首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

Osteoarthritis of the knee affects millions of people. Elastic knee sleeves aim at relieving symptoms. While symptomatic improvements have been demonstrated as a consequence of elastic knee sleeves, evidence for biomechanical alterations only exists for the sagittal plane. We therefore asked what effect an elastic knee sleeve would have on frontal plane gait biomechanics.

Methods

18 subjects (8 women, 10 men) with osteoarthritis of the medial tibiofemoral joint walked over ground with and without an elastic knee sleeve. Kinematics and forces were recorded and joint moments were calculated using an inverse dynamics approach. Conditions with sleeve and without sleeve were compared with paired t-Tests.

Results

With the sleeve, knee adduction angle at ground contact was reduced by 1.9±2.1° (P = 0.006). Peak knee adduction was reduced by 1.5±1.6° (P = 0.004). The first peak knee adduction moment and positive knee adduction impulse were decreased by 10.1% (0.74±0.9 Nm•kg-1; P = 0.002) and 12.9% (0.28±0.3 Nm•s•kg-1; P < 0.004), respectively.

Conclusion

Our study provides evidence that wearing an elastic knee sleeve during walking can reduce knee adduction angles, moments and impulse in subjects with knee osteoarthritis. As a higher knee adduction moment has previously been identified as a risk factor for disease progression in patients with medial knee osteoarthritis, we speculate that wearing a knee sleeve may be beneficial for this specific subgroup.  相似文献   

2.

Objective

Individuals with fibromyalgia (FM) have lower muscle strength and lower pressure pain thresholds (PPT). The primary aim of this study was to determine the associations between muscle strength and PPT in adults with FM to test the hypothesis that greater measures of muscle strength would be associated with greater values of PPT. Secondary aims included determining the effects of pain severity and the peak uptake of oxygen (Vo2) on the associations between muscle strength and PPT.

Methods

Knee extensor and flexor strength (N = 69) was measured in the dominant leg using a dynamometer, and PPT was assessed using an electronic algometer. Pain severity was determined using the Multidimensional Pain Inventory, and peak Vo2 uptake was quantified using an electronically braked cycle ergometer.

Results

Univariable linear regression analysis demonstrated a significant association between PPT (dependent variable) and isometric knee extensor (P<.001), isokinetic (60°/s) knee extensor (P = .002), and isokinetic (60°/s) knee flexor strength (P = .043). In a multiple variable linear regression analysis adjusted for age, sex, pain severity, body mass index and peak Vo2 uptake, a significant association was found between PPT and isometric knee extensor strength (P = .008). In a similar multiple variable analysis, a significant association was found between PPT and isokinetic knee extensor strength (P = .044).

Conclusion

Greater measures of isometric and isokinetic knee extensor strength were significantly associated with greater values of PPT in both univariable and multiple variable linear regression models.

Trial Registration

ClinicalTrials.gov NCT01253395  相似文献   

3.
The purpose of this study was to evaluate maximal torque of the knee flexors and extensors, flexor/extensor ratios, and maximal torque differences between the 2 lower extremities in young track and field athletes. Forty male track and field athletes 13-17 years old and 20 male nonathletes of the same age participated in the study. Athletes were divided into 4 groups according to their age and event (12 runners and 10 jumpers 13-15 years old, 12 runners and 6 jumpers 16-17 years old) and nonathletes into 2 groups of the same age. Maximal torque evaluation of knee flexors and extensors was performed on an isokinetic dynamometer at 60°·s(-1). At the age of 16-17 years, jumpers exhibited higher strength values at extension than did runners and nonathletes, whereas at the age of 13-15 years, no significant differences were found between events. Younger athletes were weaker than older athletes at flexion. Runners and jumpers were stronger than nonathletes in all relative peak torque parameters. Nonathletes exhibited a higher flexor/extensor ratio compared with runners and jumpers. Strength imbalance in athletes was found between the 2 lower extremities in knee flexors and extensors and also at flexor/extensor ratio of the same extremity. Young track and field athletes exhibit strength imbalances that could reduce their athletic performance, and specific strength training for the weak extremity may be needed.  相似文献   

