首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adhesive forces exist between soil and the surfaces of soil-engaging components; they increase working resistance and energy consumption. This paper tries to find an approach to reduce the adhesion and resistance of bulldozing plate. A simplified mechanical model of adhesion and resistance between soil and a non-smooth bulldozing plate is proposed. The interaction force between moist soil and a non-smooth bulldozing plate is analyzed. The pressure and friction distribution on the bulldozing plate are computed, and the anti-adhesive effect of a corrugated bulldozing plate is simulated numerically. Numerical results show that the wavy bulldozing plate achieves an effective drag reduction in moist soil. The optimal wavy shape of the corrugated bulldozing plate with the minimal resistance is designed. The basic principle of reducing soil adhesion of the non-smooth surface is discovered.  相似文献   

2.
1IntroductionAdhesive forces exist between soil and the surfacesof soil-engaging components[1,2].Soil adhesion increasesthe running resistance and energy consumption,andaffects the operating quality.Soil adhesion also reducesthe working productivity of terrain machines,even worseit makes terrain machines fail to run.Reducing theadhesive force of the soil-engaging machines will have aprofound influence for cultivation.Through theinvestigation of soil animals,we have found that soilanimals poss…  相似文献   

3.
骨细胞是生长于骨组织中的重要功能性细胞,承载着力学感知、骨重建平衡、机体矿物质代谢和内稳态调节等多种重要功能.骨陷窝-骨小管网络系统为骨细胞生长和功能发挥提供了稳定的结构微环境,骨基质的主要成分Ⅰ型胶原蛋白和羟基磷灰石是骨细胞黏附、细胞与细胞以及细胞与细胞外基质相互作用的生化微环境基础.而骨细胞多种生理功能的发挥离不开其对周围力学微环境变化的感知与响应.此外,骨细胞对周围环境非常敏感,微环境结构、生化组成和力学刺激的变化会对骨细胞结构和功能产生较大影响.因此,在微环境基础上研究骨细胞的结构和功能,是阐明骨细胞力学感知机制、发现骨细胞新的生物学功能的前提.然而,骨陷窝-骨小管网络系统复杂的结构和坚硬的质地,给在体研究带来了很大的困难.体外构建骨细胞仿生微环境成为骨细胞结构功能研究的必经之路.本文系统介绍了骨细胞的结构、生化和力学微环境,回顾了体外骨细胞微环境仿生模拟技术的最新进展,旨在为骨基础生物学、组织工程和再生医学的发展提供参考.  相似文献   

4.
We propose a new structure for artificial joints with a joint capsule which is designed to overcome the drawback of current prostheses that omit many functions of the lubricant and the joint capsule. The new structure is composed of three components: lubricant, artificial joint and artificial joint capsule. The lubricant sealed in the capsule can not only reduce the wear of the artificial joint but also prevents the wear particles leaking into the body. So unexpected reactions between the wear particles and body can be avoided completely. A three-dimensional (3-D) finite element analysis (FEA) model was created for a bionic knee joint with capsule. The stresses and their distribution in the artificial capsule were simulated with different thickness, loadings, and flexion angles. The results show that the maximum stress occurs in the area between the artificial joint and the capsule. The effects of capsule thickness and the angles of flexion on stress are discussed in detail.  相似文献   

5.
While considering that fish could suspend themselves under water and could enhance their mobility by adjusting its swim bladder, we have carried out research on a bionic swim bladder system in underwater robotics, which could amend the underwater robotics' static balance and controllability conditions even if the depth of water changes. First, this paper introduces the bio-swim bladder's structure and function. Second, it works out the dynamic model of the bionic swim bladder, and then it analyses the dynamic characteristic and effect of the bionic swim bladder system with the software Matlab/simulink. Finally, considering about the nonlinear relationship of the parameters in the model, this paper brings forward a dual-speed control method, which could make the effect of the bionic swim bladder non-coupling. The result of the simulation reveals that the bionic swim bladder could change the buoyancy and centroid distribution of the underwater robotics effectively and independently, bringing it into a balance state, under which the control and maneuverability could be enhanced.  相似文献   

