首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The r1 and b1 genes of maize, each derived from the chromosomes of two progenitors that hybridized >4.8 million years ago (MYA), have been a rich source for studying transposition, recombination, genomic imprinting, and paramutation. To provide a phylogenetic context to the genetic studies, we sequenced orthologous regions from maize and sorghum (>600 kb) surrounding these genes and compared them with the rice genome. This comparison showed that the homologous regions underwent complete or partial gene deletions, selective retention of orthologous genes, and insertion of nonorthologous genes. Phylogenetic analyses of the r/b genes revealed that the ancestral gene was amplified independently in different grass lineages, that rice experienced an intragenomic gene movement and parallel duplication, that the maize r1 and b1 genes are descendants of two divergent progenitors, and that the two paralogous r genes of sorghum are almost as old as the sorghum lineage. Such sequence mobility also extends to linked genes. The cisZOG genes are characterized by gene amplification in an ancestral grass, parallel duplications and deletions in different grass lineages, and movement to a nonorthologous position in maize. In addition to gene mobility, both maize and rice regions experienced recent transposition (<3 MYA).  相似文献   

2.
3.
A "gene-island" sequencing strategy has been developed that expedites the targeted acquisition of orthologous gene sequences from related species for comparative genome analysis. A 152-kb bacterial artificial chromosome (BAC) clone from sorghum (Sorghum bicolor) encoding phytochrome A (PHYA) was fully sequenced, revealing 16 open reading frames with a gene density similar to many regions of the rice (Oryza sativa) genome. The sequences of genes in the orthologous region of the maize (Zea mays) and rice genomes were obtained using the gene-island sequencing method. BAC clones containing the orthologous maize and rice PHYA genes were identified, sheared, subcloned, and probed with the sorghum PHYA-containing BAC DNA. Sequence analysis revealed that approximately 75% of the cross-hybridizing subclones contained sequences orthologous to those within the sorghum PHYA BAC and less than 25% contained repetitive and/or BAC vector DNA sequences. The complete sequence of four genes, including up to 1 kb of their promoter regions, was identified in the maize PHYA BAC. Nine orthologous gene sequences were identified in the rice PHYA BAC. Sequence comparison of the orthologous sorghum and maize genes aided in the identification of exons and conserved regulatory sequences flanking each open reading frame. Within genomic regions where micro-colinearity of genes is absolutely conserved, gene-island sequencing is a particularly useful tool for comparative analysis of genomes between related species.  相似文献   

4.
Ma J  SanMiguel P  Lai J  Messing J  Bennetzen JL 《Genetics》2005,170(3):1209-1220
The homeologous Orp1 and Orp2 regions of maize and the orthologous regions in sorghum and rice were compared by generating sequence data for >486 kb of genomic DNA. At least three genic rearrangements differentiate the maize Orp1 and Orp2 segments, including an insertion of a single gene and two deletions that removed one gene each, while no genic rearrangements were detected in the maize Orp2 region relative to sorghum. Extended comparison of the orthologous Orp regions of sorghum and japonica rice uncovered numerous genic rearrangements and the presence of a transposon-rich region in rice. Only 11 of 27 genes (40%) are arranged in the same order and orientation between sorghum and rice. Of the 8 genes that are uniquely present in the sorghum region, 4 were found to have single-copy homologs in both rice and Arabidopsis, but none of these genes are located near each other, indicating frequent gene movement. Further comparison of the Orp segments from two rice subspecies, japonica and indica, revealed that the transposon-rich region is both an ancient and current hotspot for retrotransposon accumulation and genic rearrangement. We also identify unequal gene conversion as a mechanism for maize retrotransposon rearrangement.  相似文献   

5.
Evolution and association analysis of Ghd7 in rice   总被引:4,自引:0,他引:4  
Lu L  Yan W  Xue W  Shao D  Xing Y 《PloS one》2012,7(5):e34021
Plant height, heading date, and yield are the main targets for rice genetic improvement. Ghd7 is a pleiotropic gene that controls the aforementioned traits simultaneously. In this study, a rice germplasm collection of 104 accessions (Oryza sativa) and 3 wild rice varieties (O.rufipogon) was used to analyze the evolution and association of Ghd7 with plant height, heading date, and yield. Among the 104 accessions, 76 single nucleotide polymorphisms (SNPs) and six insertions and deletions were found within a 3932-bp DNA fragment of Ghd7. A higher pairwise π and θ in the promoter indicated a highly diversified promoter of Ghd7. Sixteen haplotypes and 8 types of Ghd7 protein were detected. SNP changes between haplotypes indicated that Ghd7 evolved from two distinct ancestral gene pools, and independent domestication processes were detected in indica and japonica varietals respectively. In addition to the previously reported premature stop mutation in the first exon of Ghd7, which caused phenotypic changes of multiple traits, we found another functional C/T mutation (SNP S_555) by structure-based association analysis. SNP S_555 is located in the promoter and was related to plant height probably by altering gene expression. Moreover, another seven SNP mutations in complete linkage were found to be associated with the number of spikelets per panicle, regardless of the photoperiod. These associations provide the potential for flexibility of Ghd7 application in rice breeding programs.  相似文献   