4.
We examined the temporal changes of isokinetic strength performance of knee flexor (KF) and extensor (KE) strength after a football match. Players were randomly assigned to a control (N = 14, participated only in measurements and practices) or an experimental group (N = 20, participated also in a football match). Participants trained daily during the two days after the match. Match and training overload was monitored with GPS devices. Venous blood was sampled and muscle damage was assessed pre-match, post-match and at 12h, 36h and 60h post-match. Isometric strength as well as eccentric and concentric peak torque of knee flexors and extensors in both limbs (dominant and non-dominant) were measured on an isokinetic dynamometer at baseline and at 12h, 36h and 60h after the match. Functional (KFecc/KEcon) and conventional (KFcon/KEcon) ratios were then calculated. Only eccentric peak torque of knee flexors declined at 60h after the match in the control group. In the experimental group: a) isometric strength of knee extensors and knee flexors declined (P<0.05) at 12h (both limbs) and 36h (dominant limb only), b) eccentric and concentric peak torque of knee extensors and flexors declined (P<0.05) in both limbs for 36h at 60°/s and for 60h at 180°/s with eccentric peak torque of knee flexors demonstrating a greater (P<0.05) reduction than concentric peak torque, c) strength deterioration was greater (P<0.05) at 180°/s and in dominant limb, d) the functional ratio was more sensitive to match-induced fatigue demonstrating a more prolonged decline. Discriminant and regression analysis revealed that strength deterioration and recovery may be related to the amount of eccentric actions performed during the match and athletes'' football-specific conditioning. Our data suggest that recovery kinetics of knee flexor and extensor strength after a football match demonstrate strength, limb and velocity specificity and may depend on match physical overload and players'' physical conditioning level.  相似文献   

5.

Objective

The aim of the study was to: 1) evaluate the differences in pre-post operative knee functioning, mechanical stability, isokinetic knee muscle strength in simultaneous arthroscopic patients after having undergone an anterior cruciate ligament (ACL) and the posterior cruciate ligament (PCL) with hamstring tendons reconstruction, 2) compare the results of ACL/PCL patients with the control group.

Design

Controlled Laboratory Study.

Materials and Methods

Results of 11 ACL/PCL patients had been matched with 22 uninjured control participants (CP). Prior to surgery, and minimum 2 years after it, functional assessment (Lysholm and IKDC 2000), mechanical knee joint stability evaluation (Lachman and “drawer” test) and isokinetic tests (bilateral knee muscle examination) had been performed. Different rehabilitation exercises had been used: isometric, passive exercises, exercises increasing the range of motion and proprioception, strength exercises and specific functional exercises.

Results

After arthroscopy no significant differences had been found between the injured and uninjured leg in all isokinetic parameters in ACL/PCL patients. However, ACL/PCL patients had still shown significantly lower values of strength in relative isokinetic knee flexors (p = 0.0065) and extensors (p = 0.0171) compared to the CP. There were no differences between groups regarding absolute isokinetic strength and flexors/extensors ratio. There was statistically significant progress in IKDC 2000 (p = 0.0044) and Lysholm (p = 0.0044) scales prior to (44 and 60 points respectively) and after the reconstruction (61 for IKDC 2000 and 94 points for Lysholm).

Conclusions

Although harvesting tendons of semitendinosus and/or gracilis from the healthy extremity diminishes muscle strength of knee flexors in comparison to the CP, flexor strength had improved. Statistically significant improvement of the knee extensor function may indicate that the recreation of joint mechanical stability is required for restoring normal muscle strength. Without restoring normal muscle function and strength, surgical intervention alone may not be sufficient enough to ensure expected improvement of the articular function.  相似文献   

