首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

The free radical scavenger 3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone) has been used to treat acute brain infarction in Japan since 2001. To obtain direct evidence that edaravone serves as an antioxidant in vivo, four groups of rats were prepared: (i) an ischemia/reperfusion (I/R) group receiving 2 h occlusion-reperfusion of the middle cerebral artery; (ii) a single administration group treated by intravenous infusion of edaravone (3 mg/kg) immediately after I/R; (iii) a repeated treatment group receiving twice daily edaravone administration for 14 days; and (iv) a sham operation group without occlusion. Repeated treatment with edaravone significantly improved the neurological symptoms and impairment of motor function as compared to the I/R group, while single administration demonstrated limited efficacy. No significant differences in plasma antioxidants such as ascorbate, urate, and vitamin E, or in redox status of coenzyme Q9 were observed among the four groups. In contrast, the plasma content of oleic acid in the total free fatty acids (percentage 18:1) was significantly increased in the I/R group for 7 days as compared to the sham operation group. Oleic acid was produced from stearic acid by the action of stearoyl-CoA desaturase to compensate for the oxidative loss of polyunsaturated fatty acids. The above results suggest that cellular oxidative damage in the rat brain is evident for at least 7 days after I/R. Repeated treatment suppressed the percentage 18:1 increment, while the single administration did not, which is consistent with the limited efficacy of single administration.  相似文献   

3.
Free radicals have been implicated in neuronal injury during ischemia reperfusion in stroke. Trans resveratrol, a potent antioxidant, polyphenolic compound found in grapes and wines has recently been shown to have neuroprotective activity against oxidative stress in in vitro studies. In the present study the effect of chronic treatment of trans resveratrol was evaluated in focal ischemia induced by middle cerebral artery [MCA] occlusion in rats. Male Wistar rats were pretreated with trans resveratrol 20 mg/kg i.p. for 21 days and were subjected to focal ischemia by occlusion of MCA using intraluminal thread. After two hours of MCA occlusion reperfusion was allowed by retracting the thread. Animals were assessed for motor performance after 24 hours and subsequently rats were sacrificed for estimation of markers of oxidative stress [malondialdehyde [MDA] and reduced glutathione] and for evaluation of volume of infarction. Control group received vehicle and similar protocol was followed. Significant motor impairment, with elevated levels of MDA and reduced glutathione was observed in the vehicle treated MCA occluded rats. Treatment with trans resveratrol prevented motor impairment, rise in levels of MDA and reduced glutathione and also significantly decreased the volume of infarct as compared to control. The study provides first evidence of effectiveness of trans resveratrol in focal ischemia most probably by virtue of its antioxidant property.  相似文献   

4.
Although the beta2-integrins have been implicated in the pathogenesis of cerebral ischemia-reperfusion (I/R) injury, the relative contributions of the alpha-subunits to the pathogenesis of ischemic stroke remains unclear. The objective of this study was to determine whether and how genetic deficiency of either lymphocyte function-associated antigen-1 (LFA-1) or macrophage-1 (Mac-1) alters the blood cell-endothelial cell interactions, tissue injury, and organ dysfunction in the mouse brain exposed to focal I/R. Middle cerebral artery occlusion was induced for 1 h (followed by either 4 or 24 h of reperfusion) in wild-type mice and in mice with null mutations for either LFA-1 or Mac-1. Neurological deficit and infarct volume were monitored for 24 h after reperfusion. Platelet- and leukocyte-vessel wall adhesive interactions were monitored in cortical venules by intravital microscopy. Mice with null mutations for LFA-1 or Mac-1 exhibited significant reductions in infarct volume. This was associated with a significant improvement in the I/R-induced neurological deficit. Leukocyte adhesion in cerebral venules did not differ between wild-type and mutant mice at 4 h after reperfusion. However, after 24 h of reperfusion, leukocyte adhesion was reduced in both LFA-1- and Mac-1-deficient mice compared with their wild-type counterparts. Platelet adhesion was also reduced at both 4 and 24 h after reperfusion in the LFA-1- and Mac-1-deficient mice. These findings indicate that both alpha-subunits of the beta2-integrins contribute to the brain injury and blood cell-vessel wall interactions that are associated with transient focal cerebral ischemia.  相似文献   

