共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification of five laboratory strains (1-5) of putative Caenorhabditis briggsae was undertaken. Examination of the male bursal ray arrangement, mating tests with males of Caenorhabditis elegans, malate dehydrogenase zymograms, and SDS polyacrylamide electrophoresis demonstrated that strain 4 was C. briggsae and the others were C. elegans. 相似文献
2.
The presence of galactose, glucose, mannose, and N-acetylglucosamine on the exposed surface of the nematodes Caenorhabditis briggsae and C. elegans was indicated by specific binding of three iodinated plant lectins. Proteolysis experiments suggested the absence of digestible glycoproteins on the exposed surfaces of the two nematode species. High resolution micrographs of cuticle surface preparations labeled with cationized ferritin indicated that the negative charge-bearing molecules are more densely packed on the nematode surface than on animal plasma membranes. 相似文献
3.
Husson SJ Landuyt B Nys T Baggerman G Boonen K Clynen E Lindemans M Janssen T Schoofs L 《Peptides》2009,30(3):449-457
Neuropeptides are important signaling molecules that function in cell-cell communication as neurotransmitters or hormones to orchestrate a wide variety of physiological conditions and behaviors. These endogenous peptides can be monitored by high throughput peptidomics technologies from virtually any tissue or organism. The neuropeptide complement of the soil nematode Caenorhabditis elegans has been characterized by on-line two-dimensional liquid chromatography and quadrupole time-of-flight tandem mass spectrometry (2D-nanoLC Q-TOF MS/MS). Here, we use an alternative peptidomics approach combining liquid chromatography (LC) with matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry to map the peptide content of C. elegans and another Caenorhabditis species, Caenorhabditis briggsae. This study allows a better annotation of neuropeptide-encoding genes from the C. briggsae genome and provides a promising basis for further evolutionary comparisons. 相似文献
4.
Zhongying Zhao Stephane Flibotte John I. Murray Daniel Blick Thomas J. Boyle Bhagwati Gupta Donald G. Moerman Robert H. Waterston 《Genetics》2010,184(3):853-863
Comparative studies of Caenorhabditis briggsae and C. elegans have provided insights into gene function and developmental control in both organisms. C. elegans is a well developed model organism with a variety of molecular and genetic tools to study gene functions. In contrast, there are only very limited tools available for its closest relative, C. briggsae. To take advantage of the full potential of this comparative approach, we have developed several genetic and molecular tools to facilitate functional analysis in C. briggsae. First, we designed and implemented an SNP-based oligonucleotide microarray for rapid mapping of genetic mutants in C. briggsae. Second, we generated a mutagenized frozen library to permit the isolation of targeted deletions and used the library to recover a deletion mutant of cbr-unc-119 for use as a transgenic marker. Third, we used the cbr-unc-119 mutant in ballistic transformation and generated fluorescently labeled strains that allow automated lineaging and cellular resolution expression analysis. Finally, we demonstrated the potential of automated lineaging by profiling expression of egl-5, hlh-1, and pha-4 at cellular resolution and by detailed phenotyping of the perturbations on the Wnt signaling pathway. These additions to the experimental toolkit for C. briggsae should greatly increase its utility in comparative studies with C. elegans. With the emerging sequence of nematode species more closely related to C. briggsae, these tools may open novel avenues of experimentation in C. briggsae itself. 相似文献
5.
Comparative genomic analysis of important signaling pathways in Caenorhabditis briggsae and Caenorhabditis elegans reveals both conserved features and also differences. To build a framework to address the significance of these features we determined the C. briggsae embryonic cell lineage, using the tools StarryNite and AceTree. We traced both cell divisions and cell positions for all cells through all but the last round of cell division and for selected cells through the final round. We found the lineage to be remarkably similar to that of C. elegans. Not only did the founder cells give rise to similar numbers of progeny, the relative cell division timing and positions were largely maintained. These lineage similarities appear to give rise to similar cell fates as judged both by the positions of lineally equivalent cells and by the patterns of cell deaths in both species. However, some reproducible differences were seen, e.g., the P4 cell cycle length is more than 40% longer in C. briggsae than that in C. elegans (p < 0.01). The extensive conservation of embryonic development between such divergent species suggests that substantial evolutionary distance between these two species has not altered these early developmental cellular events, although the developmental defects of transpecies hybrids suggest that the details of the underlying molecular pathways have diverged sufficiently so as to not be interchangeable. 相似文献
6.
7.
In the free-living model nematode, Caenorhabditis elegans, a protein-folding co-transcribed gene pair has previously been described. The degree and form of trans-splicing, orientation and spacing of the genes, and the co-ordinate co-expression of protein folding catalysts in the nematode's hypodermis indicated this to be a functionally important operon. This gene pair has now been cloned and compared in the related organism Caenorhabditis briggsae to identify evolutionarily conserved, functionally important features. The corresponding C. briggsae gene pair was found to share the operon-specific features, including sequence homology blocks in the upstream 5′ flanking regions. The intergenic regions were not conserved. The homology block closest to the translational initiation codon of the upstream gene was found to contain a known Ceanorhabbitis promoter element site, and may therefore be an important cis-regulatory region directing the hypodermis-specific expression of this operon gene of C. elegans. This study also provides further confirmation of the high degree of chromosomal synteny between these nematode species. 相似文献
8.
9.
10.
