首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
Seed dispersal by frugivores in tropical rain forests is important for maintaining viable tree populations. Over the years, vertebrate assemblages in tropical forests have been altered by anthropogenic disturbances, leading to concerns about the ability of remnant vertebrates to substitute for the lost or declining vertebrate populations. We compared vertebrate composition and frugivore visitation rates as an indirect measure of rate of seed dispersal in three tropical rain forests in Uganda, namely Mabira, Budongo and Kibale Forests. Mabira is highly disturbed, Kibale is little and Budongo is intermediate. The aim was to determine whether vertebrate assemblages in differentially disturbed forests had comparable abilities to disperse seeds and whether tree species were equally vulnerable to loss of seed dispersers. Assemblages of forest generalist species were similar in all forests, but specialists were less abundant in the heavily disturbed forest. Remnant frugivores in the heavily disturbed forest were mainly small-bodied species that spat seeds beneath fruiting trees compared to large-bodied species observed in the less disturbed forests that ingested and carried away the seeds. We postulate that the quantity of seeds dispersed in heavily disturbed forests is much reduced due to low visitation rates of frugivores and the absence of large frugivores that consume large quantities of fruit. The quality of seed dispersal is affected as well by the distance over which seeds are moved. Assessment of vulnerability of trees shows no evidence for disperser substitution for trees producing large fruits. Fruit trees with low nutritional contents and digestibility were least visited in frugivore-impoverished forests. The loss of large specialist frugivores is likely to affect recruitment of many trees, especially of species that cannot establish beneath adult conspecifics.  相似文献   

3.
4.
Slik JW 《Oecologia》2004,141(1):114-120
In this study I investigated the effects of the extreme, 1997/98 El Niño related drought on tree mortality and understorey light conditions of logged and unlogged tropical rain forest in the Indonesian province of East Kalimantan (Borneo). My objectives were to test (1) whether drought had a significant effect on tree mortality and understorey light conditions, (2) whether this effect was greater in logged than in undisturbed forest, (3) if the expected change in tree mortality and light conditions had an effect on Macaranga pioneer seedling and sapling densities, and (4) which (a)biotic factors influenced tree mortality during the drought. The 1997/1998 drought led to an additional tree mortality of 11.2, 18.1, and 22.7% in undisturbed, old logged and recently logged forest, respectively. Mortality was highest in logged forests, due to extremely high mortality of pioneer Macaranga trees (65.4%). Canopy openness was significantly higher during the drought than during the non-drought year (6.0, 8.6 and 10.4 vs 3.7, 3.8 and 3.7 in undisturbed, old logged and recently logged forest, respectively) and was positively correlated with the number of dead standing trees. The increase in light in the understorey was accompanied by a 30 to 300-fold increase in pioneer Macaranga seedling densities. Factors affecting tree mortality during drought were (1) tree species successional status, (2) tree size, and (3) tree location with respect to soil moisture. Tree density and basal area per surface unit had no influence on tree mortality during drought. The results of this study show that extreme droughts, such as those associated with El Niño events, can affect the tree species composition and diversity of tropical forests in two ways: (1) by disproportionate mortality of certain tree species groups and tree size classes, and (2) by changing the light environment in the forest understorey, thereby affecting the recruitment and growth conditions of small and immature trees.  相似文献   

5.
6.
Basset  Yves 《Plant Ecology》2001,153(1-2):87-107
The current state of knowledge of canopy invertebrates in tropical rain forests is reviewed using data drawn, without bias toward taxon, collecting method or biogeographical region, from 89 studies concerned with mass-collecting (>1000 individuals). The review is intended to identify the most serious gaps and biases in the distribution of higher taxa among forest types and biogeographical regions. With respect to knowledge, biogeographical regions can be ranked as Neotropical > Australian > Oriental > Afrotropical. The canopy of lowland wet and subtropical forests has been studied in greater detail, whereas the canopy of lowland dry and montane forests is much less well known. Collecting techniques influence greatly the present knowledge of canopy invertebrates. Invertebrates other than arthropods, often abundant in epiphytic habitats, phytotelmata and perched litter, are virtually unknown. The abundance of several groups, such as Acari, Collembola and Isoptera, is almost certainly seriously underestimated. Densities of invertebrate individuals in the canopy of tropical rain forests appear to be lower than in temperate forests, although invertebrate abundance is dissipated by the high standing-biomass of rain forests. Coleoptera, particularly Staphylinidae, Curculionidae and Chrysomelidae, along with Hymenoptera, Lepidoptera and Araneae appear to be the most speciose taxa in the canopy, and it is probable that this reflects their range of feeding habits and exploitation of rain forests habitats. The distribution of individuals among the major arthropod orders and across the studies examined is complex and depends on many factors. The amount of variance that can be directly explained by biogeography, forest types (subtropical, wet, dry or montane), or collecting methods appears to be about 11%. The explained variance increases when considering major families of Coleoptera (28%) or subfamilies of Chrysomelidae (40%). In all cases, the variance explained by the type of forest is much higher than by that explained by biogeography. These conclusions are similar when considering various prey-predator relationships in the canopy. This suggests that, at the higher taxa level, the composition of the invertebrate fauna in the canopy may vary comparatively more across forest types than across biogeographical regions and this is discussed briefly from a conservation viewpoint.  相似文献   

