, which is associated with the reduction of electron carriers on the PSII acceptor side in the dark, and 2) PSII activation under low light related to the increase in functional absorption cross-section at 590 nm.  相似文献   

4.
Photosystem I (PSI) is a pigment-protein complex required for the light-dependent reactions of photosynthesis and participates in light-harvesting and redox-driven chloroplast metabolism. Assembly of PSI into supercomplexes with light harvesting complex (LHC) II, cytochrome b6f (Cytb6f) or NAD(P)H dehydrogenase complex (NDH) has been proposed as a means for regulating photosynthesis. However, structural details about the binding positions in plant PSI are lacking. We analyzed large data sets of electron microscopy single particle projections of supercomplexes obtained from the stroma membrane of Arabidopsis thaliana. By single particle analysis, we established the binding position of Cytb6f at the antenna side of PSI. The rectangular-shaped Cytb6f dimer binds at the side where Lhca1 is located. The complex binds with its short side rather than its long side to PSI, which may explain why these supercomplexes are difficult to purify and easily disrupted. Refined analysis of the interaction between PSI and the NDH complex indicates that in total up to 6 copies of PSI can arrange with one NDH complex. Most PSI-NDH supercomplexes appeared to have 1–3 PSI copies associated. Finally, the PSI-LHCII supercomplex was found to bind an additional LHCII trimer at two positions on the LHCI side in Arabidopsis. The organization of PSI, either in a complex with NDH or with Cytb6f, may improve regulation of electron transport by the control of binding partners and distances in small domains.  相似文献   

5.
Light modulation of the ability of three artificial quinones, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), 2,6-dichloro-p-benzoquinone (DCBQ), and tetramethyl-p-benzoquinone (duroquinone), to quench chlorophyll (Chl) fluorescence photochemically or non-photochemically was studied to simulate the functions of endogenous plastoquinones during the thermal phase of fast Chl fluorescence induction kinetics. DBMIB was found to suppress by severalfold the basal level of Chl fluorescence (Fo) and to markedly retard the light-induced rise of variable fluorescence (Fv). After irradiation with actinic light, Chl fluorescence rapidly dropped down to the level corresponding to Fo level in untreated thylakoids and then slowly declined to the initial level. DBMIB was found to be an efficient photochemical quencher of energy in Photosystem II (PSII) in the dark, but not after prolonged irradiation. Those events were owing to DBMIB reduction under light and its oxidation in the dark. At high concentrations, DCBQ exhibited quenching behaviours similar to those of DBMIB. In contrast, duroquinone demonstrated the ability to quench Fv at low concentration, while Fo was declined only at high concentrations of this artificial quinone. Unlike for DBMIB and DCBQ, quenched Fo level was attained rapidly after actinic light had been turned off in the presence of high duroquinone concentrations. That finding evidenced that the capacity of duroquinone to non-photochemically quench excitation energy in PSII was maintained during irradiation, which is likely owing to the rapid electron transfer from duroquinol to Photosystem I (PSI). It was suggested that DBMIB and DCBQ at high concentration, on the one hand, and duroquinone, on the other hand, mimic the properties of plastoquinones as photochemical and non-photochemical quenchers of energy in PSII under different conditions. The first model corresponds to the conditions under which the plastoquinone pool can be largely reduced (weak electron release from PSII to PSI compared to PSII-driven electron flow from water under strong light and weak PSI photochemical capacity because of inactive electron transport on its reducing side), while the second one mimics the behaviour of the plastoquinone pool when it cannot be filled up with electrons (weak or moderate light and high photochemical competence of PSI).  相似文献   

