首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Like many other neuropeptides, vasopressin is not confined to the hypothalamic neurohypophysial system. Furthermore, vasopressin was found to be a potent vasoconstrictor in the rat jejunum, reducing myenteric artery flow. These associations were the basis of this investigation on the presence of vasopressin in the gastrointestinal (GI) tract by both RIA and immunohistochemistry.Portions of the gastrointestinal tract and pancreatic islets of the rat were extracted with 0.1N HCl for RIA measurements of AVP content. Similar portions from the male cat GI tract were used for immunohistochemistry studies.Acid extracts of the GI tract were found to contain immunoreactive AVP with the highest concentration (pg/mg protein) in the fundus portion of the stomach (15.0±1.6) and slightly lower values down along the antrum-pylorus portion (6.7±0.6), proximal jejunum (8.6±0.2), distal ileum (9.7±0.3) and colon (11.9±0.5). In the pancreatic islets the concentration was much higher (72.0 pg/mg protein). The extract inhibition curves showed parallelism with the appropriate standard preparation of AVP in the specific RIA.Immunohistochemical localization showed IR-AVP in the nerve fibers around the myenteric plexus of the second portion of the duodenum. It was also found in fibers starting from where the myenteric plexus goes through the layer of muscle fibers, penetrating the submucosa and duodenal mucosa, ending near the capillaries situated along the basal side of the villous epithelium cells. Similar IR-AVP activity was found in cells located in the mucosal epithelium of the duodenum, jejunum, ileum, colon and rectum.These results show that the gastrointestinal tract of different species and pancreatic islets of the rat are a rich source of immunoreactive neurohypophysial AVP. Because of its distribution, this peptide might have some physiological significance in intestinal circulatory regulation.  相似文献   

2.
 The distribution of serotonin-immunoreactive (5HT-IR) nerve cells and fibers was thoroughly investigated immunohistochemically in the rat stomach, duodenum, jejunum, ileum, and colon. The immunoreactivity of the 5HT neurons was compared between non-treated controls and animals treated with colchicine, colchicine plus 5-hydroxytryptophan (5HTP), colchicine plus pargyline, and reserpine. The intensity of immunoreactivity in nerve fibers as well as nerve cell bodies was enhanced mostly in colchicine plus pargyline treated animals, therefore these animals were used for an observation of precise localization of 5HT in the rat gastrointestinal (GI) tract. Immunoreactivity in the nerve cell bodies and fibers was completely abolished in the GI tract of reserpine treated animals. The pattern of localization and projection of 5HT-IR neurons was similar in all segments of the rat GI tract. 5HT-IR nerve cell bodies were located in the myenteric plexus and showed the distinctive features of Dogiel type I neurons. Prominent bundles of varicose fibers traversed the myenteric ganglia and some of them surrounded the cell bodies of immunopositive and immunonegative neurons. 5HT-IR nerve fibers were located in the submucous plexus, densely entwined about the submucosal blood vessels. Most characteristically, 5HT-IR nerve fibers invaded the lamina propria of mucosa where they underlay the crypt epithelium. In conclusion, the present study showed that 5HT-IR neurons located in the myenteric plexus projected fibers widely in the rat GI tract. The localization of fibers in the lamina propria of mucosa implies that this neuron may exert an important role in the epithelial function of the GI tract. Accepted: 8 October 1996  相似文献   