6.
Heading date determines the seasonal and regional adaptation of rice(Oryza sativa L.) varieties and is mainly controlled by photoperiod sensitivity(PS). The core heading date genes Hd1, Ghd7, DTH8, and PRR37 act synergistically in regulating the PS. In this study, we systematically analyze the heading date,PS, and agronomic traits of eight homozygous lines with various combinations of Hd1, Ghd7, and DTH8 alleles in the prr37 background under long-day(LD) and short-day(SD) conditions, respectivel...  相似文献   

7.
Oryza (23 species; 10 genome types) contains the world's most important food crop — rice. Although the rice genome serves as an essential tool for biological research, little is known about the evolution of the other Oryza genome types. They contain a historical record of genomic changes that led to diversification of this genus around the world as well as an untapped reservoir of agriculturally important traits. To investigate the evolution of the collective Oryza genome, we sequenced and compared nine orthologous genomic regions encompassing the Adh1-Adh2 genes (from six diploid genome types) with the rice reference sequence. Our analysis revealed the architectural complexities and dynamic evolution of this region that have occurred over the past ~15 million years. Of the 46 intact genes and four pseudogenes in the japonica genome, 38 (76%) fell into eight multigene families. Analysis of the evolutionary history of each family revealed independent and lineage-specific gain and loss of gene family members as frequent causes of synteny disruption. Transposable elements were shown to mediate massive replacement of intergenic space (>95%), gene disruption, and gene/gene fragment movement. Three cases of long-range structural variation (inversions/deletions) spanning several hundred kilobases were identified that contributed significantly to genome diversification.  相似文献   

8.
Comparative genetic mapping has indicated that the grass family (Poaceae) exhibits extensive chromosomal collinearity. In order to investigate microcollinearity in these genomes, several laboratories have begun to undertake comparative DNA sequence analyses of orthologous chromosome segments from various grass species. Five different regions have now been investigated in detail, with four regions sequenced for maize, rice and sorghum, plus two for wheat and one for barley. In all five of these segments, gene rearrangements were observed in at least one of the comparisons. Most of the detected rearrangements are small, involving the inversion, duplication, translocation or deletion of DNA segments that contain only 1-3 genes. Even closely related species, like barley and wheat or maize and sorghum, exhibit approximately 20% alterations in gene content or orientation. These results indicate that thousands of small genetic rearrangements have occurred in several grass lineages since their divergence from common ancestors. These rearrangements have largely been missed by genetic mapping and will both complicate and enrich the use of comparative genetics in the grasses.  相似文献   

9.
Centromeric retrotransposons (CRs) are important component of the functional centromeres of rice chromosomes. To track the evolution of the CR elements in genus Oryza, we sequenced the orthologous region of the rice centromere 8 (Cen8) in O. granulata and analyzed transposons in this region. A total of 12 bacterial artificial chromosomes (BACs) that span the centromeric region in O. granulata were sequenced. The O. granulate centromeric sequences are composed of as much as 85% of transposons, higher than any other reported eukaryotic centromeres. Ten novel LTR retrotransposon families were identified but a single retrotransposon, Gran3, constitutes nearly 43% of the centromeric sequences. Integration times of complete LTR retrotransposons indicate that the centromeric region had a massive insertion of LTR retrotransposons within 4.5 million year (Myr), which indicates a recent expansion of the centromere in O. granulata after the radiation of the Oryza genus. Two retrotransposon families, OGRetro7 and OGRetro9, show sequence similarity with the canonical CRs from rice and maize. Both OGRetro7 and OGRetro9 are highly concentrated in the centromeres of O. granulata chromosomes. Furthermore, strong hybridization signals were detected in all Oryza species but in O. brachyantha with the OGRetro7 and OGRetro9 probes. Characterization of the centromeric retrotransposons in O. granulata confirms the conservation of the CRs in the Oryza genus and provides a resource for comparative analysis of centromeres and centromere evolution among the Oryza genus and other genomes.  相似文献   