6.
Photosynthetic organisms are able to adapt to changes in light conditions by balancing the light excitation energy between the light-harvesting systems of photosystem (PS) II and photosystem I to optimize the photosynthetic yield. A key component in this process, called state transitions, is the chloroplast protein kinase Stt7/STN7, which senses the redox state of the plastoquinone pool. Upon preferential excitation of photosystem II, this kinase is activated through the cytochrome b6f complex and required for the phosphorylation of the light-harvesting system of photosystem II, a portion of which migrates to photosystem I (state 2). Preferential excitation of photosystem I leads to the inactivation of the kinase and to dephosphorylation of light-harvesting complex (LHC) II and its return to photosystem II (state 1). Here we compared the thylakoid phosphoproteome of the wild-type strain and the stt7 mutant of Chlamydomonas under state 1 and state 2 conditions. This analysis revealed that under state 2 conditions several Stt7-dependent phosphorylations of specific Thr residues occur in Lhcbm1/Lhcbm10, Lhcbm4/Lhcbm6/Lhcbm8/Lhcbm9, Lhcbm3, Lhcbm5, and CP29 located at the interface between PSII and its light-harvesting system. Among the two phosphorylation sites detected specifically in CP29 under state 2, one is Stt7-dependent. This phosphorylation may play a crucial role in the dissociation of CP29 from PSII and/or in its association to PSI where it serves as a docking site for LHCII in state 2. Moreover, Stt7 was required for the phosphorylation of the thylakoid protein kinase Stl1 under state 2 conditions, suggesting the existence of a thylakoid protein kinase cascade. Stt7 itself is phosphorylated at Ser533 in state 2, but analysis of mutants with a S533A/D change indicated that this phosphorylation is not required for state transitions. Moreover, we also identified phosphorylation sites that are redox (state 2)-dependent but independent of Stt7 and additional phosphorylation sites that are redox-independent.The primary photochemical reactions of photosynthesis are catalyzed by the pigment-protein complexes photosystem II (PSII)1 and PSI (PSI), which are linked in series through the plastoquinone pool, the cytochrome b6f complex, and plastocyanin in the thylakoid membranes. Upon light absorption by the antenna systems of PSII and PSI, charge separations occur across the membrane that lead to the oxidation of water by PSII and electron flow to PSI and ultimately to the reduction of NADP+. Because the antenna systems of PSII and PSI have different pigment composition, they are differentially sensitized upon changes in light quality and quantity. However, photosynthetic organisms have the ability to adapt to changes in light. They balance energy input and consumption in the short term through dissipation of excess absorbed light energy into heat through non-photochemical quenching and regulate absorption of excitation energy between PSII and PSI through state transitions (supplemental Fig. 1). This reversible redistribution leads to an overall increase in photosynthetic quantum yield. State transitions occur when preferential excitation of PSII reduces the plastoquinone pool. This leads to the activation of a thylakoid protein kinase as a result of the docking of plastoquinol to the Qo site of the cytochrome b6f complex (1, 2) and to the phosphorylation of the polypeptides of the light-harvesting complex II (LHCII), a part of which migrates to PSI (state 2) (35). The process is reversible as preferential excitation of PSI inactivates the kinase and allows for dephosphorylation of LHCII and its return to PSII (state 1) (3, 6). In the green alga Chlamydomonas reinhardtii, the LHCII protein set consists of Type I (Lhcbm3, Lhcbm4, Lhcbm6, Lhcbm8, and Lhcbm9), Type II (Lhcbm5), Type III (Lhcbm2 and Lhcbm7), and Type IV (Lhcbm1 and Lhcbm10) proteins and of Lhcb7, CP26, and CP29 (7). Because of their nearly identical sequences and sizes, several of these Lhcbm proteins cannot be distinguished by SDS-PAGE. Most of them fractionate into four bands called P11 and P13 (Type I), P16 (Type IV), and P17 (Type III). Whereas P16 is not phosphorylated, phosphorylation events occur on P11, P13, and P17 (7, 8).The association of the mobile part of LHCII to PSI during a transition from state 1 to state 2 requires the PsaH subunit (9) and CP29, which also moves to PSI and is essential for docking LHCII to PSI (1012). The lateral displacement of LHCII from the PSII-rich grana to the PSI-rich lamellar thylakoid regions results in transfer to PSI of about 80% of the excitation energy absorbed by LHCII in C. reinhardtii (13), a considerably higher amount than in land plants in which only 15–20% of LHCII is mobile (3). In C. reinhardtii, state transitions are associated with a reorganization of the photosynthetic electron transfer chain with a switch from linear to cyclic electron flow during a transition from state 1 to state 2 (14, 15). Thus, cells produce ATP and NADPH in state 1 but only ATP in state 2. It appears that the major function of state transitions in this alga is to adjust the level of ATP and the ATP/NADPH ratio to cellular demands (5).Thylakoid membranes contain appressed grana and nonappressed stromal domains in which PSII and PSI are enriched, respectively. Because LHCII is a major stabilizer of the grana structure (16), the movement of LHCII from PSII to PSI is expected to lead to major rearrangements of these membranes during state transitions. Indeed, based on extensive electron microscope studies, it was proposed that fusion and fission events occur at the interface between the grana and stroma lamellar domains that lead to a remodeling of the membranes (17).Mapping of in vivo protein phosphorylation sites in photosynthetic membranes of Chlamydomonas revealed a total of 19 sites corresponding to 15 genes (18). It was shown that the major changes are clustered at the interface between the PSII core and the associated LHCII proteins during state transitions. Phosphorylation of the PSII core subunits D2 and PsbR and multiple phosphorylations of the minor LHCII antenna subunit CP29 were detected as well as phosphorylation of Lhcbm1, which belongs to the major LHCII complex (18).Although the phosphorylation of LHCII was observed many years ago (6), it is only recently that kinases involved in this process were uncovered. Fleischmann et al. (19) and Kruse et al. (20) used a genetic approach in C. reinhardtii with the aim of dissecting the signal transduction chain of state transitions. Two allelic mutants blocked in state 1 were identified that are affected in the Stt7 gene encoding a thylakoid Ser-Thr protein kinase that is required for LHCII phosphorylation during a transition from state 1 to state 2 (21). This Stt7 kinase is conserved in land plants and has an ortholog, STN7, in Arabidopsis (22).The 754-amino acid Stt7 kinase has a catalytic domain characteristic of Ser-Thr kinases (21). It contains a putative 41-amino acid transit peptide at its N-terminal end, and the protein is localized on the thylakoid membrane. Stt7 is associated with photosynthetic complexes including LHCII, PSI, and the cytochrome b6f complex (23). Stt7 also contains a transmembrane region that separates its catalytic kinase domain on the stromal side from its N-terminal end in the thylakoid lumen with two conserved Cys residues that are critical for its activity and state transitions (23). Moreover, the level of Stt7 decreases considerably under state 1 conditions, and the kinase acts in catalytic amounts (23). However, it is not yet known whether this kinase directly phosphorylates LHCII or whether it is part of a kinase cascade involved in the signaling pathway of state transitions.In this work, we used a mass spectrometry-based approach (24) to map the in vivo Stt7-dependent protein phosphorylation sites within thylakoid membranes isolated from the green alga C. reinhardtii subjected to state 1 and state 2 conditions. In contrast with the earlier studies via direct MS/MS sequencing of the IMAC-enriched phosphorylated peptides from thylakoid proteins (18, 25), we performed additional LC-MS/MS-based analyses using alternating collision-induced dissociation and electron transfer dissociation of peptide ions. This approach revealed novel phosphorylation sites in LHCII polypeptides, in several other membrane and membrane-associated proteins, and in the thylakoid protein kinases Stt7 and Stl1, suggesting the existence of a thylakoid protein kinase cascade. Relative quantification of phosphorylated peptides labeled with stable isotopes determined the specific Stt7-dependent phosphorylation site in CP29 linker protein under state 2. Moreover, we also identified phosphorylation sites that are redox-dependent but independent of Stt7 and additional phosphorylation sites that are redox-independent. This mapping provides new insights into the regulatory network of protein phosphorylation in algal photosynthetic membranes during state transitions.  相似文献   