7.
Intraspecific density regulation influences the synchronization of local population dynamics through dispersal. Spatial synchrony in turn may jeopardize metapopulation persistence. Joining results from previous studies suggests that spatial synchrony is highest at moderate over-compensation and is low at compensating and at very strong over-compensating density regulation. We scrutinize this supposition of a unimodal relationship using a process-based metapopulation model with explicit local population dynamics. We extend the usually studied range of density regulation to under-compensation and analyse resulting metapopulation persistence. We find peaks of spatial synchrony not only at over-compensatory but also under-compensatory density regulation and show that effects of local density compensation on synchrony follow a bimodal rather than unimodal relationship. Persistence of metapopulations however, shows a unimodal relationship with a broad plateau of high persistence from compensatory to over-compensatory density regulation. This range of high persistence comprises both levels of low and high spatial synchrony. Thus, not synchrony alone jeopardizes metapopulation persistence, but only in interplay with high local extinction risk. The functional forms of the relations of density compensation with spatial synchrony and persistence are robust to increases in dispersal mortality, landscape dynamics, or density dependence of dispersal. However, with each of these increases the maxima of spatial synchrony and persistence shift to higher over-compensation and levels of synchrony are reduced. Overall, for over-compensation high landscape connectivity has negative effects while for under-compensation connectivity affects persistence positively. This emphasizes the importance of species life-history traits for management decisions with regard to landscape connectivity: while dispersal corridors are essential for species with under-compensatory density regulation, they may have detrimental effects for endangered species with over-compensation.  相似文献   

8.
George L. W. Perry  Finnbar Lee 《Oikos》2019,128(9):1277-1286
Metapopulation persistence depends on connectivity between habitat patches. While emphasis has been placed on the spatial dynamics of connectivity, much less has been placed on its short‐term temporal dynamics. In many terrestrial and aquatic ecosystems, however, transient (short‐term) changes in connectivity occur as habitat patches are connected and disconnected due, for example, to climatic or hydrological variability. We evaluated the implications of transient connectivity using a network‐based metapopulation model and a series of scenarios representing temporal changes in connectivity. The transient loss of connectivity can influence metapopulation persistence, and more strongly autocorrelated temporal dynamics affect metapopulation persistence more severely. Given that many ecosystems experience short‐term and temporary loss of habitat connectivity, it is important that these dynamics are adequately represented in metapopulation models; failing to do so may yield overly optimistic‐estimates of metapopulation persistence in fragmented landscapes.  相似文献   

9.
Is radiation damage to cryopreserved protein crystals strictly proportional to accumulated dose at the high-flux density of beams from undulators at third-generation synchrotron sources? The answer is "yes," for overall damage to several different kinds of protein crystals at flux densities up to 10(15) ph/sec/mm(2) (APS beamline 19-ID). We find that, at 12 keV (1 A wavelength), about ten absorbed photons are sufficient to "kill" a unit cell. As this corresponds to about one elastically scattered photon, each unit cell can contribute only about one photon to total Bragg diffraction. The smallest crystal that can yield a full data set to 3.5 A resolution has a diameter of about 20 microm (100 A unit cell).  相似文献   