5.
Stroke causes brain injury in millions of people world wide each year. Despite the enormity of problem, currently there is no established therapy, which can restore the blood flow at infracted area and also improve the neurological deficit. The present study was carried out to investigate the effect of an endothelin antagonist (TAK-044) in middle cerebral artery (MCA) occlusion model of acute ischemic stroke in rats. Male Wistar rats were pretreated with TAK-044 (5 mg/kg, i.p.) for 7 days and thereafter subjected to focal ischemia by occlusion of MCA using intraluminal thread for two hours. 30 min after reperfusion the animals were subjected to diffusion-weighted imaging (DWI) for assessment of protective effect. Twenty-four hours later the motor performance was tested and subsequently the animals were sacrificed for estimation of markers of oxidative stress; malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD). Control group received vehicle (saline) and similar experimental protocol was followed. In the TAK-044 pretreated group, percent hemispheric lesion area (% HLA) in DWI was significantly attenuated 17.5 +/- 0.5% as compared to control group 61.2 +/- 5.9%. Significant motor impairment, with significant elevated levels of MDA, decrease in GSH and SOD were observed in the vehicle treated MCA occluded rats. Pretreatment with TAK-044 prevented the motor impairment and significantly reversed the changes in markers of oxidative stress (MDA, GSH and SOD). In addition to well-known vasodilatory effect, TAK-044 has recently been documented to have antioxidant and anti-inflammatory properties. These effects can contribute to the protection afforded by TAK-044 in the present study.  相似文献   

6.
Angiotensin II (Ang II) type 2 receptors (AT2Rs) have been associated with apoptosis. We hypothesized that AT2Rs are increased in stroke and may contribute effects of stroke to the brain. To test this, we have examined the expression of Ang II type 1 receptor (AT1R), AT2R and Ang II levels in the brain 24 h after transient middle cerebral artery occlusion (MCAO). The densities of AT1R and AT2R were measured by quantitative autoradiography (n=6). The levels of Ang II were measured by radioimmunoassay (RIA) (n=6) and by immunohistochemistry (n=3). AT1R levels on autoradiography showed a significant decrease (0.87±0.06 to 1.39±0.07 fmol/mg, p<0.01) in the ventral cortex of the stroke side compared to the cortices of non-stroke (NS) rats (n=4). There was no significant difference on ATIR in the contralateral verbal cortex of the stroke rats compared to NS control. In contrast, levels of AT2R in the ventral cortex of both the stroke and the contralateral sides were significantly increased (0.77±0.06, p<0.05 and 0.91±0.05, p<0.01 compared to 0.60±0.03 fmol/mg tissue, respectively). RIA showed that Ang II in the ventral cortex of both the stroke and the contralateral sides were significantly increased (241.63±47.72, p<0.01 and 165.51±42.59, p<0.05 compared to 76.80±4.10 pg/g tissue, respectively). Also, Ang II in the hypothalamus was significantly increased (179.50±17.49 to 118.50±6.65 pg/g tissue, p<0.05). Immunohistochemistry confirmed the increase of Ang II. These results demonstrate that brain Ang II and AT2Rs are increased whereas AT1Rs are decreased after transient MCAO in rats. We conclude that in stroke, Ang II and AT2R are activated and may contribute neural effects to brain ischemia.  相似文献   

7.
8.
We have previously reported that ischemia reperfusion injury results from free radical generation following transient global ischemia, and that this radical induced damage is evident in the synaptosomal membrane of the gerbil. [Hall et al, (1995) Neuroscience 64: 81–89] In the present study we have extended these observations to transient focal ischemia in the cat. We prepared synaptosomal membranes from frontal, parietal-temporal, and occipital regions of the cat cerebral cortex with reperfusion times of 1 and 3 hours following 1 hour right middle cerebral artery occlusion. The membranes were selectively labeled with protein and lipid specific paramagnetic spin labels and analyzed using electron paramagnetic resonance spectrometry. There were significant motional changes of both the protein and lipid specific spin labels in the parietal-temporal and occipital regions with 1 hour reperfusion; but, both parameters returned to control values by 3 hours reperfusion. No significant changes were observed in the normally perfused frontal pole at either reperfusion time. These results support the argument that free radicals play a critical role in cell damage at early reperfusion times following ischemia.  相似文献   