3.
Naloxone-dependent effects of Met-enkephalin (10(-8) M) on the spontaneous and electrically induced mechanical activities were studied in longitudinal and circular preparations isolated from the cat duodenum, jejunum and ileum. Met-Enkephalin changed the spontaneous activity of all preparations tested with the exception of the circular preparations from the ileum. Met-Enkephalin-induced responses of the longitudinal preparations from the ileum were abolished by treatment with tetrodotoxin (10(-7) M), while the responses of both longitudinal and circular preparations from the duodenum and jejunum were only partially depressed, being resistant to tetrodotoxin components. The latter were most pronounced in the duodenum. The neurogenic electrically induced (0.5 msec, 5 Hz, 150 pulses) responses of all the preparations consisted mainly of contractile components which were significantly and naloxone-dependently reduced by Met-enkephalin (10(-8) M). The contractile components of the responses, which were reduced by Met-enkephalin, were entirely abolished by atropine (3 x 10(-6) M). Both Met-enkephalin and atropine inhibitory effects on the neurogenic responses were more pronounced in the ileum. Met-Enkephalin was found in nerve fibers of the myenteric plexus distributed mainly among the circular muscle. Single immunoreactive nerve fibers were observed in the longitudinal muscle layer of the duodenum but not in the jejunum and ileum. The distribution of Met-enkephalin-like immunoreactivity along the small intestine did not show significant differences among the three intestinal regions tested. The results obtained suggest that Met-enkephalin can modulate the mechanical activity of the cat small intestine, inhibiting cholinergic transmission and/or activating smooth muscle opioid receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
Summary The distribution of galanin-immunoreactive (GAL-IR) neurons was mapped in detail in the gastro-intestinal tract of the rat, mouse, guinea-pig and pig by use of the indirect immunofluorescence technique. GAL-IR cell bodies were found in both the submucous and the myenteric plexus, with considerably higher numbers in the former ganglia. The largest number of GAL-IR perikarya was seen in the duodenal submucous plexus of the pig. With some (single) exceptions, GAL-IR cell somata were not observed in the myenteric plexus of the pig and guinea-pig, and in the submucous plexus of the esophagus and the stomach of the guinea-pig.GAL-IR fibers ocurred in most parts of the gastro-intestinal tract. In the lamina propria a few non-varicose, weakly fluorescent fibers were noted in the mouse and rat, whereas in the pig and guinea-pig were large numbers of GAL-IR fibers with a varicose appearance was observed. These fibers were in all species most numerous in the distal portion of the intestinal tract. In the submucosa GAL-IR fibers were detected in all four species, and in the pig and guinea-pig some fibers surrounded blood vessels. A large number of GAL-IR fibers was generally seen in the circular smooth muscle layer, except in the guinea-pig, which only seemed to contain a few fibers. In the longitudinal muscle layer only single fibers could be detected. However, the gastric fundus region of the pig contained a moderate number of fibers in the longitudinally and obliquely oriented layers.In general, in the rat, mouse and pig, the submucous and myenteric plexus contained moderate or large numbers of GAL-IR fibers. In the guinea-pig, no or only single fibers were observed in the plexus of the upper gastro-intestinal tract and the rectum, while moderate numbers were seen in the ileum and colon.Thin adjacent sections stained for vasoactive intestinal polypeptide (VIP) and GAL revealed the coexistence of these two peptides in cell bodies of the myenteric plexus in the pig duodenum and guinea-pig colon. In these two species the GALand VIP-nerve fiber networks also exhibited marked similarities. However, in the rat and mouse VIPand GAL-distribution patterns were in general different.The present findings indicate the presence of yet another neuropeptide or peptide family in the gastro-intestinal tract of several rodents and the pig.  相似文献   

6.
P2X2 receptors, with other P2X receptor subtypes, have an important role mediating synaptic transmission in regulating the functions of the gastrointestinal tract. Our recent work has found a new regulator of P2X receptor function, called phosphoinositide-interacting regulator of transient receptor potential channels (Pirt). In the present work, we have shown that Pirt immunoreactivity was localized in nerve cell bodies and nerve fibers in the myenteric plexus of the stomach, ileum, proximal, and distal colon and in the submucosal plexus of the jejunum, ileum, proximal, and distal colon. Almost all the Pirt-immunoreactive (ir) neurons were also P2X2-ir, and co-immunoprecipitation experiments have shown that Pirt co-precipitated with the anti-P2X2 antibody. This work provides detailed information about the expression of Pirt in the gut and its co-localization with P2X2, indicating its potential role in influencing P2X2 receptor function.  相似文献   

7.
Calcitonin gene-related peptide (CGRP) exerts its diverse effects on vasodilation, nociception, secretion, and motor function through a heterodimeric receptor comprising of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). Despite the importance of CLR·RAMP1 in human disease, little is known about its distribution in the human gastrointestinal (GI) tract, where it participates in inflammation and pain. In this study, we determined that CLR and RAMP1 mRNAs are expressed in normal human stomach, ileum and colon by RT-PCR. We next characterized antibodies that we generated to rat CLR and RAMP1 in transfected HEK cells. Having characterized these antibodies in vitro, we then localized CLR-, RAMP1-, CGRP- and intermedin-immunoreactivity (IMD-IR) in various human GI segments. In the stomach, nerve bundles in the myenteric plexus and nerve fibers throughout the circular and longitudinal muscle had prominent CLR-IR. In the proximal colon and ileum, CLR was found in nerve varicosities of the myenteric plexus and surrounding submucosal neurons. Interestingly, CGRP expressing fibers did not co-localize, but were in close proximity to CLR. However, CLR and RAMP1, the two subunits of a functional CGRP receptor were clearly localized in myenteric plexus, where they may form functional cell-surface receptors. IMD, another member of calcitonin peptide family was also found in close proximity to CLR, and like CGRP, did not co-localize with either CLR or RAMP1 receptors. Thus, CGRP and IMD appear to be released locally, where they can mediate their effect on their receptors regulating diverse functions such as inflammation, pain and motility.  相似文献   

