首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微生物基因组精简优化是构建合成生物学底盘细胞的重要策略.文中从基因组精简的整体设计出发,归纳了微生物的必需基因及其确定方法,重点介绍了各种微生物基因组精简策略,分析了多种基因组精简菌株的特点,充分展示了基因组精简优化在构建合成生物学底盘细胞中的重要作用.  相似文献   

2.
工业微生物底盘细胞的开发将为工业生物技术的发展提供优良的细胞工厂,有利于实现环境保护及经济可持续发展。基于合成生物学"设计-构建-测试-学习"(Design-Build-Test-Learn,DBTL)策略,对底盘细胞进行多维度的理性或半理性改造是实现"建物致知"以及"建物致用"目标的重要手段。文中简述了合成生物学DBTL策略中各步骤相关的重要技术方法;概述了部分重要模式微生物底盘细胞的策略与研究进展;重点比较介绍了工业生物技术领域具有特殊生理功能、利用一碳化合物及高效生产平台化合物的部分非模式细菌;同时也提出了实现优良、安全合成微生物细胞工厂构建与应用的策略。这些方法策略包括依靠合成生物学技术方法,综合模式与非模式微生物优势,开发应用经济、高效的高通量智能装备,建立分子组学与表型组学研究平台,推动多层次系统生物学与表型组学大数据的解析、整合、模拟与可视化,以及建立高质量的数字细胞模型和基因组优化的底盘细胞,推动高效、优良工业细胞工厂的理性设计、构建与应用。  相似文献   

3.
非常规酵母的分子遗传学及合成生物学研究进展   总被引:1,自引:0,他引:1  
先进的合成生物学技术与传统的分子遗传学技术的结合更有助于实现酵母底盘细胞的快速改造和优化。酵母合成生物学研究最早开始于常规酵母——酿酒酵母(Saccharomyces cerevisiae),近些年来又迅速扩展至一些非常规酵母,包括巴斯德毕赤酵母(Pichiapastoris)、解脂耶氏酵母(Yarrowialipolytica)、乳酸克鲁维酵母(Kluyveromyces lactis)和多形汉逊酵母(Hansenula polymorpha)等。借助合成生物学技术与工具,目前科学家们已经成功开发出了能够高效生产生物材料、生物燃料、生物基化学品、蛋白质制剂、食品添加剂和药物等工业产品的重组非常规酵母工程菌株。本文系统总结了合成生物学工具(主要是基因组编辑工具)、合成生物学组件(主要是启动子和终止子)和相关分子遗传学方法在上述非常规酵母系统(底盘细胞)中的最新研究进展和应用情况,并讨论了其他合成生物学技术在这些非常规酵母表达系统中的潜在适用性和应用前景。这为研究人员利用合成生物学方法在这一新型非模式微生物底盘细胞中设计和构建各种高附加值工业产品的异源合成模块并最终实现目标化合物的高效生物合成提供了科学的理论指导。  相似文献   

4.
本科生创新能力培养是"双一流"建设人才培养的重要组成部分。合成生物学是一门新兴多学科交叉领域,被誉为可改变世界的十大新技术领域之一。构建高版本底盘微生物细胞和利用底盘细胞人工合成细胞工厂是合成生物学的重要组成部分。以实现创新型本科生为培养目标,我们将合成生物学底盘微生物细胞技术融入人才培养环节,通过组织学生参加国际遗传工程机器设计竞赛、主持大学生创新创业训练项目以及完成本科生毕业设计课题等多元化途径,提高学生理论联系实际及创新实践能力。同时,由于底盘微生物细胞是基因组经过精简、优化或其基因通路被改变的细胞,其应用存在一定的生物安全风险。我们通过将安全教育纳入培养大纲和教学计划、出版实验室安全与操作规范专业教材、开发虚拟仿真实验项目、建立实验室准入制度和信息化管理体系,以及针对底盘微生物细胞从购买、管理、规范使用和废弃物处理等进行生物安全教育等系列举措,规范底盘微生物细胞应用的生物安全。这些实践为培养创新型本科生提供了一个强有力的途径和有效保障,也为合成生物学的发展提供了支持,并有助于培养新的生力军。  相似文献   