6.
The aim of this study was to test the hypothesis that the repeated bout effect depends on intraindividual variability during a second bout of eccentric exercise. Eleven healthy men performed 2 resistance training bouts consisting of maximal eccentric exercise (EE1 and EE2) using the knee extensor muscles. The interval between the exercise bouts was 2 weeks and consisted of 10 sets of 12 repetitions at 160° · s(-1). Maximal isokinetic concentric torque at 30° · s(-1) was measured before the bouts and 2 minutes and 24 hours thereafter. Muscle soreness score and creatine kinase activity were determined before and after exercise. Intraindividual variability in torque during each eccentric repetition was measured during exercise. Repeated bout effect manifested after EE2: Muscle soreness was less, the shift in optimal knee joint angle to a longer muscle length was less, and the decrease in isokinetic concentric torque 2 minutes after exercise was less for EE2 compared with that for EE1. During concentric (isokinetic) contraction, length-dependent changes in isokinetic torque (IT) occurred after both EE1 and EE2: The shorter the muscle length, the greater the change in IT. There was a significant relationship between the decrease in maximal isokinetic knee extension torque 24 hours after EE1 and intraindividual variability of EE1 (R2 = 0.71, p < 0.05), but this relationship was not significant for EE2 (R2 = 0.18). It seems that intraindividual variability during eccentric exercise protects against muscle fatigue and damage during the first exercise bout but not during a repeat bout. These findings may be useful to coaches who wish to improve muscle function in resistance training with less depression in muscle function and discomfort of their athletes, specifically, when muscle is most sensitive to muscle-damaging exercise.  相似文献   

7.
Although there has been substantial research on the acute effects of static stretching on subsequent force and power development, the outcome after stretching of the antagonist musculature has not been examined. The purpose of this study was to investigate the effects of static stretching of antagonist musculature on multiple strength and power measures. Sixteen trained men were tested for vertical jump height and isokinetic peak torque production during knee extension at 60°.s (SlowKE) and 300°.s (FastKE). Electromyography was recorded for the vastus lateralis and the biceps femoris muscles during isokinetic knee extension. Subjects performed these tests in a randomized counterbalanced order with and without prior stretching of the antagonist musculature. Paired samples t-tests indicated significantly greater torque production during the FastKE when preceded by stretching of the antagonist musculature vs. the nonstretch trial (102.2 vs. 93.5 N.m; p = 0.032). For SlowKE, torque production was not significantly different between the trials (176.7 vs. 162.9 N.m; p = 0.086). Vertical jump height (59.8 vs. 58.6 cm; p = 0.011) and power (8571 vs. 8487 W; p = 0.005) were significantly higher after the stretching trial vs. the nonstretching trial. Electromyography responses were similar between the trials. These results suggest that static stretching of the antagonist hamstrings before high-speed isokinetic knee extension increases the torque production. Furthermore, stretching the hip flexors (emphasis on single-joint hip flexors) and dorsiflexors, the antagonists of the hip extensors and plantarflexors, may enhance jump height and power, although the effect sizes were small.  相似文献   

8.
The aim of this study was to evaluate the serial change of isokinetic muscle strength of the knees before and after anterior cruciate ligament reconstruction (ACLR) in physically active males and to estimate the time of return to full physical fitness. Extension and flexion torques were measured for the injured and healthy limbs at two angular velocities approximately 1.5 months before the surgery and 3, 6, and 12 months after ACLR. Significant differences (p ≤ 0.05) in peak knee extension and flexion torques, hamstring/quadriceps (H/Q) strength ratios, uninvolved/involved limb peak torque ratios, and the normalized work of these muscles between the four stages of rehabilitation were identified. Significant differences between extension peak torques for the injured and healthy limbs were also detected at all stages. The obtained results showed that 12 months of rehabilitation were insufficient for the involved knee joint to recover its strength to the level of strength of the uninvolved knee joint. The results helped to evaluate the progress of the rehabilitation and to implement necessary modifications optimizing the rehabilitation training program. The results of the study may also be used as referential data for physically active males of similar age.  相似文献   

