首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a) the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b) this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions –episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a) Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b) Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c) Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex''s role in semantic control and the dorsolateral prefrontal cortex''s role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the first to demonstrate dorso-ventral and rostro-caudal prefrontal cortex processing gradients in white matter integrity.  相似文献   

2.
Processing speed is considered a key cognitive resource and it has a crucial role in all types of cognitive performance. Some researchers have hypothesised the importance of white matter integrity in the brain for processing speed; however, the relationship at the whole-brain level between white matter volume (WMV) and processing speed relevant to the modality or problem used in the task has never been clearly evaluated in healthy people. In this study, we used various tests of processing speed and Voxel-Based Morphometry (VBM) analyses, it is involves a voxel-wise comparison of the local volume of gray and white, to assess the relationship between processing speed and regional WMV (rWMV). We examined the association between processing speed and WMV in 887 healthy young adults (504 men and 383 women; mean age, 20.7 years, SD, 1.85). We performed three different multiple regression analyses: we evaluated rWMV associated with individual differences in the simple processing speed task, word–colour and colour–word tasks (processing speed tasks with words) and the simple arithmetic task, after adjusting for age and sex. The results showed a positive relationship at the whole-brain level between rWMV and processing speed performance. In contrast, the processing speed performance did not correlate with rWMV in any of the regions examined. Our results support the idea that WMV is associated globally with processing speed performance regardless of the type of processing speed task.  相似文献   

3.

Objective

The objective was to evaluate the association of peripheral and central hearing abilities with cognitive function in older adults.

Methods

Recruited from epidemiological studies of aging and cognition at the Rush Alzheimer’s Disease Center, participants were a community-dwelling cohort of older adults (range 63–98 years) without diagnosis of dementia. The cohort contained roughly equal numbers of Black (n=61) and White (n=63) subjects with groups similar in terms of age, gender, and years of education. Auditory abilities were measured with pure-tone audiometry, speech-in-noise perception, and discrimination thresholds for both static and dynamic spectral patterns. Cognitive performance was evaluated with a 12-test battery assessing episodic, semantic, and working memory, perceptual speed, and visuospatial abilities.

Results

Among the auditory measures, only the static and dynamic spectral-pattern discrimination thresholds were associated with cognitive performance in a regression model that included the demographic covariates race, age, gender, and years of education. Subsequent analysis indicated substantial shared variance among the covariates race and both measures of spectral-pattern discrimination in accounting for cognitive performance. Among cognitive measures, working memory and visuospatial abilities showed the strongest interrelationship to spectral-pattern discrimination performance.

Conclusions

For a cohort of older adults without diagnosis of dementia, neither hearing thresholds nor speech-in-noise ability showed significant association with a summary measure of global cognition. In contrast, the two auditory metrics of spectral-pattern discrimination ability significantly contributed to a regression model prediction of cognitive performance, demonstrating association of central auditory ability to cognitive status using auditory metrics that avoided the confounding effect of speech materials.  相似文献   

4.
The aim of the study was to evaluate the value of assessing white matter integrity using diffusion tensor imaging (DTI) for classification of mild cognitive impairment (MCI) and prediction of cognitive impairments in comparison to brain atrophy measurements using structural MRI. Fifty-one patients with MCI and 66 cognitive normal controls (CN) underwent DTI and T1-weighted structural MRI. DTI measures included fractional anisotropy (FA) and radial diffusivity (DR) from 20 predetermined regions-of-interest (ROIs) in the commissural, limbic and association tracts, which are thought to be involved in Alzheimer''s disease; measures of regional gray matter (GM) volume included 21 ROIs in medial temporal lobe, parietal cortex, and subcortical regions. Significant group differences between MCI and CN were detected by each MRI modality: In particular, reduced FA was found in splenium, left isthmus cingulum and fornix; increased DR was found in splenium, left isthmus cingulum and bilateral uncinate fasciculi; reduced GM volume was found in bilateral hippocampi, left entorhinal cortex, right amygdala and bilateral thalamus; and thinner cortex was found in the left entorhinal cortex. Group classifications based on FA or DR was significant and better than classifications based on GM volume. Using either DR or FA together with GM volume improved classification accuracy. Furthermore, all three measures, FA, DR and GM volume were similarly accurate in predicting cognitive performance in MCI patients. Taken together, the results imply that DTI measures are as accurate as measures of GM volume in detecting brain alterations that are associated with cognitive impairment. Furthermore, a combination of DTI and structural MRI measurements improves classification accuracy.  相似文献   