6.
In strong solar light, silicon solar panels can heat up by 70℃ and, thereby, loose approximately one third of their efficiencyfor electricity generation. Leaf structures of plants on the other hand, have developed a series of technological adaptations,which allow them to limit their temperature to 40-45℃ in full sunlight, even if water evaporation is suppressed. This is accomplishedby several strategies such as limitation of leaf size, optimization of aerodynamics in wind, limitation of absorbedsolar energy only to the useful fraction of radiation and by efficient thermal emission. Optical and infrared thermographicmeasurements under a solar simulator and in a streaming channel were used to investigate the corresponding properties of leavesand to identify suitable bionic model systems. Experiments started with the serrated structure of ordinary green leaves distributedover typical twig structures and finally identified the Australian palm tree Licuala ramsayi as a more useful bionic model. Itcombines a large area for solar energy harvesting with optimized aerodynamic properties for cooling and is able to restructureitself as a protection against strong winds. The bionic models, which were constructed and built, are analyzed and discussed.  相似文献   

7.
<正> This paper presents numerical investigations into a ridged surface whose design is inspired by the geometry of a Farrer'sscallop.The objective of the performed research is to assess if the proposed Bioinspired Ridged Surface (BRS) can potentiallyimprove wear resistance of soil-engaging components used in agricultural machinery and to validate numerical simulationsperformed using software based on the Discrete Element Method (DEM).The wear performance of the BRS is experimentallydetermined and also compared with a conventional flat surface.Different size of soil particles and relative velocities between theabrasive sand and the testing surfaces are used.Comparative results show that the numerical simulations are in agreement withthe experimental results and support the hypothesis that abrasive wear is greatly reduced by substituting a conventional flatsurface with the BRS.  相似文献   

8.
Bionic alumina samples were fabricated on convex dome type aluminum alloy substrate using hard anodizing technique.The convex domes on the bionic sample were fabricated by compression molding under a compressive stress of 92.5 MPa.The water contact angles of the as-anodized bionic samples were measured using a contact angle meter (JC2000A) with the 3 μL water drop at room temperature.The measurement of the wetting property showed that the water contact angle of the unmodified as-anodized bionic alumina samples increases from 90° to 137° with the anodizing time.The increase in water contract angle with anodizing time arises from the gradual formation of hierarchical structure or composite structure.The structure is composed of the micro-scaled alumina columns and pores.The height of columns and the depth of pores depend on the anodizing time.The water contact angle increases significantly from 96° to 152° when the samples were modified with self-assembled monolayer of octadecanethiol (ODT),showing a change in the wettability from hydrophobicity to super-hydrophobicity.This improvement in the wetting property is attributed to the decrease in the surface energy caused by the chemical modification.  相似文献   

9.
10.
11.
12.
Based on the particular geometric characteristics of buffalo hoof, which is capable to walk on the soft soil of paddy-field with low resistance, a bionic blade for paddy field impeller was designed. The test results in soil bin show that the traction ability of the bionic blade for paddy wheel is improved. Compared with the conventional plate blade, the maximum pull force of the bionic blade is increased by 37.8% and the maximum impeller efficiency is 38.3% higher. Computational simulation analysis shows that bionic shape can improve the driving force of the impeller by resisting and reducing the impacts resulted from the sharp velocity change of the discontinuous surface water flow, and the driving torque of the bionic blade may increase as well.  相似文献   

13.
14.
15.
Flow control can effectively reduce the aerodynamic noise radiated from a circular cylinder.As one of the flow control methods,a bionic method,inspired by the serrations at the leading edge of owls' wing,was proposed in this paper.The effects of bionic serrated structures arranged on the upper and lower sides of a cylinder on the aerodynamic and aeroacoustic performance of the cylinder were numerically investigated.At a free stream speed of 24.5 m·s-1,corresponding to Reynolds number of 1.58 × 104,the simulation results indicate that the bionic serrated structures can decrease the frequency of the vortex shedding and control the fluctuating aerodynamic force acting on the cylinder,thus reduce the aerodynamic noise.A qualitative-view of the vorticity in the wake of the cylinder suggest that the serrated structures reduce aerodynamic sound by suppressing the unsteady motion of vortices.  相似文献   