9.
The purpose of this study was to investigate whether 6 weeks of static hamstring stretching effects range of motion (ROM), sprint, and vertical jump performances in athletes. Twenty-one healthy division III women's track and field athletes participated in the study. Subjects were tested for bilateral knee ROM; 55-m sprint time; and vertical jump height before, at 3 weeks, and after the 6-week flexibility program. Subjects were randomly assigned to treatment and control groups and warmed up with a 10-minute jog on a track before a hamstring stretching protocol. The stretching protocol consisted of four repetitions held for 45 seconds, 4 days per week. Four variables (left and right leg ROM, 55-m sprint time, vertical jump) were analyzed using a repeated-measures analysis of variance design. No significant differences (P < or = 0.05) were found with any of the four variables between the stretching and control groups. Six weeks of a static hamstring stretching protocol did not improve knee ROM or sprint and vertical jump performances in women track and field athletes. The use of static stretching should be restricted to post practice or competition because of the detrimental effects reported throughout the literature. Based on the current investigation, it does not seem that chronic static stretching has a positive or negative impact on athletic performance. Thus, the efficacy of utilizing this practice is questionable and requires further investigation.  相似文献   

10.
The aim of this study was to investigate the differences in the length-dependent changes in quadriceps muscle torque during voluntary isometric and isokinetic contractions performed after severe muscle-damaging exercise. Thirteen physically active men (age = 23.8 ± 3.2 years, body weight = 77.2 ± 4.5 kg) performed stretch-shortening cycle (SSC) exercise comprising 100 drop jumps with 30-second intervals between each jump. Changes in the voluntary and electrically evoked torque in concentric and isometric conditions at different muscle lengths, muscle soreness, and plasma creatine kinase (CK) activity were assessed within 72 hours after SSC exercise. Isokinetic knee extension torque decreased significantly (p < 0.05) at all joint angles after SSC exercise. At 2 minutes and at 72 hours after SSC exercise, the changes in knee torque were significantly smaller at 80° (where 180° = full knee extension) than at 110-130°. At 2 minutes after SSC exercise, the optimal angle for isokinetic knee extension torque shifted by 9.5 ± 8.9° to a longer muscle length (p < 0.05). Electrically induced torque at low-frequency (20-Hz) stimulation decreased significantly more at a knee joint angle of 130° than at 90°. The subjects felt acute muscle pain and CK activity in the blood increased to 1,593.9 ± 536.2 IU·L?1 within 72 hours after SSC exercise (p < 0.05). This study demonstrates that the effect of muscle-damaging exercise on isokinetic torque is greatest for contractions at short muscle lengths. These findings have practical importance because the movements in most physical activities are dynamic in nature, and the decrease in torque at various points in the range of motion during exercise might affect overall performance.  相似文献   

11.

Objective

The FTO A/T polymorphism (rs9939609) is a strong candidate to influence obesity-related traits. Elite athletes from many different sporting disciplines are characterized by low body fat. Therefore, the aim of this study was to assess whether athletic status is associated with the FTO A/T polymorphism.

Subjects and Methods

A large cohort of European Caucasians from Poland, Russia and Spain were tested to examine the association between FTO A/T polymorphism (rs9939609) and athletic status. A total of 551 athletes were divided by type of sport (endurance athletes, n = 266 vs. sprint/power athletes, n = 285) as well as by level of competition (elite-level vs. national-level). The control group consisted of 1,416 ethnically-matched, non-athletic participants, all Europeans. Multinomial logistic regression analyses were conducted to assess the association between FTO A/T genotypes and athletic status/competition level.

Results

There were no significantly greater/lesser odds of harbouring any type of genotype when comparing across athletic status (endurance athletes, sprint/power athletes or control participants). These effects were observed after controlling for sex and nationality. Furthermore, no significantly greater/lesser odds ratios were observed for any of the genotypes in respect to the level of competition (elite-level vs. national-level).