9.
Restoration of blood flow to an ischemic brain region is associated with generation of reactive oxygen species (ROS) with consequent reperfusion injury. ROS cause lipid peroxidation, protein oxidation, and DNA damage, all of which are deleterious to cells. So diminishing the production of free radicals and scavenging them may be a successful therapeutic strategy for the protection of brain tissue in cerebral stroke. The present study investigated the neuroprotective effect of sesamin (Sn) to reduce brain injury after middle cerebral artery occlusion (MCAO). The middle cerebral artery (MCA) of adult male Wistar rat was occluded for 2 h and reperfused for 22 h. Sesamin is the most abundant lignan in sesame seed oil is a potent antioxidant. Sesamin (30 mg/kg) was given orally twice, 30 min before the onset of ischemia and 12 h after reperfusion. The initial investigations revealed that sesamin reduced the neurological deficits in terms of behavior and reduced the level of thiobarbituric acid reactive species (TBARS), and protein carbonyl (PC) in the different areas of the brain when compared with the MCAO group. A significantly depleted level of glutathione and its dependent enzymes (glutathione peroxidase [GPx] and glutathione reductase [GR]) in MCAO group were protected significantly in MCAO group treated with sesamin. The present study suggests that sesamin may be able to attenuate the ischemic cell death and plays a crucial role as a neuroprotectant in regulating levels of reactive oxygen species in the rat brain. Thus, sesamin may be a potential compound in stroke therapy.  相似文献   

10.
Xiao L  Wang YZ  Liu J  Luo XT  Ye Y  Zhu XZ 《Life sciences》2005,78(4):413-420
In the present study, the effects of paeoniflorin (PF), a characteristic monoterpene glucoside isolated from Paeoniae Radix, on cerebral infarction, neurological symptoms, tongue protrusion (TP) and performance in the water maze were examined at the chronic stage (4 weeks) of transient cerebral ischemia using a rat middle cerebral artery occlusion (MCAO) model. One-day (10 mg/kg, twice, s.c.) or seven-day (2.5-10 mg/kg, twice a day, s.c.) injection of PF significantly reduced the infarct volume as well as ameliorated the deficits in neurological symptoms caused by transient MCAO at chronic stage. Transient MCAO also induced impairments in TP and performance in the water maze. Treatment with PF was able to reverse or alleviate these impairments. These results indicate that PF may be effective for treatment of stroke.  相似文献   

11.
Mixed efficacy of neuroprotective drugs in clinical trials has led to the emergence of the approach of combination therapy in stroke. The present study was carried out to investigate the effect of the combination of melatonin (potent antioxidant) and meloxicam (preferential inhibitor of cyclooxygenase-2 enzyme) against a middle cerebral artery occlusion model of stroke in rats. Male Wistar rats in the weight range of 250-300 g were used. Rats were anesthetized using chloral hydrate (400 mg/kg i.p) and subjected to 2 h of transient middle cerebral artery occlusion. Melatonin was administered at a dose of 20 mg/kg i.p. four times: at the time of middle cerebral artery occlusion, 1.5 h after middle cerebral artery occlusion, at the time of reperfusion, and 1 h after reperfusion. Meloxicam (2.5 mg/kg) was administered 4 h after middle cerebral artery occlusion. Motor performance tests (grip test, foot fault test, rotarod performance test, spontaneous locomotor activity), markers of oxidative stress, and triphenyltetrazolium chloride staining were carried out 24 h after middle cerebral artery occlusion. A vehicle-treated group was run in parallel. It was observed that melatonin treatment improved the motor performance and significantly attenuated the levels of malondialdehyde (MDA) as compared with the middle cerebral artery occluded group. Meloxicam treatment at the dose used neither showed significant improvement on the motor performance nor decreased the levels of MDA significantly as compared with the middle cerebral artery occluded group. However, when the combination of the two drugs was used, better protection was observed as was evident by the significant decrease in the percent foot fault errors, the increase in the time spent on the rotarod, and the increase in the six-point neurological score and grip test score. There was also a significant decrease in the levels of MDA in the combination group. The results of the present study demonstrate that enhanced protection is observed with the use of a combination of melatonin plus meloxicam in the middle cerebral artery occlusion model of acute ischemic stroke in rats.  相似文献   