7.
The effect of anaerobiosis on the induction of the xanthophyll cycle was investigated in Chlamydomonas reinhardtii. The results showed that, anaerobiosis obtained by either sulfur starvation or by bubbling nitrogen in the culture grown in complete medium induced the xanthophyll cycle even when cultures were exposed to low light conditions. The zeaxanthin content reached 35 mmol mol?1 Chl a, after 110 h in anaerobic sulfur-starved cultures, and 30 mmol mol?1 Chl a within 24 h in sulfur replete cultures bubbled with nitrogen. Both starved and non-starved cultures grown under aerobic conditions, did not exhibit any sizeable increase in the zeaxanthin content. Chlorophyll fluorescence measurements revealed a decrease in the maximum photochemical quantum yield of PSII (Fv/Fm) by more than 50 %. The chlorophyll fluorescence kinetics (OJIP) analysis showed a strong rise at the J-step indicating a strong reduction of QA. Our findings demonstrated that anaerobiosis in low light exposed cultures induced the xanthophyll cycle through a strong increase of the level of plastoquinone pool reduction, which was associated to the formation of a trans-thylakoid membranes proton gradient, while in dark anaerobic cultures, no appreciable induction of xanthophyll cycle could be observed, despite the sizeable increase in non–photochemical quenching.  相似文献   

8.
Photosynthesis powers nearly all life on Earth. Light absorbed by photosystems drives the conversion of water and carbon dioxide into sugars. In plants, photosystem I (PSI) and photosystem II (PSII) work in series to drive the electron transport from water to NADP+. As both photosystems largely work in series, a balanced excitation pressure is required for optimal photosynthetic performance. Both photosystems are composed of a core and light-harvesting complexes (LHCI) for PSI and LHCII for PSII. When the light conditions favor the excitation of one photosystem over the other, a mobile pool of trimeric LHCII moves between both photosystems thus tuning their antenna cross-section in a process called state transitions. When PSII is overexcited multiple LHCIIs can associate with PSI. A trimeric LHCII binds to PSI at the PsaH/L/O site to form a well-characterized PSI–LHCI–LHCII supercomplex. The binding site(s) of the “additional” LHCII is still unclear, although a mediating role for LHCI has been proposed. In this work, we measured the PSI antenna size and trapping kinetics of photosynthetic membranes from Arabidopsis (Arabidopsis thaliana) plants. Membranes from wild-type (WT) plants were compared to those of the ΔLhca mutant that completely lacks the LHCI antenna. The results showed that “additional” LHCII complexes can transfer energy directly to the PSI core in the absence of LHCI. However, the transfer is about two times faster and therefore more efficient, when LHCI is present. This suggests LHCI mediates excitation energy transfer from loosely bound LHCII to PSI in WT plants.