Conclusion

The FTO A/T polymorphism is not associated with elite athletic status in the largest group of elite athletes studied to date. Large collaborations and data sharing between researchers, as presented here, are strongly recommended to enhance the research in the field of exercise genomics.  相似文献   

12.
The purposes of this study were to compare the lower-body flexibility, strength, and knee stability of karate athletes against that of non-karate controls and to determine whether regular karate training results in adaptations that may result in an increased risk for knee injury. Flexibility measurements included knee flexion and extension, hip flexion and extension, hip internal and external rotation, and foot inversion and eversion. Nine karate athletes (4 women and 5 men, age = 24.3 +/- 6.7 years) and 15 active, non-karate controls (7 women and 8 men, age = 22.1 +/- 3.2 years) participated. No subjects reported recent knee surgery or chronic or acute knee pain. Concentric quadriceps and hamstrings strength and endurance were measured using a Biodex II isokinetic dynamometer at 60 degrees .s(-1) and 180 degrees .s(-1). Eccentric strength was measured at 150 degrees .s(-1) and 250 ft-lb (339 N.m). Knee stability was measured via varus and valgus stress and anterior drawer testing. Karate athletes demonstrated a significantly greater right hip flexion (p 相似文献   

13.

Objective

To assess the reliability of contractile properties of the knee extensor muscles in 23 individuals with post-polio syndrome (PPS) and 18 age-matched healthy individuals.

Methods

Contractile properties of the knee extensors were assessed from repeated electrically evoked contractions on 2 separate days, with the use of a fixed dynamometer. Reliability was determined for fatigue resistance, rate of torque development (MRTD), and early and late relaxation time (RT50 and RT25), using the intraclass correlation coefficient (ICC) and standard error of measurement (SEM, expressed as % of the mean).

Results

In both groups, reliability for fatigue resistance was good, with high ICCs (>0.90) and small SEM values (PPS: 7.1%, healthy individuals: 7.0%). Reliability for contractile speed indices varied, with the best values found for RT50 (ICCs>0.82, SEM values <2.8%). We found no systematic differences between test and retest occasions, except for RT50 in healthy subjects (p = 0.016).

Conclusions

In PPS and healthy individuals, the reliability of fatigue resistance, as obtained from electrically evoked contractions is high. The reliability of contractile speed is only moderate, except for RT50 in PPS, demonstrating high reliability.

Significance

This was the first study to examine the reliability of electrically evoked contractile properties in individuals with PPS. Our results demonstrate its potential to study mechanisms underlying muscle fatigue in PPS and to evaluate changes in contractile properties over time in response to interventions or from natural course.  相似文献   

14.
Technical limitations of some isokinetic dynamometers have called into question the validity of some data on human muscle mechanics. The Biodex dynamometer has been shown to minimize the impact artefact while permitting automatic gravity correction. This dynamometer was used to study quadriceps muscle torque and power generation in elite power (n = 6) and elite endurance (n = 7) athletes over 12 randomly assigned isokinetic velocities from 30 degrees.s-1 to 300 degrees.s-1. The angle at peak torque varied as a negative, linear function of angular velocity, with the average angle across test velocities being 59.5 degrees (SD 10.2 degrees). Power athletes developed greater peak torque at each angular velocity (P less than 0.05) and experienced a 39.7% decrement in torque over the velocity range tested. Endurance athletes encountered a 38.8% decline in peak torque. Torques measured at 60 degrees of knee flexion followed a similar trend in both groups; however the greatest torques were recorded at 60 degrees.s-1 rather than at 30 degrees.s-1. Leg extensor muscle power increased monotonically with angular velocity in both power (r2 = 0.728) and endurance athletes (r2 = 0.839); however these curves diverged significantly so that the power athletes produced progressively more power with each velocity increment. These inter group differences probably reflected a combination of natural selection and training adaptation.  相似文献   