5.
Physical activity (PA) and cardiorespiratory fitness (CRF) are associated with better cognitive function in late life, but the neural correlates for these relationships are unclear. To study these correlates, we examined the association of both PA and CRF with measures of white matter (WM) integrity in 88 healthy low-fit adults (age 60–78). Using accelerometry, we objectively measured sedentary behavior, light PA, and moderate to vigorous PA (MV-PA) over a week. We showed that greater MV-PA was related to lower volume of WM lesions. The association between PA and WM microstructural integrity (measured with diffusion tensor imaging) was region-specific: light PA was related to temporal WM, while sedentary behavior was associated with lower integrity in the parahippocampal WM. Our findings highlight that engaging in PA of various intensity in parallel with avoiding sedentariness are important in maintaining WM health in older age, supporting public health recommendations that emphasize the importance of active lifestyle.  相似文献   

6.
7.

Background/Objectives

White matter hyperintensities (WMH) in magnetic resonance imaging (MRI) scans of the brain, and orthostatic hypotension (OH) are both common in older people. We tested the hypothesis that OH is associated with WMH.

Design

Cross-sectional study.

Setting

Secondary care outpatient clinics in geriatric medicine and old age psychiatry in western Norway.

Participants

160 older patients with mild dementia, diagnosed according to standardised criteria.

Measurements

OH was diagnosed according to the consensus definition, measuring blood pressure (BP) in the supine position and within 3 minutes in the standing position. MRI scans were performed according to a common protocol at three centres, and the volumes of WMH were quantified using an automated method (n = 82), followed by manual editing. WMH were also quantified using the visual Scheltens scale (n = 139). Multiple logistic regression analyses were applied, with highest vs. lowest WMH quartile as response.

Results

There were no significant correlations between WMH volumes and systolic or diastolic orthostatic BP drops, and no significant correlations between Scheltens scores of WMH and systolic or diastolic BP drops. In the multivariate analyses, only APOEε4 status remained a significant predictor for WMH using the automated method (p = 0.037, OR 0.075 (0.007–0.851)), whereas only age remained a significant predictor for WMH scores (p = 0.019, OR 1.119 (1.018–1.230)).

Conclusion

We found no association between OH and WMH load in a sample of older patients with mild dementia.  相似文献   

8.
Decline in cognitive performance in old age is linked to both suboptimal neural processing in grey matter (GM) and reduced integrity of white matter (WM), but the whole-brain structure-function-cognition associations remain poorly understood. Here we apply a novel measure of GM processing–moment-to-moment variability in the blood oxygenation level-dependent signal (SDBOLD)—to study the associations between GM function during resting state, performance on four main cognitive domains (i.e., fluid intelligence, perceptual speed, episodic memory, vocabulary), and WM microstructural integrity in 91 healthy older adults (aged 60-80 years). We modeled the relations between whole-GM SDBOLD with cognitive performance using multivariate partial least squares analysis. We found that greater SDBOLD was associated with better fluid abilities and memory. Most of regions showing behaviorally relevant SDBOLD (e.g., precuneus and insula) were localized to inter- or intra-network “hubs” that connect and integrate segregated functional domains in the brain. Our results suggest that optimal dynamic range of neural processing in hub regions may support cognitive operations that specifically rely on the most flexible neural processing and complex cross-talk between different brain networks. Finally, we demonstrated that older adults with greater WM integrity in all major WM tracts had also greater SDBOLD and better performance on tests of memory and fluid abilities. We conclude that SDBOLD is a promising functional neural correlate of individual differences in cognition in healthy older adults and is supported by overall WM integrity.  相似文献   

9.
Neurochemical Research - Brain white matter is the means of efficient signal propagation in brain and its dysfunction is associated with many neurological disorders. We studied the effect of...  相似文献   

10.
The mechanisms by which aging and other processes can affect the structure and function of brain networks are important to understanding normal age-related cognitive decline. Advancing age is known to be associated with various disease processes, including clinically asymptomatic vascular and inflammation processes that contribute to white matter structural alteration and potential injury. The effects of these processes on the function of distributed cognitive networks, however, are poorly understood. We hypothesized that the extent of magnetic resonance imaging white matter hyperintensities would be associated with visual attentional control in healthy aging, measured using a functional magnetic resonance imaging search task. We assessed cognitively healthy older adults with search tasks indexing processing speed and attentional control. Expanding upon previous research, older adults demonstrate activation across a frontal-parietal attentional control network. Further, greater white matter hyperintensity volume was associated with increased activation of a frontal network node independent of chronological age. Also consistent with previous research, greater white matter hyperintensity volume was associated with anatomically specific reductions in functional magnetic resonance imaging functional connectivity during search among attentional control regions. White matter hyperintensities may lead to subtle attentional network dysfunction, potentially through impaired frontal-parietal and frontal interhemispheric connectivity, suggesting that clinically silent white matter biomarkers of vascular and inflammatory injury can contribute to differences in search performance and brain function in aging, and likely contribute to advanced age-related impairments in cognitive control.  相似文献   

11.