12.
The aim of the present study was to identify the distinguishing metabolic characteristics of brain tissue salvaged by reperfusion following focal cerebral ischemia. Rats were subjected to 120 min of middle cerebral artery occlusion followed by 120 min of reperfusion. The rats received an intravenous bolus injection of [1-(13)C]glucose plus [1,2-(13)C]acetate. Subsequently two brain regions considered to represent penumbra and ischemic core, i.e. the frontoparietal cortex and the lateral caudoputamen plus lower parietal cortex, respectively, were analyzed with (13)C NMRS and HPLC. The results demonstrated four metabolic events that distinguished the reperfused penumbra from the ischemic core. (1) Improved astrocytic metabolism demonstrated by increased amounts of [4,5-(13)C]glutamine and improved acetate oxidation. (2) Neuronal mitochondrial activity was better preserved although the flux of glucose via pyruvate dehydrogenase into the tricarboxylic acid (TCA) cycle in glutamatergic and GABAergic neurons was halved. However, NAA content was at control level. (3) Glutamatergic and GABAergic neurons used relatively more astrocytic metabolites derived from the pyruvate carboxylase pathway. (4) Lactate synthesis was not increased despite decreased glucose metabolism in the TCA cycle via pyruvate dehydrogenase. In the ischemic core both neuronal and astrocytic TCA cycle activity declined significantly despite reperfusion. The utilization of astrocytic precursors originating from the pyruvate carboxylase pathway was markedly reduced compared the pyruvate dehydrogenase pathway in glutamate, and completely stopped in GABA. The NAA level fell significantly and lactate accumulated. The results demonstrate that preservation of astrocytic metabolism is essential for neuronal survival and a predictor for recovery.  相似文献   

13.
Transient focal cerebral ischemia in the rat alters vessel properties, and spontaneously hypertensive rats (SHR) show a poorer outcome after ischemia. In the present study we examined the role of hypertension on vessel properties after ischemia-reperfusion. The right middle cerebral artery (MCA) was occluded (90 min) and reperfused (24 h) in SHR (n = 12) and Wistar-Kyoto rats (WKY; n = 11). Sham-operated rats (SHR, n = 10; WKY, n = 10) were used as controls. The structural, mechanical, and myogenic properties of the MCA were assessed by pressure myography. Nuclei distribution and elastin content and organization were analyzed by confocal microscopy. Infarct volume was larger in SHR than in WKY rats. Ischemia-reperfusion induced adventitial hypertrophy associated with an increase in the total number of adventitial cells. In addition, fenestrae area and arterial distensibility increased and myogenic tone decreased in the MCA of WKY rats after ischemia-reperfusion. Hypertension per se induced hypertrophic inward remodeling. Ischemia-reperfusion decreased the cross-sectional area of the MCA in SHR, without significant changes in distensibility, despite an increase in fenestrae area. In addition, MCA myogenic properties were not altered after ischemia-reperfusion in SHR. Our results indicate that in normotensive rats, MCA develops a compensatory mechanism (i.e., enhanced distensibility and decreased myogenic tone) that counteracts the effect of ischemia-reperfusion and ensures correct cerebral irrigation. These compensatory mechanisms are lost in hypertension, thereby explaining, at least in part, the greater infarct volume observed in SHR.  相似文献   

14.
15.
The purpose of this study was to investigate the effect of (3S)-7-chloro-3-[2-((1R)-1-carboxyethoxy)-4-aminomethylphenyl]aminocarbonylmethyl-1,3,4,5-tetrahydrobenz[c,d]indole-2-carboxylic acid hydrochloride (SM-31900), an antagonist with high selectivity and affinity for the NMDA receptor glycine-binding site, on the cerebral infarct volume in a permanent middle cerebral artery occlusion (MCAo) model, which was constructed by electrocoagulation of a unilateral middle cerebral artery distal to the olfactory tract using spontaneously hypertensive rats (SHRs). To investigate the dose-response characteristics and the therapeutic time window of SM-31900 in this MCAo model, we conducted three experiments, in which the administration of SM-31900 was started 5min (experiment I), 30min (experiment II), or 60min (experiment III) after MCAo, respectively. In all the studies, SM-31900 was administered by intravenous bolus injection followed by continuous intravenous infusion to obtain a steady-state level of this compound in blood immediately after its administration. The treatment with SM-31900 was continued until 24h after MCAo, at which time the cerebral infarct volume was measured. In experiment I, SM-31900 significantly reduced the infarct volume by 37% at a dosage of 0.38mg/kg bolus followed by 1.5mg/kg/h continuous infusion (0.38mg/kg+1.5mg/kg/h). In experiment II, the neuroprotective effect of SM-31900 was also significant, with a 25% reduction in infarct volume at a dosage of 0.38mg/kg+1.5mg/kg/h, and a 40% reduction at 1.5mg/kg+6.0mg/kg/h. Furthermore, even in experiment III, SM-31900 exerted a significant neuroprotective effect, with a 20% reduction at 1.5mg/kg+6.0mg/kg/h. These studies revealed that SM-31900 can exert a neuroprotective effect when it is administered up to at least 60min after the onset of ischemia in the MCAo model, an animal model of stroke, indicating that SM-31900 is a good candidate for treating acute brain ischemia.  相似文献   