10.
On the tetraploid origin of the maize genome   总被引:2,自引:0,他引:2  
Data from cytological and genetic mapping studies suggest that maize arose as a tetraploid. Two previous studies investigating the most likely mode of maize origin arrived at different conclusions. Gaut and Doebley [7] proposed a segmental allotetraploid origin of the maize genome and estimated that the two maize progenitors diverged at 20.5 million years ago (mya). In a similar study, using larger data set, Brendel and colleagues (quoted in [8]) suggested a single genome duplication at 16 mya. One of the key components of such analyses is to examine sequence divergence among strictly orthologous genes. In order to identify such genes, Lai and colleagues [10] sequenced five duplicated chromosomal regions from the maize genome and the orthologous counterparts from the sorghum genome. They also identified the orthologous regions in rice. Using positional information of genetic components, they identified 11 orthologous genes across the two duplicated regions of maize, and the sorghum and rice regions. Swigonova et al. [12] analyzed the 11 orthologues, and showed that all five maize chromosomal regions duplicated at the same time, supporting a tetraploid origin of maize, and that the two maize progenitors diverged from each other at about the same time as each of them diverged from sorghum, about 11.9 mya.  相似文献   

11.
The Yr26 gene, conferring resistance to all currently important races of Puccinia striiformis f. sp. tritici (Pst) in China, was previously mapped to wheat chromosome deletion bin C-1BL-6-0.32 with low-density markers. In this study, collinearity of wheat to Brachypodium distachyon and rice was used to develop markers to saturate the chromosomal region containing the Yr26 locus, and a total of 2,341 F2 plants and 551 F2∶3 progenies derived from Avocet S×92R137 were used to develop a fine map of Yr26. Wheat expressed sequence tags (ESTs) located in deletion bin C-1BL-6-0.32 were used to develop sequence tagged site (STS) markers. The EST-STS markers flanking Yr26 were used to identify collinear regions of the rice and B. distachyon genomes. Wheat ESTs with significant similarities in the two collinear regions were selected to develop conserved markers for fine mapping of Yr26. Thirty-one markers were mapped to the Yr26 region, and six of them cosegregated with the resistance gene. Marker orders were highly conserved between rice and B. distachyon, but some rearrangements were observed between rice and wheat. Two flanking markers (CON-4 and CON-12) further narrowed the genomic region containing Yr26 to a 1.92 Mb region in B. distachyon chromosome 3 and a 1.17 Mb region in rice chromosome 10, and two putative resistance gene analogs were identified in the collinear region of B. distachyon. The markers developed in this study provide a potential target site for further map-based cloning of Yr26 and should be useful in marker assisted selection for pyramiding the gene with other resistance genes.  相似文献   

12.
13.
Comparative mapping between model plant species for which the complete genome sequence is known and crop species has been suggested as a new strategy for the isolation of agronomically valuable genes. In this study, we tested whether comparative mapping between Arabidopsisand maize of a small region (754 kb) surrounding the DREB1A gene in Arabidopsis could lead to the identification of an orthologous region in maize containing the DREB1A homologue. The genomic sequence information available for Arabidopsis allowed for the selection of conserved, low-copy genes that were used for the identification of maize homologues in a large EST database. In total, 17 maize homologues were mapped. A second BLAST comparison of these genes to the recently completed Arabidopsis sequence revealed that 15 homologues are likely to be orthologous as the highest similarity score was obtained either with the original Arabidopsis gene or with a highly similar Arabidopsis gene localized on a duplication of the investigated region on chromosome 5. The map position of these genes showed a significant degree of orthology with the Arabidopsis region. Nevertheless, extensive duplications and rearrangements in the Arabidopsisand maize genomes as well as the evolutionary distance between Arabidopsis and maize make it unlikely that orthology and collinearity between these two species are sufficient to aid gene prediction and cloning in maize.  相似文献   

14.
15.
Wheat and maize genes were hypothesized to be clustered into islands but the hypothesis was not statistically tested. The hypothesis is statistically tested here in four grass species differing in genome size, Brachypodium distachyon, Oryza sativa, Sorghum bicolor, and Aegilops tauschii. Density functions obtained under a model where gene locations follow a homogeneous Poisson process and thus are not clustered are compared with a model-free situation quantified through a non-parametric density estimate. A simple homogeneous Poisson model for gene locations is not rejected for the small O. sativa and B. distachyon genomes, indicating that genes are distributed largely uniformly in those species, but is rejected for the larger S. bicolor and Ae. tauschii genomes, providing evidence for clustering of genes into islands. It is proposed to call the gene islands “gene insulae” to distinguish them from other types of gene clustering that have been proposed. An average S. bicolor and Ae. tauschii insula is estimated to contain 3.7 and 3.9 genes with an average intergenic distance within an insula of 2.1 and 16.5 kb, respectively. Inter-insular distances are greater than 8 and 81 kb and average 15.1 and 205 kb, in S. bicolor and Ae. tauschii, respectively. A greater gene density observed in the distal regions of the Ae. tauschii chromosomes is shown to be primarily caused by shortening of inter-insular distances. The comparison of the four grass genomes suggests that gene locations are largely a function of a homogeneous Poisson process in small genomes. Nonrandom insertions of LTR retroelements during genome expansion creates gene insulae, which become less dense and further apart with the increase in genome size. High concordance in relative lengths of orthologous intergenic distances among the investigated genomes including the maize genome suggests functional constraints on gene distribution in the grass genomes.  相似文献   