Study Objectives

To investigate the effect of an eight-week, home-based, personalized, computerized cognitive training program on sleep quality and cognitive performance among older adults with insomnia.

Design

Participants (n = 51) were randomly allocated to a cognitive training group (n = 34) or to an active control group (n = 17). The participants in the cognitive training group completed an eight-week, home-based, personalized, computerized cognitive training program, while the participants in the active control group completed an eight-week, home-based program involving computerized tasks that do not engage high-level cognitive functioning. Before and after training, all participants'' sleep was monitored for one week by an actigraph and their cognitive performance was evaluated.

Setting

Community setting: residential sleep/performance testing facility.

Participants

Fifty-one older adults with insomnia (aged 65–85).

Interventions

Eight weeks of computerized cognitive training for older adults with insomnia.

Results

Mixed models for repeated measures analysis showed between-group improvements for the cognitive training group on both sleep quality (sleep onset latency and sleep efficiency) and cognitive performance (avoiding distractions, working memory, visual memory, general memory and naming). Hierarchical linear regressions analysis in the cognitive training group indicated that improved visual scanning is associated with earlier advent of sleep, while improved naming is associated with the reduction in wake after sleep onset and with the reduction in number of awakenings. Likewise the results indicate that improved “avoiding distractions” is associated with an increase in the duration of sleep. Moreover, the results indicate that in the active control group cognitive decline observed in working memory is associated with an increase in the time required to fall asleep.

Conclusions

New learning is instrumental in promoting initiation and maintenance of sleep in older adults with insomnia. Lasting and personalized cognitive training is particularly indicated to generate the type of learning necessary for combined cognitive and sleep enhancements in this population.

Trial Registration

ClinicalTrials.gov NCT00901641http://clinicaltrials.gov/ct2/show/NCT00901641  相似文献   

12.
伴随老化,老年人的认知和脑功能会表现出一定的下降趋势.尽管如此,人类的大脑到老年期都会保有一定的可塑性,认知训练的方式是延缓认知和脑功能衰退的有效手段.本文回顾了以往针对老年人不同类型的认知训练研究,探讨了认知训练的理论基础(包括放大观和补偿观),深入分析了老年人认知训练的神经机制,并在此基础上指出以往研究中理论基础冲突的不足和对未来研究老年人训练任务适配性的展望.  相似文献   

13.
That creativity and psychopathology are somehow linked remains a popular but controversial idea in neuroscience research. Brain regions implicated in both psychosis-proneness and creative cognition include frontal projection zones and association fibers. In normal subjects, we have previously demonstrated that a composite measure of divergent thinking (DT) ability exhibited significant inverse relationships in frontal lobe areas with both cortical thickness and metabolite concentration of N-acetyl-aspartate (NAA). These findings support the idea that creativity may reside upon a continuum with psychopathology. Here we examine whether white matter integrity, assessed by Fractional Anisotropy (FA), is related to two measures of creativity (Divergent Thinking and Openness to Experience). Based on previous findings, we hypothesize inverse correlations within fronto-striatal circuits. Seventy-two healthy, young adult (18–29 years) subjects were scanned on a 3 Tesla scanner with Diffusion Tensor Imaging. DT measures were scored by four raters (α = .81) using the Consensual Assessment Technique, from which a composite creativity index (CCI) was derived. We found that the CCI was significantly inversely related to FA within the left inferior frontal white matter (t = 5.36, p = .01), and Openness was inversely related to FA within the right inferior frontal white matter (t = 4.61, p = .04). These findings demonstrate an apparent overlap in specific white matter architecture underlying the normal variance of divergent thinking, openness, and psychotic-spectrum traits, consistent with the idea of a continuum.  相似文献   