16.
Alzheimer's disease (AD) and cerebral ischaemia share similar features in terms of altered amyloid precursor protein (APP) processing and β‐amyloid (Aβ) accumulation. We have previously shown that Aβ and calcium deposition, and β‐secretase activity, are robustly increased in the ipsilateral thalamus after transient middle cerebral artery occlusion (MCAO) in rats. Here, we investigated whether the non‐selective calcium channel blocker bepridil, which also inhibits β‐secretase cleavage of APP, affects thalamic accumulation of Aβ and calcium and in turn influences functional recovery in rats subjected to MCAO. A 27‐day bepridil treatment (50 mg/kg, p.o.) initiated 2 days after MCAO significantly decreased the levels of soluble Aβ40, Aβ42 and calcium in the ipsilateral thalamus, as compared with vehicle‐treated MCAO rats. Expression of seladin‐1/DHCR24 protein, which is a potential protective factor against neuronal damage, was decreased at both mRNA and protein levels in the ipsilateral thalamus of MCAO rats. Conversely, bepridil treatment restored seladin‐1/DHCR24 expression in the ipsilateral thalamus. Bepridil treatment did not significantly affect heme oxygenase‐1‐ or NAD(P)H quinone oxidoreductase‐1‐mediated oxidative stress or inflammatory responses in the ipsilateral thalamus of MCAO rats. Finally, bepridil treatment mitigated MCAO‐induced alterations in APP processing in the ipsilateral thalamus and improved contralateral forelimb use in MCAO rats. These findings suggest that bepridil is a plausible therapeutic candidate in AD or stroke owing to its multifunctional role in key cellular events that are relevant for the pathogenesis of these diseases.  相似文献   

17.
Increased oxidative stress and energy metabolism deficit have been regarded as an important underlying cause for neuronal damage induced by cerebral ischemia/reperfusion (I/R) injury. In this study, we investigated the oxidative mechanisms underlying the neuroprotective effects of resveratrol, a potent polyphenol antioxidant found in grapes, on structural and biochemical abnormalities in rats subjected to global cerebral ischemia. Experimental model of transient global cerebral ischemia was induced in Wistar rats by the four vessel occlusion method for 10 min and followed by different periods of reperfusion. Nissl and fluoro jade C stained indicated extensive neuronal death at 7 days after I/R. These findings were preceded by a rapid increase in the generation of reactive oxygen species (ROS), nitric oxide (NO), lipid peroxidation, as well as by a decrease in Na+K+-ATPase activity and disrupted antioxidant defenses (enzymatic and non-enzymatic) in hippocampus and cortex. Administrating resveratrol 7 days prior to ischemia by intraperitoneal injections (30 mg/kg) significantly attenuated neuronal death in both studied structures, as well as decreased the generation of ROS, lipid peroxidation and NO content. Furthermore, resveratrol brought antioxidant and Na+K+-ATPase activity in cortex and hippocampus back to normal levels. These results support that resveratrol could be used as a preventive, or therapeutic, agent in global cerebral ischemia and suggest that scavenging of ROS contributes, at least in part, to resveratrol-induced neuroprotection.  相似文献   

18.

Background and Purpose

Post-ischemic oxidative stress and vasomotor dysfunction in cerebral arteries may increase the likelihood of cognitive impairment and secondary stroke. However, the underlying mechanisms of post-stroke vascular abnormalities, as distinct from those causing primary brain injury, are poorly understood. We tested whether augmented superoxide-dependent dysfunction occurs in the mouse cerebral circulation following ischemia-reperfusion, and evaluated the role of Nox2 oxidase.