8.
The distribution and abundance of nitric oxide synthase (NOS)-containing neurons and their terminals in the gastrointestinal tract of the guinea-pig were examined in detail using NADPH diaphorase histochemistry and NOS immunohistochemistry. NOS-containing cell bodies were found in the myenteric plexus throughout the gastrointestinal tract and in the submucous plexus of the stomach, colon and rectum. NOS-containing neurons comprised between 12% (in the duodenum) and 54% (in the esophagus) of total myenteric neurons. In the ileum, NOS neurons represented 19% of total myenteric neurons. Most of the NOS neurons throughout the gastrointestinal tract possessed lamellar dendrites and a single axon. NOS-containing terminals were abundant in the circular muscle, including that of the sphincters, but were rare in the longitudinal muscle, except for the taeniae of the caecum. The muscularis mucosae of the esophagus, stomach, colon and rectum received a medium to dense innervation by NOS terminals. Within myenteric ganglia, NOS-containing terminals were extremely sparse in the esophagus, stomach and duodenum, common in the ileum and distal colon and extremely dense in the proximal colon and rectum. The submucous plexus in the ileum and large intestine contained a sparse plexus of NOS-containing terminals. NOS terminals were not observed in the mucosa of any region. We conclude that throughout the gastrointestinal tract of the guinea-pig, NOS neurons are inhibitory motor neurons to the circular muscle; in the ileum and large intestine, NOS neurons may also function as interneurons.  相似文献   

9.
Yu Q  Ji R  Gao X  Fu J  Guo W  Song X  Zhao X  Burnstock G  Shi X  He C  Xiang Z 《Cell and tissue research》2011,344(2):227-237
Single- and double-immunostaining techniques were used systematically to study the distribution pattern and neurochemical density of oxytocin-immunoreactive (-ir) neurons in the digestive tract of the guinea pig. Oxytocin immunoreactivity was distributed widely in the guinea pig gastrointestinal tract; 3%, 13%, 17%, 15%, and 10% of ganglion neurons were immunoreactive for oxytocin in the myenteric plexuses of the gastric corpus, jejunum, ileum, proximal colon, and distal colon, respectively, and 36%, 40%, 52%, and 56% of ganglion neurons were immunoreactive for oxytocin in the submucosal plexuses of the jejunum, ileum, proximal colon, and distal colon, respectively. In the myenteric plexus, oxytocin was expressed exclusively in the intrinsic enteric afferent neurons, as identified by calbindin 28 K. In the submucosal plexuses, oxytocin was expressed in non-cholinergic secretomotor neurons, as identified by vasoactive intestinal polypeptide. Oxytocin-ir nerve fibers in the inner circular muscle layer possibly arose from the myenteric oxytocin-ir neurons, and oxytocin-ir nerve fibers in the mucosa possibly arose from both the myenteric and submucosal oxytocin-ir neurons. Thus, oxytocin in the digestive tract might be involved in gastrointestinal tract motility mainly via the regulation of the inner circular muscle and the balance of the absorption and secretion of water and electrolytes.  相似文献   