14.
Language has been extensively investigated by functional neuroimaging studies. However, only a limited number of structural neuroimaging studies have examined the relationship between language performance and brain structure in healthy adults, and the number is even less in older adults. The present study sought to investigate correlations between grey matter volumes and three standardized language tests in late life. The participants were 344 non-demented, community-dwelling adults aged 70-90 years, who were drawn from the population-based Sydney Memory and Ageing Study. The three language tests included the Controlled Oral Word Association Task (COWAT), Category Fluency (CF), and Boston Naming Test (BNT). Correlation analyses between voxel-wise GM volumes and language tests showed distinctive GM correlation patterns for each language test. The GM correlates were located in the right frontal and left temporal lobes for COWAT, in the left frontal and temporal lobes for CF, and in bilateral temporal lobes for BNT. Our findings largely corresponded to the neural substrates of language tasks revealed in fMRI studies, and we also observed a less hemispheric asymmetry in the GM correlates of the language tests. Furthermore, we divided the participants into two age groups (70-79 and 80-90 years old), and then examined the correlations between structural laterality indices and language performance for each group. A trend toward significant difference in the correlations was found between the two age groups, with stronger correlations in the group of 70-79 years old than those in the group of 80-90 years old. This difference might suggest a further decline of language lateralization in different stages of late life.  相似文献   

15.
There is ample evidence that physical and cognitive performance are related, but the results of studies investigating this relationship show great variability. Both physical performance and cognitive performance are constructs consisting of several subdomains, but it is presently unknown if the relationship between physical and cognitive performance depends on subdomain of either construct and whether gender and age moderate this relationship. The aim of this study is to identify the strongest physical predictors of cognitive performance, to determine the specificity of these predictors for various cognitive subdomains, and to examine gender and age as potential moderators of the relationship between physical and cognitive performance in a sample of community-dwelling older adults. In total, 98 men and 122 women (average age 74.0±5.6 years) were subjected to a series of performance-based physical fitness and neuropsychological tests. Muscle strength, balance, functional reach, and walking ability (combined score of walking speed and endurance) were considered to predict cognitive performance across several domains (i.e. memory, verbal attention, visual attention, set-shifting, visuo-motor attention, inhibition and intelligence). Results showed that muscle strength was a significant predictor of cognitive performance for men and women. Walking ability and balance were significant predictors of cognitive performance for men, whereas only walking ability was significant for women. We did not find a moderating effect of age, nor did we find support for a differential effect of the physical predictors across different cognitive subdomains. In summary, our results showed a significant relationship between cognitive and physical performance, with a moderating effect of gender.  相似文献   

16.
17.

Objective

To investigate grey (GM) and white matter (WM) abnormalities and their effects on cognitive and behavioral deficits in a large, phenotypically and genotypically well-characterized cohort of classic adult (aDM1, age at onset ≥20 years) or juvenile (jDM1, age at onset <20 years) patients with myotonic dystrophy type 1 (DM1).

Methods

A case-control study including 51 DM1 patients (17 jDM1 and 34 aDM1) and 34 controls was conducted at an academic medical center. Clinical, cognitive and structural MRI evaluations were obtained. Quantitative assessments of regional GM volumes, WM hyperintensities (WMHs), and microstructural WM tract damage were performed. The association between structural brain damage and clinical and cognitive findings was assessed.

Results

DM1 patients showed a high prevalence of WMHs, severe regional GM atrophy including the key nodes of the sensorimotor and main cognitive brain networks, and WM microstructural damage of the interhemispheric, corticospinal, limbic and associative pathways. WM tract damage extends well beyond the focal WMHs. While aDM1 patients had severe patterns of GM atrophy and WM tract damage, in jDM1 patients WM abnormalities exceeded GM involvement. In DM1, WMHs and microstructural damage, but not GM atrophy, correlated with cognitive deficits.

Conclusions

WM damage, through a disconnection between GM structures, is likely to be the major contributor to cognitive impairment in DM1. Our MRI findings in aDM1 and jDM1 patients support the hypothesis of a degenerative (premature aging) origin of the GM abnormalities and of developmental changes as the principal substrates of microstructural WM alterations in DM1.  相似文献   