5.
乳酸菌作为传统食品级微生物,长期应用于食品工业、生活保健、临床医学领域中。随着人们对乳酸菌特殊功能需求的提升,传统筛菌方法由于其技术繁复、周期长、成功率低等缺点,逐渐成为制约乳酸菌行业发展的瓶颈。合成生物学技术的出现,将具有特定功能的基因电路网络导入细胞基因组中,让细胞来完成设计者设想的各种任务,可为解决乳酸菌功能菌株开发难题提供新的机遇。探讨了乳酸菌的菌种特点及其作为合成生物学底盘的优势,综述了乳酸菌合成生物学中元件设计、载体选择、转化方法和基因编辑技术的发展现状,总结并展望了工程化乳酸菌在疾病诊断治疗、食品改善品质和生物能源等方面的应用,讨论了合成生物学在乳酸菌领域进一步应用所需实现的技术突破,旨为乳酸菌合成生物学的发展提供借鉴。  相似文献   

6.
天然产物是创新药物、食品、香料和日化产品等的重要来源,和人民的健康生活息息相关。近年来,随着现代生物学技术和天然产物化学技术的发展和融合,天然产物生物合成研究得到了迅猛的发展。一批天然产物的生物合成途径被解析,许多天然产物生物合成相关的途径酶与后修饰酶被挖掘和功能表征。进一步,这些参与天然产物生物合成的途径酶编码基因被组装到不同的底盘细胞中,利用合成生物学技术构建细胞工厂,用于天然产物的生物合成。此外,包括基因组编辑等新技术在内的生物技术也被用于天然产物的生物合成。为了进一步促进天然产物生物合成研究的发展,《生物工程学报》特组织出版"天然产物的生物合成"专刊,重点阐述了在天然产物生物合成途径的解析,工具酶的挖掘和功能表征以及生物合成技术制备天然产物三方面所取得的研究进展,并展望未来的发展趋势,为天然产物生物合成的进一步发展提供借鉴和指导。  相似文献   

7.
芳香族化合物种类丰富,在多个行业具有广泛的用途,需求量大。通过构建微生物细胞工厂合成芳香族化合物具有独特的优势和工业化应用前景,其中酵母底盘因其清晰的遗传背景、完善的基因操作工具以及成熟的工业发酵体系等优势,常被用于构建细胞工厂。目前改造酵母底盘生产芳香族化合物的研究取得了一系列进展,并针对关键问题提出了一些可行的解决策略。针对酵母合成芳香族化合物的策略与挑战,从芳香族化合物合成路径改造、多样化碳源利用及转运系统改造、基因组多靶点改造、特殊酵母底盘及混菌系统构建、合成生物学高通量技术的应用这五个方面进行系统地梳理和阐述,为生产芳香族化合物的酵母底盘构建与改造提供思路。  相似文献   

8.
天然产物及其衍生物在现代医疗中扮演着举足轻重的角色,其生物活性多样性以及化学结构的丰富性是新药研发的源泉和动力。利用纯化学方法合成天然产物在技术和成本上有很大的困难,加上许多天然产物的原始产生菌具有培养条件苛刻、产量低下等缺点,而且大量基因簇在原始菌株中是沉默的,这使得利用合成生物学思想来指导天然产物生物合成基因簇的异源表达具有重大意义。作为抗生素、抗肿瘤活性物质、免疫抑制剂等次级代谢产物主要来源的放线菌一直是研究者们关注的焦点,特别是随着基因测序技术的飞速发展,人们发现链霉菌基因组中包含着极为丰富的天然产物生物合成基因簇资源。这意味着开发链霉菌底盘细胞作为异源表达宿主有其得天独厚的优势。本综述从底盘细胞开发的意义入手,重点阐述链霉菌底盘细胞构建的策略及现状,随后通过实例阐述了各种底盘链霉菌的实际应用。  相似文献   