16.
Fifteen gene-containing BACs with accumulated length of 1.82-Mb from the Rht-D1b locus region were sequenced and compared in detail with the orthologous regions of rice, sorghum, and maize. Our results show that Rht-D1b represents a conserved genomic region as implied by high gene sequence identity, good maintenance of gene colinearity, and the presence of multiple conserved noncoding sequences (CNSs) that are shared by other grass species. Eight cis-regulatory elements in these CNSs around grass DELLA genes were detected.  相似文献   

17.
Structure and evolution of the genomes ofsorghum bicolor andZea mays   总被引:1,自引:0,他引:1  
Cloned maize genes and random maize genomic fragments were used to construct a genetic map of sorghum and to compare the structure of the maize and sorghum genomes. Most (266/280) of the maize DNA fragments hybridized to sorghum DNA and 145 of them detected polymorphisms. The segregation of 111 markers was analyzed in 55 F2 progeny. A genetic map was generated with 96 loci arranged in 15 linkage groups spanning 709 map units. Comparative genetic mapping of sorghum and maize is complicated by the fact that many loci are duplicated, often making the identification of orthologous sequences ambiguous. Relative map positions of probes which detect only a single locus in both species indicated that multiple rearrangements have occurred since their divergence, but that many chromosomal segments have conserved synteny. Some sorghum linkage groups were found to be composed of sequences that detect loci on two different maize chromosomes. The two maize chromosomes to which these loci mapped were generally those which commonly share duplicated sequences. Evolutionary models and implications are discussed.  相似文献   

18.
19.
多效性基因Ghd7调控水稻剑叶面积   总被引:2,自引:0,他引:2  
Tan C  Weng XY  Yan WH  Bai XF  Xing YZ 《遗传》2012,34(7):901-906
光合作用是植物的唯一能量来源,剑叶是水稻开花后进行光合作用的主要部位。Ghd7是一个多效性产量基因,能显著提高水稻产量。为了研究Ghd7对水稻剑叶形态的遗传效应,文章利用一个包含190个家系的BC2F2群体对水稻剑叶长度(FLL)、剑叶宽(FLW)和剑叶面积(FLA)进行QTL定位分析。在BC2F2群体,FLL、FLW和FLA性状表型值均显示为双峰分布,符合孟德尔单基因分离比,并均与每穗实粒数呈现显著正相关。在第7染色体上RM3859和C39分子标记间定位到FLL、FLW和FLA的QTL,分别解释变异的73.3%、62.3%和71.8%,均与Ghd7共分离。以珍汕97为轮回亲本,特青和明恢63分别为供体亲本,获得两个Ghd7近等基因系NIL(MH63)和NIL(TQ),FLL、FLW和FLA表型值均比珍汕97显著提高。另外,超表达Ghd7的合江19转基因植株的FLL、FLW和FLA表型值分别比合江19增加了8.9 cm、0.5 cm和17.8 cm2。这些结果表明Ghd7对调控剑叶面积起重要作用。  相似文献   

20.
Maize is one of the most important food crops and a key model for genetics and developmental biology. A genetically anchored and high-quality draft genome sequence of maize inbred B73 has been obtained to serve as a reference sequence. To facilitate evolutionary studies in maize and its close relatives, much like the Oryza Map Alignment Project (OMAP) (www.OMAP.org) bacterial artificial chromosome (BAC) resource did for the rice community, we constructed BAC libraries for maize inbred lines Zheng58, Chang7-2, and Mo17 and maize wild relatives Zea mays ssp. parviglumis and Tripsacum dactyloides. Furthermore, to extend functional genomic studies to maize and sorghum, we also constructed binary BAC (BIBAC) libraries for the maize inbred B73 and the sorghum landrace Nengsi-1. The BAC/BIBAC vectors facilitate transfer of large intact DNA inserts from BAC clones to the BIBAC vector and functional complementation of large DNA fragments. These seven Zea Map Alignment Project (ZMAP) BAC/BIBAC libraries have average insert sizes ranging from 92 to 148 kb, organellar DNA from 0.17 to 2.3%, empty vector rates between 0.35 and 5.56%, and genome equivalents of 4.7- to 8.4-fold. The usefulness of the Parviglumis and Tripsacum BAC libraries was demonstrated by mapping clones to the reference genome. Novel genes and alleles present in these ZMAP libraries can now be used for functional complementation studies and positional or homology-based cloning of genes for translational genomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号