Methods

Cerebral ischemia was induced in male C57Bl6/J wild-type (WT) and Nox2-deficient (Nox2-/-) mice by middle cerebral artery occlusion (MCAO; 0.5 h), followed by reperfusion (23.5 h). Superoxide production by MCA was measured by L-012-enhanced chemiluminescence. Nitric oxide (NO) function was assessed in cannulated and pressurized MCA via the vasoconstrictor response to N ω-nitro-L-arginine methyl ester (L-NAME; 100 µmol/L). Expression of Nox2, the nitration marker 3-nitrotyrosine, and leukocyte marker CD45 was assessed in cerebral arteries by Western blotting.

Results

Following ischemia-reperfusion, superoxide production was markedly increased in the MCA of WT, but not Nox2-/- mice. In WT mice, L-NAME-induced constriction was reduced by ∼50% in ischemic MCA, whereas ischemia-reperfusion had no effect on responses to L-NAME in vessels from Nox2-/- mice. In ischemic MCA from WT mice, expression of Nox2 and 3-nitrotyrosine were ∼1.4-fold higher than in the contralateral MCA, or in ischemic or contralateral vessels from Nox2-/- mice. Vascular CD45 levels were unchanged by ischemia-reperfusion.

Conclusions

Excessive superoxide production, impaired NO function and nitrosative stress occur in mouse cerebral arteries after ischemia-reperfusion. These abnormalities appear to be exclusively due to increased activity of vascular Nox2 oxidase.  相似文献   

19.
The aim of the present study was to assess the effect of post ictal administration of the pyrrolopyrimidine lipid peroxidation inhibitor, U-101033E, on infarct volume and neuronal and astrocytic metabolism in rats with transient middle cerebral artery occlusion (MCAO).

Rats were subjected to 120 min of MCAO followed by 140 min of reperfusion and randomly assigned to control (n = 17) or U-101033E treatment (n = 16). Drug infusion started 5 min after MCAO and lasted 220 min with a 15 min interruption during the reperfusion procedure. Sixteen rats underwent diffusion weighted imaging 260 min after ictus, from which the apparent diffusion coefficient (ADC) was determined. Seventeen rats received an iv bolus injection of [1-13C]glucose and [1,2-13C]acetate 245 min after ictus. Tissue extracts from two brain regions representing penumbra and ischemic core were analyzed with 13C NMRS and HPLC.

U-101033E did not affect the volume of ischemic tissue estimated from the ADC maps. In the penumbra, U-101033E specifically decreased mitochondrial pyruvate metabolism via both pyruvate dehydrogenase and pyruvate carboxylase pathways. Thus, U-101033E impaired both neuronal and astrocytic mitochondrial pyruvate metabolism. At the same time anaerobic glucose usage was increased, leading to increased lactate labeling and content. Also alanine labeling was increased. The data do not support lactate as an important substrate for neuronal mitochondria in ischemia–reperfusion. A similar pattern of reduced mitochondrial pyruvate metabolism and increased cytosolic pyruvate metabolism was found in the irreversibly damaged ischemic core. The present study highlights the importance of other outcome measures than ischemic tissue volume for evaluation of drug efficacy in animal models, which in turn could increase the likelihood of success in clinical trials.  相似文献   


20.
Middle cerebral artery occlusion (MCAO) induces secondary damages in the hippocampus that is remote from primary ischemic regions. Tau hyperphosphorylation is an important risk for neurodegenerative diseases. Increased tau phosphorylation has been identified in ischemic cortex, but little is known regarding the changes in the hippocampus. We showed that unilateral transient MCAO induced accumulation of hyperphosphorylated tau and concurrent dephosphorylation of glycogen synthase kinase‐3β at Ser 9 in the ipsilateral hippocampus. These MCAO‐induced changes were not reproduced when glutamatergic inputs from the entorhinal cortex to the hippocampus were transected; however, the changes were mimicked by intrahippocampal N‐methyl‐d ‐aspartate (NMDA) administration. Inhibition of NMDA receptor (NMDAR) subunit NR2B, but not NR2A activity in the hippocampus attenuated the accumulation of hyperphosphorylated tau and spatial cognitive impairment in MCAO rats. Together, our data suggest that overactivation of NR2B‐containing NMDARs through entorhinal–hippocampal connection plays an important role in the accumulation of hyperphosphorylated tau in the hippocampus following MCAO. Glycogen synthase kinase‐3β is an important protein kinase involved in NMDARs‐mediated tau hyperphosphorylation. This study indicates that early inhibition of NR2B‐containing NMDARs may represent a potential strategy to prevent or delay the occurrence of post‐stroke dementia.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号