10.
Several subtypes of the interstitial cells of Cajal (ICC) form networks that play a role in gastrointestinal motor control. ICC express c-kit and depend on signaling via Kit receptors for development and phenotype maintenance. At 7-8 weeks of development, c-kit-immunoreactive (c-kit-IR) cells are present in the human oesophagus, stomach and proximal duodenum wall. In the remaining small and large bowel, c-kit-IR cells appear later. The object of the present study is to determine the timing of the appearance of c-kit-IR ICC in the parts of the digestive tube originating from the midgut (distal duodenum, jejunum, ileum and proximal colon). Specimens were obtained from eight human embryos and 11 fetuses at 7-12 weeks of gestational age. The specimens were exposed to anti-c-kit antibodies to investigate ICC differentiation. The differentiation of enteric neurons and smooth muscle cells was immunohistochemically examined by using anti-PGP9,5 and anti-desmin antibodies, respectively. In the distal duodenum, jejunum and ileum, c-kit-IR cells emerged at week 9 at the level of the myenteric plexus in the form of a thin row of cells encircling the inception of the ganglia. These cells were multipolar or spindle-shaped with two long processes and corresponded to the ICC of the myenteric plexus. In the proximal colon, c-kit-IR cells emerged at week 9-10 in the form of two parallel belts of cells extending at the submucosal plexus and the myenteric plexus levels. We conclude that ICC develop following two different patterns in the human midgut.  相似文献   

11.
We introduced the radioimmunoassay (RIA) of arginine vasopressin (AVP) with standard AVP and antiserum to AVP (both Calibiochem). The sensitivity of the system was increased from the declared 4pg to 1 pg per tube by preparing AVP-125I of high specific activity (about 1,500 mCi/mg) and by modifying the reaction conditions. The sensitivity of the method was adequate for measuring AVP in urine and in concentrated plasma extracts, even under physiological conditions. Reliability of the results depended upon maintenance of approximately the same osmolarity in all the RIA samples. The mean plasma AVP level, uncorrected for AVP extraction losses, was 1.52 +/- 0.20 pg/ml for an ad libitum fluid intake; in fluid deprivation it rose in proportion to the osmolarity of the plasma to 5.83 +/- 0.42 pg/ml at 12 hours and to 19.09 +/- 4.51 pg/ml at 36 hours. Extraction recovery of added AVP was about 63%. The urinary AVP concentration varied according to the patients' state of hydratation from undetectable values at UOsm less than 200 mOsm/1 to a mean 16.5 +/- 7.9 pg/ml in the presence of an ad libitum fluid intake and to 29.1 +/- 7.5 pg/ml after 12 hours' and 117.2 +/- 13.7 pg/ml after 36 hours' deprivation of fluids.  相似文献   

12.
Keeping mammalian gastrointestinal (GI) tract communities in balance is crucial for host health maintenance. However, our understanding of microbial communities in the GI tract is still very limited. In this study, samples taken from the GI tracts of C57BL/6 mice were subjected to 16S rRNA gene sequence-based analysis to examine the characteristic bacterial communities along the mouse GI tract, including those present in the stomach, duodenum, jejunum, ileum, cecum, colon and feces. Further analyses of the 283,234 valid sequences obtained from pyrosequencing revealed that the gastric, duodenal, large intestinal and fecal samples had higher phylogenetic diversity than the jejunum and ileum samples did. The microbial communities found in the small intestine and stomach were different from those seen in the large intestine and fecal samples. A greater proportion of Lactobacillaceae were found in the stomach and small intestine, while a larger proportion of anaerobes such as Bacteroidaceae, Prevotellaceae, Rikenellaceae, Lachnospiraceae, and Ruminococcaceae were found in the large intestine and feces. In addition, inter-mouse variations of microbiota were observed between the large intestinal and fecal samples, which were much smaller than those between the gastric and small intestinal samples. As far as we can ascertain, ours is the first study to systematically characterize bacterial communities from the GI tracts of C57BL/6 mice.  相似文献   

13.
Histamine plays important roles in gastric acid secretion, inflammation, and allergic response. Histamine N-methyltransferase (HMT; EC 2.1.1.8) is crucial to the inactivation of histamine in tissues. In this study we investigated the immunohistochemical localization of this enzyme in guinea pig tissues using a rabbit polyclonal antibody against bovine HMT. The specificity of the antibody for guinea pig HMT was confirmed by Western blotting and the lack of any staining using antiserum preabsorbed with purified HMT. There was strong HMT-like immunoreactivity (HMT-LI) in the epithelial cells in the gastrointestinal tract, especially in the gastric body, duodenum, and jejunum. The columnar epithelium in the gallbladder was also strongly positive. Almost all the myenteric plexus from the stomach to the colon was stained whereas the submucous plexus was not. Other strongly immunoreactive cells included the ciliated cells in the trachea and the transitional epithelium of the bladder. Intermediately immunoreactive cells included islets of Langerhans, epidermal cells of the skin, alveolar cells in the lung, urinary tubules in the kidney, and epithelium of semiferous tubules. HMT-LI was present in specific structures in the guinea pig tissues. The widespread distribution of HMT-LI suggests that histamine has several roles in different tissues.  相似文献   