The light-harvesting antennae of photosystem I facilitate energy transfer from trimeric light-harvesting complex II to photosystem I in the stroma lamellae membrane.  相似文献   

9.
In order to find some basis of salinity resistance in the chloroplastic metabolism, a halophytic Thellungiella salsuginea was compared with glycophytic Arabidopsis thaliana. In control T.s. plants the increased ratios of chlorophyll a/b and of fluorescence emission at 77 K (F730/F685) were documented, in comparison to A.t.. This was accompanied by a higher YII and lower NPQ (non‐photochemical quenching) values, and by a more active PSI (photosystem I). Another prominent feature of the photosynthetic electron transport (PET) in T.s. was the intensive production of H2O2 from PQ (plastoquinone) pool. Salinity treatment (0.15 and 0.30 M NaCl for A.t. and T.s., respectively) led to a decrease in ratios of chl a/b and F730/F685. In A.t., a salinity‐driven enhancement of YII and NPQ was found, in association with the stimulation of H2O2 production from PQ pool. In contrast, in salinity‐treated T.s., these variables were similar as in controls. The intensive H2O2 generation was accompanied by a high activity of PTOX (plastid terminal oxidase), whilst inhibition of this enzyme led to an increased H2O2 formation. It is hypothesized, that the intensive H2O2 generation from PQ pool might be an important element of stress preparedness in Thellungiella plants. In control T.s. plants, a higher activation state of carboxylase ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) was also documented in concert with the attachment of Rubisco activase (RCA) to the thylakoid membranes. It is supposed, that a closer contact of RCA with PSI in T.s. enables a more efficient Rubisco activation than in A.t.  相似文献   

10.
Michel Havaux  Dominique Rumeau 《BBA》2005,1709(3):203-213
Far-red illumination of plant leaves for a few seconds induces a delayed luminescence rise, or afterglow, that can be measured with the thermoluminescence technique as a sharp band peaking at around 40-45 °C. The afterglow band is attributable to a heat-induced electron flow from the stroma to the plastoquinone pool and the PSII centers. Using various Arabidopsis and tobacco mutants, we show here that the electron fluxes reflected by the afterglow luminescence follow the pathways of cyclic electron transport around PSI. In tobacco, the afterglow signal relied mainly on the ferredoxin-quinone oxidoreductase (FQR) activity while the predominant pathway responsible for the afterglow in Arabidopsis involved the NAD(P)H dehydrogenase (NDH) complex. The peak temperature Tm of the afterglow band varied markedly with the light conditions prevailing before the TL measurements, from around 30 °C to 45 °C in Arabidopsis. These photoinduced changes in Tm followed the same kinetics and responded to the same light stimuli as the state 1-state 2 transitions. PSII-exciting light (leading to state 2) induced a downward shift while preillumination with far-red light (inducing state 1) caused an upward shift. However, the light-induced downshift was strongly inhibited in NDH-deficient Arabidopsis mutants and the upward shift was cancelled in plants durably acclimated to high light, which can perform normal state transitions. Taken together, our results suggest that the peak temperature of the afterglow band is indicative of regulatory processes affecting electron donation to the PQ pool which could involve phosphorylation of NDH. The afterglow thermoluminescence band provides a new and simple tool to investigate the cyclic electron transfer pathways and to study their regulation in vivo.  相似文献   

11.
A transient in chlorophyll fluorescence after cessation of actinic light illumination, which has been ascribed to electron donation from stromal reductants to plastoquinone (PQ) by the NAD(P)H-dehydrogenase (NDH) complex, was investigated in Arabidopsis thaliana. The transient was absent in air in a mutant lacking the NDH complex (ndhM). However, in ndhM, the transient was detected in CO2-free air containing 2% O2. To investigate the reason, ndhM was crossed with a pgr5 mutant impaired in ferredoxin (Fd)-dependent electron donation from NADPH to PQ, which is known to be redundant for NDH-dependent PQ reduction in the cyclic electron flow around photosystem I (PSI). In ndhM pgr5, the transient was absent even in CO2-free air with 2% O2, demonstrating that the post-illumination transient can also be induced by the Fd- (or PGR5)-dependent PQ reduction. On the other hand, the transient increase in chlorophyll fluorescence was found to be enhanced in normal air in a mutant impaired in plastid fructose-1,6-bisphosphate aldolase (FBA) activity. The mutant, termed fba3-1, offers unique opportunities to examine the relative contribution of the two paths, i.e., the NDH- and Fd- (or PGR5)-dependent paths, on the PSI cyclic electron flow. Crossing fba3-1 with either ndhM or pgr5 and assessing the transient suggested that the main route for the PSI cyclic electron flow shifts from the NDH-dependent path to the Fd-dependent path in response to sink limitation of linear electron flow.  相似文献   