16.
A flexible-rigid hopping mechanism which is inspired by the locust jumping was proposed,and its kinematic characteristics were analyzed.A series of experiments were conducted to observe locust morphology and jumping process.According to classic mechanics,the jumping process analysis was conducted to build the relationship of the locust jumping parameters.The take-off phase was divided into four stages in detail.Based on the biological observation and kinematics analysis,a mechanical model was proposed to simulate locust jumping.The forces of the flexible-rigid hopping mechanism at each stage were analyzed.The kinematic analysis using pseudo-rigid-body model was described by D-H method.It is confirmed that the proposed bionic mechanism has the similar performance as the locust hind leg in hopping.Moreover,the jumping angle which decides the jumping process was discussed,and its relation with other parameters was established.A calculation case analysis corroborated the method.The results of this paper show that the proposed bionic mechanism which is inspired by the locust hind limb has an excellent kinematics performance,which can provide a foundation for design and motion planning of the hopping robot.  相似文献   

17.
Lack of temperature sensation of myoelectric prosthetic hand limits the daily activities of amputees.To this end,a non-invasive temperature sensation method is proposed to train amputees to sense temperature with psychophysical sensory substitution.In this study,22 healthy participants took part besides 5 amputee participants.The duration time of the study was 31 days with five test steps according to the Leitner technique.An adjustable temperature mug and a Peltier were used to change the temperature of the water/phantom digits to induce temperature to participants.Also,to isolate the surround-ings and show colors,a Virtual Reality(VR)glass was employed.The statistical results conducted are based on the response of participants with questionnaire method.Using Chi-square tests,it is concluded that participants answer the experiment significantly correctly using the Leitner technique(P value<0.05).Also,by applying the"Repeated Measures ANOVA",it is noticed that the time of numbness felt by participants had significant(P value<0.001)difference.Participants could remember lowest and highest temperatures significantly better than other temperatures(P value<0.001);furthermore,the well-trained amputee participant practically using the prosthesis with 72.58%could identify object's temperature with only once time experimenting the color temperature.  相似文献   

18.
The Guamunian xanthids Carpilius maculatus (L.), C. convexus (Forskal), and Eriphia sebana (Shaw & Nodder), and the parthenopid Daldorfia horrida (L.), possess large master claws with molariform teeth than are used to crush the shells of hermit crabs and snails. These crabs typically sever the spire of their prey, or make a gash in the body whorl. They tend to employ sustained pressure on the prey shell, and, except for Eriphia, rarely attack the outer lip, so that the outer lip of the shell typically remains undamaged, except in shells near the critical size, i.e., the maximum size of vulnerability to predation. Temperate species of Cancer (C. productus Randall and C. oregonensi Rathbun) may also crush shelled prey in the larger of their two claws, but more commonly they use both claws together in breaking open their victims. Sustained pressure is applied for only short periods by these crabs.Gastropod adaptations conferring resistance to crushing by crabs include a thick shell, narrow or otherwise small aperture, thickened outer lip, strong sculpture, and a low spire. Emphasis on these traits lowers the critical size of the prey, i.e., permits escape from cushing at a smaller size. An equatorward increase in the expression of the characteristics of crushing-resistance parallels an increase in crushing power of the crabs.  相似文献   

19.
After major natural disasters, such as the recent earthquake-tsunami event in South Asia, reports appear about the mysterious ability of animals to anticipate and to escape the impending danger. This is an opportunity to recall the long history of this phenomenon in the traditions of different civilizations, to evaluate Chinese efforts, 30-40 years ago, to use this phenomenon for earthquake prediction, and to judge its state of acceptance in modem science. An effort is made to introduce this phenomenon as a research field of modem bionics. The timing is favorable since, increasingly, infrared thermal anomalies, monitored from satellite, suggesting litho-atmospheric processes, are found to precede earthquakes. They were unexpected by seismologists and are here suggested to essentially reflect the energy conversion patterns responsible for the signals monitored by animals. The aim is to learn from animals in the long term how natural disasters can better be anticipated, and how simple technical warning systems can be developed. Some challenges are analyzed. One is interpretation of the nature of energy release prior to the main earthquake disaster resulting in "macro-anomaly" precursors, another is better to understand the effect on animal senses. The role of non-linear cooperative phenomena including tsunamitype waves is emphasized.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号