14.
Cholecystokinin (CCK), a hormone secreted from endocrine cells of the small intestine, participates in the control of motility and secretion in the gastrointestinal tract, and in the control of food intake. At least some of the effects of CCK on intestinal function appear to be mediated via activation of intrinsic neurons in the myenteric plexus. However, the distribution of CCK-responsive enteric neurons within the rat small intestine is not known. Neither has the role of CCK-A receptors in the activation of rat myenteric neurons been investigated. Therefore, to determine the distribution of CCK-responsive neurons in the small intestinal myenteric plexus we utilized immunohistochemical detection of Fos, the protein product of the immediate early gene c-fos, to identify neurons that were activated by exogenous CCK. We also monitored Fos expression in the dorsal hindbrain, and examined CCK-induced Fos expression in the presence or absence of a receptor antagonist for the type-A CCK receptor. We found that CCK significantly increased Fos expression in the hindbrain and in myenteric neurons of the duodenum and jejunum, but not the ileum. Neuronal Fos responsiveness in both brain and myenteric neurons was mediated by CCK-A receptors, as CCK-induced Fos expression was eliminated in rats pretreated with a CCK-A receptor antagonist. We conclude that CCK activates small intestinal myenteric neurons, via CCK-A receptors. Activation of these intrinsic intestinal neurons may participate in reflexes and behaviors that are mediated by CCK.  相似文献   

15.
Gulley S  Sharma SK  Moran TH  Sayegh AI 《Peptides》2005,26(9):1617-1622
To examine the role of cholecystokinin1 receptor (CCK1) in the activation of brainstem and myenteric neurons by CCK, we compared the ability of exogenous CCK-8 to induce Fos-like immunoreactivity (Fos-LI) in these neurons in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, lacking CCK1 receptors, and Long-Evans Tokushima Otsuka (LETO) controls. Five groups (n=4 rats per group) of OLETF rats, and five LETO control groups, were injected intraperitoneally (IP) with 5, 10, 20, and 40 microg/kg CCK-8 or saline. Forty-micrometer brainstem sections containing the area postrema, nucleus of the solitary tract, and the dorsal motor nucleus of the vagus, and myenteric neurons of the duodenum, jejunum, and ileum underwent a diaminobenzidine reaction enhanced with nickel to reveal Fos-LI. CCK-8 did not increase Fos-LI in any of the tested neurons in the OLETF rats. CCK-8 increased Fos-LI in the brainstem of the LETO rats in a dose dependent manner. In the LETO rats only 40 microg/kg CCK-8 increased Fos-LI in the myenteric plexus of the jejunum. This study demonstrates that CCK-8 activates the brainstem and myenteric neurons through the CCK1 receptor.  相似文献   

16.
17.
BACKGROUND/AIM: Several studies have described that oxytocin exerts stimulatory or inhibitory effects on gut functions. Recently, mRNA for oxytocin and its receptor was found throughout the entire human gastrointestinal (GI) tract. The aim of this study was to examine the cellular localization and distribution of the corresponding proteins. MATERIAL AND METHODS: Full-thickness biopsies from 24 patients, covering the entire GI tract, were collected during operations at the Department of Surgery in Malm? and Lund. The biopsies were taken from non_affected margins. The biopsies were fixed by immersion, rinsed in buffered sucrose, and kept frozen at 70 degrees C. Indirect immunofluorescence with primary antibodies to oxytocin and its receptor was used. RESULTS: Oxytocin was expressed in nerve cell bodies and nerve fibres in the myenteric and submucous ganglia all along the GI tract. Immunoreactive nerve cell bodies in myenteric ganglia predominated in the proximal (antrum and duodenum) and distal gut, while those in the submucous ganglia were more numerous in the ileum and colon. The oxytocin receptor was not detectable by two different antibodies in any tissue in the GI tract. CONCLUSION: Oxytocin is expressed in the myenteric and submucous ganglia and nerve fibres along the entire human GI tract. The role for oxytocin in the physiology and pathophysiology of the bowel remains to be settled.  相似文献   