15.
The aim of the present study was to investigate the EMG-joint angle relationship during voluntary contraction with maximum effort and the differences in activity among three hamstring muscles during knee flexion. Ten healthy subjects performed maximum voluntary isometric and isokinetic knee flexion. The isometric tests were performed for 5 s at knee angles of 60 and 90 degrees. The isokinetic test, which consisted of knee flexion from 0 to 120 degrees in the prone position, was performed at an angular velocity of 30 degrees /s (0.523 rad/s). The knee flexion torque was measured using a KIN-COM isokinetic dynamometer. The individual EMG activity of the hamstrings, i.e. the semitendinosus, semimembranosus, long head of the biceps femoris and short head of the biceps femoris muscles, was detected using a bipolar fine wire electrode. With isometric testing, the knee flexion torque at 60 degrees knee flexion was greater than that at 90 degrees. The mean peak isokinetic torque occurred from 15 to 30 degrees knee flexion angle and then the torque decreased as the knee angle increased (p<0.01). The EMG activity of the hamstring muscles varied with the change in knee flexion angle except for the short head of the biceps femoris muscle under isometric condition. With isometric contraction, the integrated EMGs of the semitendinosus and semimembranosus muscles at a knee flexion angle of 60 degrees were significantly lower than that at 90 degrees. During maximum isokinetic contraction, the integrated EMGs of the semitendinosus, semimembranosus and short head of the biceps femoris muscles increased significantly as the knee angle increased from 0 to 105 degrees of knee flexion (p<0.05). On the other hand, the integrated EMG of the long head of the biceps femoris muscle at a knee angle of 60 degrees was significantly greater than that at 90 degrees knee flexion with isometric testing (p<0.01). During maximum isokinetic contraction, the integrated EMG was the greatest at a knee angle between 15 and 30 degrees, and then significantly decreased as the knee angle increased from 30 to 120 degrees (p<0.01). These results demonstrate that the EMG activity of hamstring muscles during maximum isometric and isokinetic knee flexion varies with change in muscle length or joint angle, and that the activity of the long head of the biceps femoris muscle differs considerably from the other three heads of hamstrings.  相似文献   

16.

Background

Patellar tendinopathy (PT) is one of the most common knee disorders among athletes. Changes in morphology and elasticity of the painful tendon and how these relate to the self-perceived pain and dysfunction remain unclear.

Objectives

To compare the morphology and elastic properties of patellar tendons between athlete with and without unilateral PT and to examine its association with self-perceived pain and dysfunction.

Methods

In this cross-sectional study, 33 male athletes (20 healthy and 13 with unilateral PT) were enrolled. The morphology and elastic properties of the patellar tendon were assessed by the grey and elastography mode of supersonic shear imaging (SSI) technique while the intensity of pressure pain, self-perceived pain and dysfunction were quantified with a 10-lb force to the most painful site and the Victorian Institute of Sport Assessment-patella (VISA-P) questionnaire, respectively.

Results

In athletes with unilateral PT, the painful tendons had higher shear elastic modulus (SEM) and larger tendon than the non-painful side (p<0.05) or the dominant side of the healthy athletes (p<0.05). Significant correlations were found between tendon SEM ratio (SEM of painful over non-painful tendon) and the intensity of pressure pain (rho  = 0.62; p = 0.024), VISA-P scores (rho  = −0.61; p = 0.026), and the sub-scores of the VISA-P scores on going down stairs, lunge, single leg hopping and squatting (rho ranged from −0.63 to −0.67; p<0.05).

Conclusions

Athletes with unilateral PT had stiffer and larger tendon on the painful side than the non-painful side and the dominant side of healthy athletes. No significant differences on the patellar tendon morphology and elastic properties were detected between the dominant and non-dominant knees of the healthy control. The ratio of the SEM of painful to non-painful sides was associated with pain and dysfunction among athletes with unilateral PT.  相似文献   