9.
光合蓝细菌具有一系列良好的特质,包括利用太阳能固定CO2、营养需求低、生长迅速以及遗传背景简单等.近年来,光合蓝细菌作为生产可再生燃料和精细化学制品的“自养型人工细胞工厂”引起了社会的广泛关注,促进了相关研究的升温.目前在应用合成生物学的技术和研究策略来优化光合蓝细菌作为底盘生物等方面已取得了一些令人鼓舞的进展.文中综述了近年来在光合蓝细菌底盘优化的方法、光合效率的提高以及各种耐受性蓝细菌底盘的构建方面的进展,并对光合蓝细菌底盘构建的工业应用价值进行了讨论.  相似文献   

10.
近年来,合成生物学借助工程化在人工生命系统的设计与构建方面取得了长足进展,特别是“细胞工厂”的开发和应用为天然产物的合成带来了深刻变革。环脂肽是一类新型的天然表面活性剂,因其特殊的结构和功能亦可作为抗生素使用。目前,合成环脂肽最理想的微生物底盘是芽孢杆菌。因此,许多研究者致力于通过合成生物学技术来提升芽孢杆菌作为环脂肽细胞工厂的性能。首先,对芽孢杆菌中环脂肽的非核糖体肽合成途径进行概述;其次,重点介绍与环脂肽合成相关的调控因子;再次,从底盘细胞的选择、基因编辑工具的开发、合成路径的优化及发酵过程的优化等四个方面对合成生物学指导下环脂肽的相关研究进展进行总结;最后,讨论环脂肽合成中可能存在的挑战,并就未来研究趋势进行展望,以期为高效环脂肽细胞工厂的开发提供参考。  相似文献   

11.
王卓  申笑涵  施奇惠 《遗传》2021,(2):108-117
随着单细胞基因组测序技术的建立与发展,对细胞基因组特征的分析进入了单细胞水平。单细胞的基因组分辨率不但使研究人员能够在单细胞尺度上分析肿瘤细胞的异质性,也使得传统上难以检测的稀有细胞的基因组研究成为可能。这些稀有细胞往往具有重要的生物学意义或临床价值,如癌症患者血液中循环肿瘤细胞(circulatingtumorcell,CTC)的基因组检测或三代试管婴儿植入前胚胎细胞的遗传缺陷诊断与筛查(preimplantation genetic diagnosis/screening, PGD/PGS)。本文总结了近年来发展的各种单细胞基因组扩增技术及其优缺点,并介绍了单细胞基因组测序技术在肿瘤生物学和临床检测中的应用,以期为单细胞基因组测序技术在临床检测中应用开发提供参考。  相似文献   

12.
合成生物学作为近年来发展迅速的一门交叉学科,为微生物的生物合成提供了强有力的平台工具。微生物细胞工厂可以合成一系列不同种类的聚羟基脂肪酸酯(PHA),而大肠杆菌作为最常用的底盘,正不断运用合成生物学的策略发掘PHA的多样性并降低成本、提高产量。本文中,笔者综述了大肠杆菌利用合成生物学策略生产生物基材料PHA的研究进展,并对其开发与应用前景进行了展望。  相似文献   

13.
陈国强 《生物工程学报》2013,29(8):1041-1043
合成生物学目前在全球得到迅猛发展。在此专刊中,综述了一些相关技术在合成生物学领域的进展,其中有:链霉菌无痕敲除方法、基因合成技术、DNA组装新方法、最小化基因组的方法及分析、合成生物系统的组合优化。也讨论了应用合成生物学策略优化光合蓝细菌底盘、产溶剂梭菌分子遗传操作技术、蛋白质预算(Protein budget)作为合成生物学的成本标尺。最后,用几个例子说明了合成生物学的应用,包括复杂天然产物合成人工生物系统的设计与构建、微生物木糖代谢途径改造制备生物基化学品以及构建酿酒酵母工程菌合成香紫苏醇。  相似文献   