18.
The inhibitory deficit hypothesis of cognitive aging posits that older adults’ inability to adequately suppress processing of irrelevant information is a major source of cognitive decline. Prior research has demonstrated that in response to task-irrelevant auditory stimuli there is an age-associated increase in the amplitude of the N1 wave, an ERP marker of early perceptual processing. Here, we tested predictions derived from the inhibitory deficit hypothesis that the age-related increase in N1 would be 1) observed under an auditory-ignore, but not auditory-attend condition, 2) attenuated in individuals with high executive capacity (EC), and 3) augmented by increasing cognitive load of the primary visual task. ERPs were measured in 114 well-matched young, middle-aged, young-old, and old-old adults, designated as having high or average EC based on neuropsychological testing. Under the auditory-ignore (visual-attend) task, participants ignored auditory stimuli and responded to rare target letters under low and high load. Under the auditory-attend task, participants ignored visual stimuli and responded to rare target tones. Results confirmed an age-associated increase in N1 amplitude to auditory stimuli under the auditory-ignore but not auditory-attend task. Contrary to predictions, EC did not modulate the N1 response. The load effect was the opposite of expectation: the N1 to task-irrelevant auditory events was smaller under high load. Finally, older adults did not simply fail to suppress the N1 to auditory stimuli in the task-irrelevant modality; they generated a larger response than to identical stimuli in the task-relevant modality. In summary, several of the study’s findings do not fit the inhibitory-deficit hypothesis of cognitive aging, which may need to be refined or supplemented by alternative accounts.  相似文献   

19.

Background

To examine the effect of multicomponent exercise program on memory function in older adults with mild cognitive impairment (MCI), and identify biomarkers associated with improvement of cognitive functions.

Methodology/Principal Findings

Subjects were 100 older adults (mean age, 75 years) with MCI. The subjects were classified to an amnestic MCI group (n = 50) with neuroimaging measures, and other MCI group (n = 50) before the randomization. Subjects in each group were randomized to either a multicomponent exercise or an education control group using a ratio of 1∶1. The exercise group exercised for 90 min/d, 2 d/wk, 40 times for 6 months. The exercise program was conducted under multitask conditions to stimulate attention and memory. The control group attended two education classes. A repeated-measures ANOVA revealed that no group × time interactions on the cognitive tests and brain atrophy in MCI patients. A sub-analysis of amnestic MCI patients for group × time interactions revealed that the exercise group exhibited significantly better Mini-Mental State Examination (p = .04) and logical memory scores (p = .04), and reducing whole brain cortical atrophy (p<.05) compared to the control group. Low total cholesterol levels before the intervention were associated with an improvement of logical memory scores (p<.05), and a higher level of brain-derived neurotrophic factor was significantly related to improved ADAS-cog scores (p<.05).

Conclusions/Significance

The results suggested that an exercise intervention is beneficial for improving logical memory and maintaining general cognitive function and reducing whole brain cortical atrophy in older adults with amnestic MCI. Low total cholesterol and higher brain-derived neurotrophic factor may predict improvement of cognitive functions in older adults with MCI. Further studies are required to determine the positive effects of exercise on cognitive function in older adults with MCI.

Trial Registration

UMIN-CTR UMIN000003662 ctr.cgi&quest;function&hairsp;&equals;&hairsp;brows&amp;action&hairsp;&equals;&hairsp;brows&amp;type&hairsp;&equals;&hairsp;summary&amp;recptno&hairsp;&equals;&hairsp;R000004436&amp;language&hairsp;&equals;&hairsp;J.  相似文献   

20.
High adiposity is deleteriously associated with brain health, and may disproportionately affect white matter integrity; however, limited information exists regarding the mechanisms underlying the association between body mass (BMI) and white matter integrity. The present study evaluated whether vascular and inflammatory markers influence the relationship between BMI and white matter in healthy aging. We conducted a cross-sectional evaluation of white matter integrity, BMI, and vascular/inflammatory factors in a cohort of 138 healthy older adults (mean age: 71.3 years). Participants underwent diffusion tensor imaging, provided blood samples, and participated in a health evaluation. Vascular risk factors and vascular/inflammatory blood markers were assessed. The primary outcome measure was fractional anisotropy (FA) of the genu, body, and splenium (corpus callosum); exploratory measures included additional white matter regions, based on significant associations with BMI. Regression analyses indicated that higher BMI was associated with lower FA in the corpus callosum, cingulate, and fornix (p<.001). Vascular and inflammatory factors influenced the association between BMI and FA. Specifically, BMI was independently associated with the genu [β=-.21; B=-.0024; 95% CI, -.0048 to -.0000; p=.05] and cingulate fibers [β=-.39; B=-.0035; 95% CI,-.0056 to -.0015; p<.001], even after controlling for vascular/inflammatory risk factors and blood markers. In contrast, BMI was no longer significantly associated with the fornix and middle/posterior regions of the corpus callosum after controlling for these markers. Results partially support a vascular/inflammatory hypothesis, but also suggest a more complex relationship between BMI and white matter characterized by potentially different neuroanatomic vulnerability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号