12.
Effects of root treatment with 5-aminolevulinic acid (ALA) on leaf photosynthesis in strawberry (Fragaria ananassa Duch.) plants were investigated by rapid chlorophyll fluorescence and modulated 820 nm reflection using 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) and methyl viologen (MV). Our results showed that ALA treatments increased the net photosynthetic rate and decreased the intercelluar CO2 concentration in strawberry leaves. Under DCMU treatment, trapping energy for QA reduction per PSII reaction center increased greatly, indicating DCMU inhibited electron transfer from QA ?. The maximum photochemical efficiency of PSII (Fv/Fm) decreased under the DCMU treatment, while a higher Fv/Fm remained in the ALA-pretreated plants. Not only the parameters related to a photochemical phase, but also that one related to a heat phase remained lower after the ALA pretreatment, compared to the sole DCMU treatment. The MV treatment decreased PSI photochemical capacity. The results of modulated 820 nm reflection analysis showed that DCMU and MV treatments had low re-reduction of P700 and plastocyanin (PSI). However, the strawberry leaf discs pretreated with ALA exhibited high re-reduction of PSI under DCMU and MV treatments. The results of this study suggest that the improvement of photosynthesis by ALA in strawberry was not only related to PSII, but also to PSI and electron transfer chain.  相似文献   

13.
Reversible thylakoid protein phosphorylation provides most flowering plants with dynamic acclimation to short-term changes in environmental light conditions. Here, through generating Serine/Threonine protein kinase 7 (STN7)-depleted mutants in the moss Physcomitrella (Physcomitrium patens), we identified phosphorylation targets of STN7 kinase and their roles in short- and long-term acclimation of the moss to changing light conditions. Biochemical and mass spectrometry analyses revealed STN7-dependent phosphorylation of N-terminal Thr in specific Light-Harvesting Complex II (LHCII) trimer subunits (LHCBM2 and LHCBM4/8) and provided evidence that phospho-LHCBM accumulation is responsible for the assembly of two distinct Photosystem I (PSI) supercomplexes (SCs), both of which are largely absent in STN7-depleted mutants. Besides the canonical state transition complex (PSI-LHCI-LHCII), we isolated the larger moss-specific PSI-Large (PSI-LHCI-LHCB9-LHCII) from stroma-exposed thylakoids. Unlike PSI-LHCI-LHCII, PSI-Large did not demonstrate short-term dynamics for balancing the distribution of excitation energy between PSII and PSI. Instead, PSI-Large contributed to a more stable increase in PSI antenna size in Physcomitrella, except under prolonged high irradiance. Additionally, the STN7-depleted mutants revealed altered light-dependent phosphorylation of a monomeric antenna protein, LHCB6, whose phosphorylation displayed a complex regulation by multiple kinases. Collectively, the unique phosphorylation plasticity and dynamics of Physcomitrella monomeric LHCB6 and trimeric LHCBM isoforms, together with the presence of PSI SCs with different antenna sizes and responsiveness to light changes, reflect the evolutionary position of mosses between green algae and vascular plants, yet with clear moss-specific features emphasizing their adaptation to terrestrial low-light environments.

Phosphorylation-dependent formation of photosystem I supercomplexes provides both short- and long-term acclimation of moss photosynthetic apparatus to changing environmental cues.  相似文献   

14.
Light drives photosynthesis. In plants it is absorbed by light-harvesting antenna complexes associated with Photosystem I (PSI) and photosystem II (PSII). As PSI and PSII work in series, it is important that the excitation pressure on the two photosystems is balanced. When plants are exposed to illumination that overexcites PSII, a special pool of the major light-harvesting complex LHCII is phosphorylated and moves from PSII to PSI (state 2). If instead PSI is over-excited the LHCII complex is dephosphorylated and moves back to PSII (state 1). Recent findings have suggested that LHCII might also transfer energy to PSI in state 1. In this work we used a combination of biochemistry and (time-resolved) fluorescence spectroscopy to investigate the PSI antenna size in state 1 and state 2 for Arabidopsis thaliana. Our data shows that 0.7 ± 0.1 unphosphorylated LHCII trimers per PSI are present in the stroma lamellae of state-1 plants. Upon transition to state 2 the antenna size of PSI in the stroma membrane increases with phosphorylated LHCIIs to a total of 1.2 ± 0.1 LHCII trimers per PSI. Both phosphorylated and unphosphorylated LHCII function as highly efficient PSI antenna.  相似文献   

15.
16.