14.
合成生物学是一门21世纪生物学的新兴学科,它着眼生物科学与工程科学的结合,把生物系统当作工程系统"从下往上"进行处理,由"单元"(unit)到"部件"(device)再到"系统"(system)来设计,修改和组装细胞构件及生物系统.合成生物学是分子和细胞生物学、进化系统学、生物化学、信息学、数学、计算机和工程等多学科交叉的产物.目前研究应用包括两个主要方面:一是通过对现有的、天然存在的生物系统进行重新设计和改造,修改已存在的生物系统,使该系统增添新的功能.二是通过设计和构建新的生物零件、组件和系统,创造自然界中尚不存在的人工生命系统.合成生物学作为一门建立在基因组方法之上的学科,主要强调对创造人工生命形态的计算生物学与实验生物学的协同整合.必须强调的是,用来构建生命系统新结构、产生新功能所使用的组件单元既可以是基因、核酸等生物组件,也可以是化学的、机械的和物理的元件.本文跟踪合成生物学研究及应用,对其在DNA水平编程、分子修饰、代谢途径、调控网络和工业生物技术等方面的进展进行综述.  相似文献   

15.
合成生物学既是一门"汇聚"型新兴学科,又孕育着颠覆性的使能技术.它在系统生物学基础上,融会工程科学原理,采用自下而上的策略,重编改造天然的或设计合成新的生物体系,以揭示生命规律和构筑新一代生物工程体系,被喻为认识生命的钥匙(建物致知)、改变未来的颠覆性技术(建物致用).中国科学家曾经首次实现人工合成蛋白质(牛胰岛素)和核糖核酸(酵母丙氨酸tRNA),近年来又在染色体合成与染色体工程、基因组编辑、生物底盘构建、定量工程生物学、生物元件工程和基因回路工程、天然活性物质和有机化工产品的人工合成代谢、计算机生物模拟等方面取得系列原始发现和创新成果,成为国际合成生物学领域中的一支重要力量.时值新中国科技发展70年,撰写本文,从一个视角讨论合成生物学发展及中国科学界的贡献,纪念开拓者,励志来者,总结经验,梳理发展思路.期待中国合成生物学繁荣发展,更多地贡献于人类.  相似文献   

16.
李杨  陈涛  赵学明 《生命科学》2011,(9):838-843
微生物基因组简化是合成生物学研究热点之一。基因组的适度精简可使细胞代谢途径得以优化,改善细胞对底物、能量的利用效率,大大提高细胞生理性能的预测性和可控性。基因组简化细胞将为生物技术的应用提供理想的底盘细胞。同顾了构建基因组简化细胞的研究策略、研究方法及一些模式生物相关研究进展,总结了基因组简化研究所面临的问题及解决办法,对基因组减小化研究发展趋势前景进行了展望。  相似文献   

17.
18.
徐德昌 《生物信息学》2012,10(2):145-145,147
合成生物学是通过人工设计和构建自然界中不存在的生物系统来解决能源、材料、健康和环保等问题的新兴学科[1]。随着基因组技术的快速发展,合成生物学领域的进展很快,发表论文数快速攀升,我国对这个学科的贡献也在不断提高(见表1)。2010年完成的化学合成支原体基因组[2]的研究使合成生物学的研究成为新的国际科技前沿。但是,从事合成生物学的科学家们都是从各自的研究领域进行  相似文献   

19.
随着浮萍基因组和转录组数据的不断获得,以及高效稳定的浮萍遗传转化和基因编辑体系的建立,以浮萍为底盘的表达系统已经成功表达了多种外源蛋白,浮萍有望成为植物合成生物学的研究热点。现简要介绍浮萍的基本信息,对浮萍科植物的基因组和转录组信息、遗传表达体系、浮萍合成生物学使能技术和合成的外源蛋白进行概述,同时简要总结浮萍合成生物学的优势,对浮萍合成生物学未来的发展前景进行展望。  相似文献   

20.
合成生物学作为一门新兴学科,其目标主要有两点:一是利用非天然的分子使其出现生命的现象,也就是―人造生命‖;二是―改造生命‖,比如利用一种生命体的元件(或经过人工改造),组装到另一个生命体中,使其产生特定功能。无论是哪种目的,对生命遗传物质DNA的操作都非常关键,其具体包括DNA的从头合成、组装和编辑等。同时,这些使能技术的进步也促进了合成生物学其他领域的发展。本文介绍了DNA操作相关的合成生物学使能技术的最新进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号