18.
The axons of neurons that innervate the longitudinal muscle of the small intestine in small mammals such as rabbit, rat, guinea pig and mouse form a network, the tertiary plexus, against the inner surface of the muscle. In general, because of their substantial overlap, it has not been possible to follow the ramifications of individual axons in the tertiary plexus. In the present work, the longitudinal muscle motor neurons were filled with marker dyes through an intracellular microelectrode, and their morphologies and projections were examined in whole-mount preparations of longitudinal muscle and myenteric plexus. Most neurons that were examined were in the small intestine (ileum and duodenum), but a few were examined in the distal colon. Neurons in all regions had similar morphologies and projections. The cell bodies were amongst the smallest in myenteric ganglia, with major and minor axes of 14 microns and 25 microns (mean, n = 40) in the plane of the myenteric plexus. Each neuron had a single axon that branched extensively in the tertiary plexus, most had multiple lamellar dendrites and a few had filamentous dendrites or a mixture of filamentous and lamellar dendrites. The mean area of muscle covered by an axon and its branches extended 1.6 mm orally to anally and 1.7 mm circumferentially. The area covered was 2.8 +/- 1.9 mm2 (mean +/- SD, n = 23). From the density of occurrence of cell bodies, it can be calculated that each point in the longitudinal muscle is innervated by the processes of about 100 motor neurons and is influenced by electrotonic conduction of signals through the muscle by about 300 motor neurons.  相似文献   

19.
Neural cell adhesion molecule (N-CAM) mediates homophilic adhesion between cells and heterophilic adhesion between cells and extracellular matrix in a Ca2+-independent manner. N-CAM is widely expressed during development and plays a crucial role in cell division, migration, and differentiation, but its expression is restricted in adults. The distribution of N-CAM immunoreactivity in adult rat tissues was investigated in the present study. N-CAM immunoreactivity was present in the nervous system in the molecular layer of the cerebellum, ependymal cells surrounding the central canal, axons of the white matter, and in Lamina X of the gray matter of the spinal cord. N-CAM immunoreactivity also was found in autonomic nerves. In the digestive system, N-CAM immunoreactivity was found in the stratified squamous epithelium and nerve plexus of the esophagus, glandular cells of the stomach and pylorus, lamina propria, and epithelium of the villi of the duodenum, jejunum, and ileum. N-CAM immunoreactivity was demonstrated in the secretory cells of the adenohypophysis, islets of Langerhans, and acinar cells of the exocrine pancreas. Alveolar cells of the lung were also N-CAM immunoreactive. In the urinary system, N-CAM immunoreactivity was seen in the proximal convoluted tubules of the kidney. In the male reproductive system, N-CAM immunoreactivity was demonstrated in the nerve plexus around the urethral epithelium and in the nerve fibers around the smooth muscle cells of the corpus cavernosum penis. In the visual system, N-CAM immunoreactivity was seen in the epithelial cells of the corpus ciliaris. Cornea and lens epithelium also showed positive immunoreactivity. Our results suggest that cells in many tissues and organs of the adult rat synthesize N-CAM.  相似文献   

20.
Long residence times of probiotics in the intestinal tract would prolong their potential beneficial health effects and assist colonization. This study investigated the colonization potential of Lactobacillus casei Shirota in mouse intestine by using 5 (and 6)-carboxyfluorescein diacetate, succinimidyl ester (cFDA-SE) for assessment of doubling times in different parts of the intestine. The amounts of intestinal water overlying the surfaces of the duodenum, jejunum, ileum, and colon in BALB/c mice were 34.4 +/- 2.9, 58.8 +/- 6.8, 21.6 +/- 2.2, and 8.0 +/- 1.0 mg, respectively. Based on the residual concentrations of cFDA-SE-labeled lactobacilli on intestinal mucosal surfaces, the average half times for the wash-out of lactobacilli fed were estimated at 3.98, 1.55, 1.34, and 2.48 days in the duodenum, jejunum, ileum, and colon, respectively. The average doubling times of the lactobacilli, estimated from the residual fluorescent levels of surface-adhered cells, were 4.10, 4.78, 4.56, and 5.59 days in the duodenum, jejunum, ileum, and colon, respectively. It is estimated that the lactobacilli would have to achieve an average doubling time of 1.03 to 2.04 days to colonize the various sections of the mouse intestinal tract more permanently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号