Background and Aims

Most lichens form associations with Trebouxia phycobionts and some of them simultaneously include genetically different algal lineages. In other symbiotic systems involving algae (e.g. reef corals), the relative abundances of different endosymbiotic algal clades may change over time. This process seems to provide a mechanism allowing the organism to respond to environmental stress. A similar mechanism may operate in lichens with more than one algal lineage, likewise protecting them against environmental stresses. Here, the physiological responses to oxidative stress of two distinct Trebouxia phycobionts (provisionally named TR1 and TR9) that coexist within the lichen Ramalina farinacea were analysed.

Methods

Isolated phycobionts were exposed to oxidative stress through the reactive oxygen species propagator cumene hydroperoxide (CuHP). Photosynthetic pigments and proteins, photosynthesis (through modulated chlorophyll fluorescence), the antioxidant enzymes superoxide dismutase (SOD) and glutathione reductase (GR), and the stress-related protein HSP70 were analysed.

Key Results

Photosynthetic performance was severely impaired by CuHP in phycobionts, as indicated by decreases in the maximal PSII photochemical efficiency (Fv/Fm), the quantum efficiency of PSII (ΦPSII) and the non-photochemical dissipation of energy (NPQ). However, the CuHP-dependent decay in photosynthesis was significantly more severe in TR1, which also showed a lower NPQ and a reduced ability to preserve chlorophyll a, carotenoids and D1 protein. Additionally, differences were observed in the capacities of the two phycobionts to modulate antioxidant activities and HPS70 levels when exposed to oxidative stress. In TR1, CuHP significantly diminished HSP70 and GR but did not change SOD activities. In contrast, in TR9 the levels of both antioxidant enzymes and those of HSP70 increased in response to CuHP.

Conclusions

The better physiological performance of TR9 under oxidative conditions may reflect its greater capacity to undertake key metabolic adjustments, including increased non-photochemical quenching, higher antioxidant protection and the induction of repair mechanisms.  相似文献   

17.

Objective

To study mood and behavioral effects of unilateral and staged bilateral subthalamic nucleus (STN) and globus pallidus internus (GPi) deep brain stimulation (DBS) for Parkinson''s disease (PD).

Background

There are numerous reports of mood changes following DBS, however, most have focused on bilateral simultaneous STN implants with rapid and aggressive post-operative medication reduction.

Methods

A standardized evaluation was applied to a subset of patients undergoing STN and GPi DBS and who were also enrolled in the NIH COMPARE study. The Unified Parkinson Disease Rating Scale (UPDRS III), the Hamilton depression (HAM-D) and anxiety rating scales (HAM-A), the Yale-Brown obsessive-compulsive rating scale (YBOCS), the Apathy Scale (AS), and the Young mania rating scale (YMRS) were used. The scales were repeated at acute and chronic intervals. A post-operative strategy of non-aggressive medication reduction was employed.

Results

Thirty patients were randomized and underwent unilateral DBS (16 STN, 14 GPi). There were no baseline differences. The GPi group had a higher mean dopaminergic dosage at 1-year, however the between group difference in changes from baseline to 1-year was not significant. There were no differences between groups in mood and motor outcomes. When combining STN and GPi groups, the HAM-A scores worsened at 2-months, 4-months, 6-months and 1-year when compared with baseline; the HAM-D and YMRS scores worsened at 4-months, 6-months and 1-year; and the UPDRS Motor scores improved at 4-months and 1-year. Psychiatric diagnoses (DSM-IV) did not change. No between group differences were observed in the cohort of bilateral cases.

Conclusions

There were few changes in mood and behavior with STN or GPi DBS. The approach of staging STN or GPi DBS without aggressive medication reduction could be a viable option for managing PD surgical candidates. A study of bilateral DBS and of medication reduction will be required to better understand risks and benefits of a bilateral approach.  相似文献   