17.
This study evaluated and compared the effectiveness of an aerobics-calisthenics (A-CAL) and an aerobics/weight training (A-WT) programs on lower limb strength and body fat (%). Thirty-five adult women (age 42.1 +/- 5.2 years) were randomly assigned to A-CAL (n = 14), A-WT (n = 14), or a control group (n = 7). The A-CAL and A-WT trained 3 days per week for 10 weeks. Maximal bilateral isometric and isokinetic knee extension (KEXT) and flexion (KFLEX) torque, squat jump (SJ), and body fat (%) were measured before and immediately after training. The results revealed nonsignificant differences between A-CAL and A-WT (p > 0.05). Both A-CAL and A-WT improved SJ (p < 0.001). A-WT increased isometric torque of KEXT and KFLEX (p < 0.05), isokinetic torque of KFLEX (p < 0.05), and decreased body fat (%) (p < 0.05) when compared with controls. In summary, the application of a 10-week light-weight training program improved selected strength parameters of healthy women, compared with controls, but the effectiveness of the calisthenics exercises as an independent form of strength training is dubious.  相似文献   

18.
To examine the effects of resistance exercise (REX) mode on jump performance, subjects were assigned to one of three groups over a 6-week period with no cross-over. Subjects were assigned to leg and calf press REX on either a standard (n = 10) or ergometer (n = 9) device while a third group (n = 9) served as controls (CTRL). REX subjects worked out twice per week, which consisted of a three-set, 10-repetition paradigm for leg and calf press exercises. Immediately before and after the 6-week period, subjects performed tests that assessed jump (standing vertical jump, four-jump test protocol, depth jump) ability, while a fourth estimated knee extensor fast-twitch percentage (FT%) from fatigue incurred through a 50-repetition isokinetic protocol. Data analyses utilized 3 x 2 (group x time) repeated-measures ANCOVAs. Several dependent variables showed effects by group (standard REX, ergometer REX > CTRL) and time (post > pre). An interaction occurred for explosive leg power factor, a four-jump test variable, with standard REX post-test values as the interaction source. A trend for an interaction occurred for depth jump hang time, as ergometer REX values improved over time. Results suggest that mode-specific adaptations occur with REX training. Thus, athletes are best served with the selection of a REX device that is most specific to the demands of their jump performance task.  相似文献   

19.
Recovery of maximal force and power following a 10-km race has not been widely studied in the scientific literature. Ten healthy men who were experienced distance runners participated in this investigation. Data were collected prerace, immediate postrace, and 48 hours postrace to examine the effect of a 10-km race on muscle force production in the lower body. Maximal peak torque was measured via an isokinetic dynamometer at 30 degrees, 180 degrees, and 300 degrees.s-1. A significant (p 相似文献   

20.
Measures of knee joint function, although useful in predicting injury, can be misleading because hip position in traditional seated isokinetic tests is dissimilar to when injuries occur. This study aimed to determine the differences between seated and supine peak torques and strength ratios and examine the interaction of position with joint velocity. This was a cross-sectional, repeated measures study. Isokinetic knee extensor and flexor concentric and eccentric peak torque was measured seated and supine (10° hip flexion) at 1.04 and 3.14 rad·s(-1) in 11 Rugby players. Repeated measures analysis of variance and paired t-tests were used to analyze peak torques and strength ratios. Bonferroni post hoc, limits of agreement, and Pearson's correlation were applied. Seated peak torque was typically greater than that for supine for muscle actions and velocities. The values ranged from 109 ± 18 N·m (mean ± σ) for supine hamstring concentric peak torque at 1.04 rad·s(-1) to 330 ± 71 for seated quadriceps eccentric peak torque at 1.04 rad·s(-1). There was a significant position × muscle action interaction; eccentric peak torque was reduced more than concentric in the supine position. Knee joint strength ratios ranged from 0.47 ± 0.06 to 0.86 ± 0.23, with a significant difference in means between supine and seated positions for functional ratio at 3.14 rad·s(-1) observed; for seated it was 0.86 ± 0.23; and for supine, it was 0.68 ± 0.15 (p < 0.05). Limits of agreement for traditional and functional ratios ranged from 1.09 ×/÷ 1.37 to 1.13 ×/÷ 1.51. We conclude that hip angle affects isokinetic peak torques and knee joint strength ratios. Therefore, the hip angle should be nearer 10° when measuring knee joint function because this is more ecologically valid. Using similar protocols, sports practitioners can screen for injury and affect training to minimize injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号