10.
11.
The influence of salinity on habitat selection and growth in juvenile American eels Anguilla rostrata captured in four rivers across eastern Canada was assessed in controlled experiments in 2011 and 2012. Glass eels were first categorized according to their salinity preferences towards fresh (FW), salt (SW) or brackish water (BW) and the growth rate of each group of elvers was subsequently monitored in controlled FW and BW environments for 7 months. Most glass eels (78–89%) did not make a choice, i.e. they remained in BW. Salinity preferences were not influenced by body condition, although a possible role of pigmentation could not be ruled out. Glass eels that did make a choice displayed a similar preference for FW (60–75%) regardless of their geographic origin but glass eels from the St Lawrence Estuary displayed a significantly higher locomotor activity than those from other regions. Neither the salinity preferences showed by glass eels in the first experiment nor the rearing salinities appeared to have much influence on growth during the experiments. Elvers from Nova Scotia, however, reached a significantly higher mass than those from the St Lawrence Estuary thus supporting the hypothesis of genetically (or epigenetically) based differences for growth between A. rostrata from different origins. These results provide important ecological knowledge for the sustained exploitation and conservation of this threatened species.  相似文献   

12.
The high spatial variability of soil respiration in tropical rainforests is well evaluated, but influences of biotic factors are not clearly understood. This study underlines the influence of tree species characteristics on soil respiration across a 16-monospecific plot design in a tropical plantation of French Guiana. A large variability of soil CO2 fluxes was observed among plots (i.e. 2.8 to 6.8 μmol m?2 s?1) with the ranking being constant across seasons. There were no significant relationships between soil respiration and soil moisture or soil temperature, neither spatially, nor seasonally. The variability of soil respiration was mainly explained by quantitative factors such as leaf litterfall and basal area. Surprisingly, no significant relationship was observed between soil respiration and root biomass. However, the influence of substrate quality was revealed by a strong relationship between soil respiration and litterfall P (and litterfall N, to a lesser extent).  相似文献   

13.
Summary We studied sympatric lynx (Lynx canadensis) and coyotes (Canis latrans) to assess how morphological disadvantages to locomotion over snow affected movement patterns. Both species are of similar size and mass, but the feet of lynx are much larger, and coyotes were found to have 4.1–8.8 times the foot-load (ratio of body mass to foot area) of lynx. This resulted in greater mean sinking depths of coyote limbs, although the magnitude of the difference was less than that in foot-load. Coyotes exhibited stronger use of behavioral patterns that reduced negative effects of snow on movements. Coyotes were most abundant at low elevations where snow was shallow, whereas lynx were mostly at higher elevations. Coyotes also used areas at both elevations where snow was shallower than average, while lynx used areas where snow was deeper. further, both species used travel routes where snow was shallower than it was near the track. Coyotes traveled on harder snow and used trails more frequently, thereby tending to reduce sinking depths to those similar to lynx. The behavioral repertoire of coyotes reduced the morphological advantage of large feet possessed by lynx; however, overall sinking depths were still greater in coyotes. Snowshoe hares (Lepus americanus) were the main prey of both species, and their foot-load was less than that of either predator. Hare kills by coyotes occurred after fewer bounds than did those by lynx, and the large difference between foot-loads of both species of predators may have forced coyotes to ambush rather than chase hares, as did lynx.  相似文献   

14.
RNA is a fundamental biomolecule that has many purposes within cells. Due to its single-stranded and flexible nature, RNA naturally folds into complex and dynamic structures. Recent technological and computational advances have produced an explosion of RNA structural data. Many RNA structures have regulatory and functional properties. Studying the structure of nascent RNAs is particularly challenging due to their low abundance and long length, but their structures are important because they can influence RNA processing. Precursor RNA processing is a nexus of pathways that determines mature isoform composition and that controls gene expression. In this review, we examine what is known about human nascent RNA structure and the influence of RNA structure on processing of precursor RNAs. These known structures provide examples of how other nascent RNAs may be structured and show how novel RNA structures may influence RNA processing including splicing and polyadenylation. RNA structures can be targeted therapeutically to treat disease.  相似文献   