18.
Several proteins of photosystem II (PSII) and its light-harvesting antenna (LHCII) are reversibly phosphorylated according to light quantity and quality. Nevertheless, the interdependence of protein phosphorylation, nonphotochemical quenching, and efficiency of electron transfer in the thylakoid membrane has remained elusive. These questions were addressed by investigating in parallel the wild type and the stn7, stn8, and stn7 stn8 kinase mutants of Arabidopsis (Arabidopsis thaliana), using the stn7 npq4, npq4, npq1, and pgr5 mutants as controls. Phosphorylation of PSII-LHCII proteins is strongly and dynamically regulated according to white light intensity. Yet, the changes in phosphorylation do not notably modify the relative excitation energy distribution between PSII and PSI, as typically occurs when phosphorylation is induced by “state 2” light that selectively excites PSII and induces the phosphorylation of both the PSII core and LHCII proteins. On the contrary, under low-light conditions, when excitation energy transfer from LHCII to reaction centers is efficient, the STN7-dependent LHCII protein phosphorylation guarantees a balanced distribution of excitation energy to both photosystems. The importance of this regulation diminishes at high light upon induction of thermal dissipation of excitation energy. Lack of the STN7 kinase, and thus the capacity for equal distribution of excitation energy to PSII and PSI, causes relative overexcitation of PSII under low light but not under high light, leading to disturbed maintenance of fluent electron flow under fluctuating light intensities. The physiological relevance of the STN7-dependent regulation is evidenced by severely stunted phenotypes of the stn7 and stn7 stn8 mutants under strongly fluctuating light conditions.Several proteins of PSII and its light-harvesting antenna (LHCII) are reversibly phosphorylated by the STN7 and STN8 kinase-dependent pathways according to the intensity and quality of light (Bellafiore et al., 2005; Bonardi et al., 2005). The best-known phosphorylation-dependent phenomenon in the thylakoid membrane is the state transition: a regulatory mechanism that modulates the light-harvesting capacity between PSII and PSI. According to the traditional view, “state 1” prevails when plants are exposed to far-red light (state 1 light), which selectively excites PSI. Alternatively, thylakoids are in “state 2” when plants are exposed to blue or red light (state 2 light), favoring PSII excitation. In state 1, the yield of fluorescence from PSII is higher in comparison with state 2 (for review, see Allen and Forsberg, 2001). State transitions are dependent on the phosphorylation of LHCII proteins (Bellafiore et al., 2005) and their association with PSI proteins, particularly PSI-H (Lunde et al., 2000). Under state 2 light, both the PSII core and LHCII proteins are strongly phosphorylated, whereas the state 1 light induces dephosphorylation of both the PSII core and LHCII phosphoproteins (Piippo et al., 2006; Tikkanen et al., 2006). In nature, however, such extreme changes in light quality rarely occur. The intensity of light, on the contrary, fluctuates frequently in all natural habitats occupied by photosynthetic organisms, thus constantly modulating the extent of thylakoid protein phosphorylation in a highly dynamic manner (Tikkanen et al., 2008a).The regulation of PSII-LHCII protein phosphorylation by the quantity of light is much more complex than the regulatory circuits induced by the state 1 and state 2 lights. Whereas changes in light quality induce a concurrent increase or decrease in the phosphorylation levels of both the PSII core (D1, D2, and CP43) and LHCII (Lhcb1 and Lhcb2) proteins, the changes in white light intensity may influence the kinetics of PSII core and LHCII protein phosphorylation in higher plant chloroplasts even in opposite directions (Tikkanen et al., 2008a). Indeed, it is well documented that low light (LL; i.e. lower than that generally experienced during growth) induces strong phosphorylation of LHCII but relatively weak phosphorylation of the PSII core proteins. Exposure of plants to high light (HL) intensities, on the contrary, promotes the phosphorylation of PSII core proteins but inhibits the activity of the LHCII kinase, leading to dephosphorylation of LHCII proteins (Rintamäki et al., 2000; Hou et al., 2003).Thylakoid protein phosphorylation induces dynamic migrations of PSII-LHCII proteins along the thylakoid membrane (Bassi et al., 1988; Iwai et al., 2008) and modulation of thylakoid ultrastructure (Chuartzman et al., 2008). According to the traditional state transition theory, the phosphorylation of LHCII proteins decreases the antenna size of PSII and increases that of PSI, which is reflected as a quenched fluorescence emission from PSII. Alternatively, subsequent dephosphorylation of LHCII increases the antenna size of PSII and decreases that of PSI, which in turn is seen as increased PSII fluorescence (Bennett et al., 1980; Allen et al., 1981; Allen and Forsberg, 2001). This view was recently challenged based on studies with thylakoid membrane fractions, revealing that modulations in the relative distribution of excitation energy between PSII and PSI by LHCII phosphorylation specifically occur in the areas of grana margins, where both PSII and PSI function under the same antenna system, and the energy distribution between the photosystems is regulated via a more subtle mechanism than just the robust migration of phosphorylated LHCII (Tikkanen et al., 2008b). It has also been reported that most of the PSI reaction centers are located in the grana margins in a close vicinity to PSII-LHCII-rich grana thylakoids (Kaftan et al., 2002), providing a perfect framework for the regulation of excitation energy distribution from LHCII to both PSII and PSI.When considering the natural light conditions, the HL intensities are the only known light conditions that in higher plant chloroplasts specifically dephosphorylate only the LHCII proteins but not the PSII core proteins. However, such light conditions do not lead to enhanced function of PSII. Instead, the HL conditions strongly down-regulate the function of PSII via nonphotochemical quenching of excitation energy (NPQ) and PSII photoinhibition (for review, see Niyogi, 1999). On the other hand, after dark acclimation of leaves and relaxation of NPQ, PSII functions much more efficiently when plants/leaves are transferred to LL despite strong phosphorylation of LHCII, as compared with the low phosphorylation state of LHCII upon transfer to HL conditions.The delicate regulation of thylakoid protein phosphorylation in higher plant chloroplasts according to prevailing light intensity is difficult to integrate with the traditional theory of state transitions (i.e. the regulation of the absorption cross-section of PSII and PSI by reversible phosphorylation of LHCII). Moreover, besides LHCII proteins, reversible phosphorylation of the PSII core proteins may also play a role in dynamic light acclimation of plants. Recently, we demonstrated that the PSII core protein phosphorylation is a prerequisite for controlled turnover of the PSII reaction center protein D1 upon photodamage (Tikkanen et al., 2008a). This, however, does not exclude the possibility that the strict regulation of PSII core protein phosphorylation is also connected to the regulation of light harvesting and photosynthetic electron transfer. Moreover, the interactions between PSII and LHCII protein phosphorylation, nonphotochemical quenching, and cyclic electron flow around PSI in the regulation of photosynthetic electron transfer reactions remain poorly understood. To gain a deeper insight into such regulatory networks, we explored the effect of strongly fluctuating white light on chlorophyll (chl) fluorescence in Arabidopsis (Arabidopsis thaliana) mutants differentially deficient in PSII-LHCII protein phosphorylation and/or the regulatory systems of NPQ.  相似文献   

19.

Backround and Aims

It has been suggested that the rate of net photosynthesis (AN) of carnivorous plants increases in response to prey capture and nutrient uptake; however, data confirming the benefit from carnivory in terms of increased AN are scarce and unclear. The principal aim of our study was to investigate the photosynthetic benefit from prey capture in the carnivorous sundew Drosera capensis.

Methods

Prey attraction experiments were performed, with measurements and visualization of enzyme activities, elemental analysis and pigment quantification together with simultaneous measurements of gas exchange and chlorophyll a fluorescence in D. capensis in response to feeding with fruit flies (Drosophila melanogaster).

Key Results

Red coloration of tentacles did not act as a signal to attract fruit flies onto the traps. Phosphatase, phophodiesterase and protease activities were induced 24 h after prey capture. These activities are consistent with the depletion of phosphorus and nitrogen from digested prey and a significant increase in their content in leaf tissue after 10 weeks. Mechanical stimulation of tentacle glands alone was not sufficient to induce proteolytic activity. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases in the tentacle mucilage were not detected. The uptake of phosphorus from prey was more efficient than that of nitrogen and caused the foliar N:P ratio to decrease; the contents of other elements (K, Ca, Mg) decreased slightly in fed plants. Increased foliar N and P contents resulted in a significant increase in the aboveground plant biomass, the number of leaves and chlorophyll content as well as AN, maximum quantum yield (Fv/Fm) and effective photochemical quantum yield of photosystem II (ΦPSII).

Conclusions

According to the stoichiometric relationships among different nutrients, the growth of unfed D. capensis plants was P-limited. This P-limitation was markedly alleviated by feeding on fruit flies and resulted in improved plant nutrient status and photosynthetic performance. This study supports the original cost/benefit model proposed by T. Givnish almost 30 years ago and underlines the importance of plant carnivory for increasing phosphorus, and thereby photosynthesis.  相似文献   

20.
《BBA》2020,1861(10):148256
Flavodiiron proteins (FDPs) of photosynthetic organisms play a photoprotective role by reducing oxygen to water and thus avoiding the accumulation of excess electrons on the photosystem I (PSI) acceptor side under stress conditions. In Synechocystis sp. PCC 6803 grown under high CO2, both FDPs Flv1 and Flv3 are indispensable for oxygen reduction. We performed a detailed in vivo kinetic study of wild-type (WT) and Δflv1/3 strains of Synechocystis using light-induced NADPH fluorescence and near-infrared absorption of iron-sulfur clusters from ferredoxin and the PSI acceptors (FAFB), collectively named FeS. These measurements were performed under conditions where the Calvin-Benson cycle is inactive or poorly activated. Under such conditions, the NADPH decay following a short illumination decays in parallel in both strains and exhibits a time lag which is correlated to the presence of reduced FeS. On the contrary, reduced FeS decays much faster in WT than in Δflv1/3 (13 vs 2 s−1). These data unambiguously show that reduced ferredoxin, or possibly reduced FAFB, is the direct electron donor to the Flv1/Flv3 heterodimer. Evidences for large reduction of (FAFB) and recombination reactions within PSI were also provided by near-infrared absorption. Mutants lacking either the NDH1-L complex, the homolog of complex I of respiration, or the Pgr5 protein show no difference with WT in the oxidation of reduced FeS following a short illumination. These observations question the participation of a significant cyclic electron flow in cyanobacteria during the first seconds of the induction phase of photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号