15.
Does tree diversity increase wood production in pine forests?   总被引:1,自引:0,他引:1  
Vilà M  Vayreda J  Gracia C  Ibáñez JJ 《Oecologia》2003,135(2):299-303
Recent experimental advances on the positive effect of species richness on ecosystem productivity highlight the need to explore this relationship in communities other than grasslands and using non-synthetic experiments. We investigated whether wood production in forests dominated by Aleppo pine (Pinus halepensis) and Pyrenean Scots pine (Pinus sylvestris) differed between monospecific and mixed forests (2-5 species) using the Ecological and Forest Inventory of Catalonia (IEFC) database which contains biotic and environmental characteristics for 10,644 field plots distributed within a 31,944 km(2) area in Catalonia (NE Spain). We found that in Pyrenean Scots pine forests wood production was not significantly different between monospecific and mixed plots. In contrast, in Aleppo pine forests wood production was greater in mixed plots than in monospecific plots. However, when climate, bedrock types, radiation and successional stage per plot were included in the analysis, species richness was no longer a significant factor. Aleppo pine forests had the highest productivity in plots located in humid climates and on marls and sandstone bedrocks. Climate did not influence wood production in Pyrenean Scots pine forests, but it was highest on sandstone and consolidated alluvial materials. For both pine forests wood production was negatively correlated with successional stage. Radiation did not influence wood production. Our analysis emphasizes the influence of macroenvironmental factors and temporal variation on tree productivity at the regional scale. Well-conducted forest surveys are an excellent source of data to test for the association between diversity and productivity driven by large-scale environmental factors.  相似文献   

16.
Core temperature (tympanic and rectal temperatures) is lowered for several hours under diurnal bright light exposure and its evening fall is inhibited under evening bright light exposure. Melatonin may be involved in the behavior of these core temperatures. Diurnal bright light exposure for several hours may make dressing behavior and thermal sensibility in the evening cold slower and dull, compared with diurnal dim light exposure. On the contrary, evening bright light exposure for several hours may make the dressing behavior and thermal sensibility in the evening cold quicker and sharper, compared with evening dim light exposure. The underlying physiological mechanisms for these findings are that the thermoregulatory set-point would be reduced more markedly in the evening under the influence of higher elevation of melatonin under the diurnal bright light exposure, and its evening decline would be inhibited by suppression of the nocturnal rise of melatonin under evening bright light exposure.  相似文献   

17.
We evaluated 25?years of change in wind-impacted oak and pine-dominated sites in the Cedar Creek Ecosystem Science Reserve, Minnesota, USA. We address the question: how did the storm alter stand architecture and spatial pattern and how did this affect recovery and recruitment? We mapped and marked all stems greater than 1?cm in diameter in a 0.25?ha oak-dominated plot and a 0.30?ha pine-dominated plot. After the initial sampling in 1983, plots were resurveyed four times in the 25?years following the windstorm. We used ordination and diameter distributions to describe compositional and structural characteristics of the sites. The stands are compositionally converging after the windstorm with both moving towards a late-successional forest type dominated by shade-tolerant tree species. The architecture in both sites is similar through time; sites have transitioned from bimodal diameter distributions to reverse-J distributions. We used Ripley??s K point pattern analysis to assess spatial patterns of tree mortality and recruitment within each site. In the pine site, surviving trees were significantly clumped, but mortality and recruitment patterns did not significantly differ from random. In the oak site, the storm did not substantially alter the spatial pattern of surviving trees, but subsequent recruitment was significantly associated with trees killed by the storm at scales within 6?C8?m and significantly dissociated with surviving trees at scales greater than 1?m. The dynamics of accelerated succession observed here are mediated by the damage and mortality initially sustained and its corresponding effects on spatial patterns of surviving and recruiting trees.  相似文献   

18.
Bugmann H  Bigler C 《Oecologia》2011,165(2):533-544
Experimental studies suggest that tree growth is stimulated in a greenhouse atmosphere, leading to faster carbon accumulation (i.e., a higher rate of gap filling). However, higher growth may be coupled with reduced longevity, thus leading to faster carbon release (i.e., a higher rate of gap creation). The net effect of these two counteracting processes is not known. We quantify this net effect on aboveground carbon stocks using a novel combination of data sets and modeling. Data on maximum growth rate and maximum longevity of 141 temperate tree species are used to derive a relationship between growth stimulation and changes in longevity. We employ this relationship to modify the respective parameter values of tree species in a forest succession model and study aboveground biomass in a factorial design of growth stimulation × reduced maximum longevity at multiple sites along a climate gradient from the cold to the dry treeline. The results show that (1) any growth stimulation at the tree level leads to a disproportionately small increase of stand biomass due to negative feedback effects, even in the absence of reduced longevity; (2) a reduction of tree longevity tends to offset the growth-related biomass increase; at the most likely value of reduced longevity, the net effect is very close to zero in most multi- and single-species simulations; and (3) when averaging the response across all sites to mimic a “landscape-level” response, the net effect is close to zero. Thus, it is important to consider ecophysiological responses with their linkage to demographic processes in forest trees if one wishes to avoid erroneous inference at the ecosystem level. We conclude that any CO2 fertilization effect is quite likely to be offset by an associated reduction in the longevity of forest trees, thus strongly reducing the carbon mitigation potential of temperate forests.  相似文献   

19.
Reproductive development in sexual plants is substantially more sensitive to high temperature stress than vegetative development, resulting in negative implications for food and fiber production under the moderate temperature increases projected to result from global climate change. High temperature exposure either during early pollen development or during the progamic phase of pollen development will negatively impact pollen performance and reproductive output; both phases of pollen development are considered exceptionally sensitive to moderate heat stress. However, moderately elevated temperatures either before or during the progamic phase can limit fertilization by negatively impacting important pollen pistil interactions required for successful pollen tube growth toward the ovules. This mini-review identifies the impacts of heat stress on pollen-pistil interactions and sexual reproduction in angiosperms. A special emphasis is placed on the biochemical response of the pistil to moderately high temperature and the resultant influence on in vivo pollen performance and fertilization.Key words: pollen-pistil interaction, carbohydrates, heat stress, fertilization, pollen tube growth, climate changeSexual reproduction is substantially more sensitive to moderately high temperature stress than vegetative processes.1 Consequently, the yield of crops with valuable reproductive structures used for food (i.e., grain crops and horticultural crops) and fiber (i.e., cotton) would be especially sensitive to moderately elevated temperatures projected to result from global climate change. Sexual reproduction in angiosperms occurs in essentially three stages: gametophyte development (from meiosis to pollination), the progamic phase (from pollination to zygote formation) and embryo development (from zygote to seed).2 During the pro-gamic phase, a number of reproductive processes must occur in a highly concerted fashion for successful fertilization to occur. (1) Anther dehiscence allows mature pollen grains to be transferred to a receptive stigmatic surface; (2) pollen grains germinate and pollen tubes penetrate the stigmatic surface of the pistil; (3) pollen tubes grow through the transmitting tissue of the style and towards a sexually competent ovule; finally, (4) double fertilization produces a zygote and its associated endosperm. Inhibition of any one of the aforementioned processes during the progamic phase, will necessarily limit seed development.3Although the timing and precise coordination of events during the progamic phase are strongly determined by genotype and occur in a unique and well-defined manner for a given species,4 the environment encountered either before or during the pro-gamic phase also exerts considerable control over the fertilization process, and can strongly influence reproductive success.5 Consequently, high temperature has been shown to substantially limit fertilization in vivo.5 Depending upon the timing, duration and severity, heat stress can limit fertilization5 by (1) inhibiting male6 and female5,7 gametophyte development, (2) inhibiting pollen germination,6,8,9 (3) limiting pollen tube growth,811 or (4) by altering the development of tissues required to carry out reproductive processes (i.e., anther and pistil tissues).1 Although the existing literature concerning heat stress and reproductive development in sexual plants is exhaustive (reviewed in ref. 1 and 2), the approaches used by various investigators to elucidate plant reproductive responses to high temperature vary substantially from study to study. Consequently, it is the aim of this review to characterize the impact of timing, duration and severity of heat stress on sexual processes occurring during the progamic phase. A special emphasis is placed on the biochemical response of the pistil to moderately high temperature and the resultant influence on in vivo pollen performance.  相似文献   

20.
The biological basis underlying the increased risk of nondisjunction in offspring of women of advanced maternal age is not understood. We sought to test the hypothesis that maternal reproductive age (distance in time from approaching menopause) rather than chronological age is pivotal in the etiology of nondisjunction. Our results found no difference in age of menopause between women 30 years old at delivery of a child with trisomy 21 (i.e., age-related nondisjunction) compared to controls. Among women <30 years of age at delivery of a child with trisomy 21, none underwent premature menopause. Therefore, our findings fail to support the theory that reproductive age plays a major role in the etiology of nondisjunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号