We investigated genetic polymorphism in the Caenorhabditis elegans srh and str chemoreceptor gene families, each of which consists of approximately 300 genes encoding seven-pass G-protein-coupled receptors. Almost one-third of the genes in each family are annotated as pseudogenes because of apparent functional defects in N2, the sequenced wild-type strain of C. elegans. More than half of these "pseudogenes" have only one apparent defect, usually a stop codon or deletion. We sequenced the defective region for 31 such genes in 22 wild isolates of C. elegans. For 10 of the 31 genes, we found an apparently functional allele in one or more wild isolates, suggesting that these are not pseudogenes but instead functional genes with a defective allele in N2. We suggest the term "flatliner" to describe genes whose functional vs. pseudogene status is unclear. Investigations of flatliner gene positions, d(N)/d(S) ratios, and phylogenetic trees indicate that they are not readily distinguished from functional genes in N2. We also report striking heterogeneity in the frequency of other polymorphisms among these genes. Finally, the large majority of polymorphism was found in just two strains from geographically isolated islands, Hawaii and Madeira. This suggests that our sampling of wild diversity in C. elegans is narrow and that identification of additional strains from similarly isolated regions will greatly expand the diversity available for study. 相似文献
11.
Similarity between related genomes may carry information on selective constraint in each of them. We analysed patterns of similarity between several homologous regions of Caenorhabditis elegans and C. briggsae genomes. All homologous exons are quite similar. Alignments of introns and of intergenic sequences contain long gaps, segments where similarity is low and close to that between random sequences aligned using the same parameters, and segments of high similarity. Conservative estimates of the fractions of selectively constrained nucleotides are 72%, 17% and 18% for exons, introns and intergenic sequences, respectively. This implies that the total number of constrained nucleotides within non-coding sequences is comparable to that within coding sequences, so that at least one-third of nucleotides in C. elegans and C. briggsae genomes are under strong stabilizing selection. 相似文献
12.
13.
14.
Missal K Zhu X Rose D Deng W Skogerbø G Chen R Stadler PF 《Journal of experimental zoology. Part B. Molecular and developmental evolution》2006,306(4):379-392
We present a survey for non-coding RNAs and other structured RNA motifs in the genomes of Caenorhabditis elegans and Caenorhabditis briggsae using the RNAz program. This approach explicitly evaluates comparative sequence information to detect stabilizing selection acting on RNA secondary structure. We detect 3,672 structured RNA motifs, of which only 678 are known non-translated RNAs (ncRNAs) or clear homologs of known C. elegans ncRNAs. Most of these signals are located in introns or at a distance from known protein-coding genes. With an estimated false positive rate of about 50% and a sensitivity on the order of 50%, we estimate that the nematode genomes contain between 3,000 and 4,000 RNAs with evolutionary conserved secondary structures. Only a small fraction of these belongs to the known RNA classes, including tRNAs, snoRNAs, snRNAs, or microRNAs. A relatively small class of ncRNA candidates is associated with previously observed RNA-specific upstream elements. 相似文献
15.
Cloning by synteny: identifying C. briggsae homologues of C. elegans genes. 总被引:4,自引:0,他引:4 下载免费PDF全文
Phylogenetic comparisons of gene and protein sequences between related species are often used to identify evolutionarily conserved elements that are important for gene expression, function, or regulation. However, homologoues may sometimes be difficult to identify by conventional low stringency hybridisation techniques, if they have undergone substantial sequence divergence. A new approach, cloning by synteny, is described that was used to identify the C. briggsae homologue of the C. elegans sex-determining gene tra-2. We show that four genes tra-2, ppp-1, art-1, and sod-1 are organised in a syntenic cluster and suggest that extensive conservation of gene linkage may exist between C. briggsae and C. elegans. We have also constructed a C. briggsae cDNA library to facilitate characterisation of these genes. Given the rapid progress in the physical mapping and sequencing of the C. elegans genome, cloning by synteny may provide the fastest method for identifying C. briggsae gene homologues, especially for genes encoding novel proteins. 相似文献
16.
Geldziler B Chatterjee I Kadandale P Putiri E Patel R Singson A 《Development genes and evolution》2006,216(4):198-208
Studies of sterile mutants in Caenorhabditis elegans have uncovered new insights into fundamental aspects of gamete cell biology, development, and function at fertilization.
The genome sequences of C. elegans, Caenorhabditis briggsae and Caenorhabditis remanei allow for informative comparative studies among these three species. Towards that end, we have examined wild-type sperm morphology
and activation (spermiogenesis) in each. Light and electron microscopy studies reveal that general sperm morphology, organization,
and ultrastructure are similar in all three species, and activation techniques developed for C. elegans were found to work well in both C. briggsae and C. remanei. Despite important differences in the reproductive mode between C. remanei and the other two species, most genes required for spermiogenesis are conserved in all three. Finally, we have also examined
the subcellular distribution of sperm epitopes in C. briggsae and C. remanei that cross-react with anti-sera directed against C. elegans sperm proteins. The baseline data in this study will prove useful for the future analysis and interpretation of sperm gene
function across nematode species. 相似文献
17.
Analysis of similarity within 142 pairs of orthologous intergenic regions of Caenorhabditis elegans and Caenorhabditis briggsae 下载免费PDF全文
Patterns of similarity between genomes of related species reflect the distribution of selective constraint within DNA. We analyzed alignments of 142 orthologous intergenic regions of Caenorhabditis elegans and Caenorhabditis briggsae and found a mosaic pattern with regions of high similarity (phylogenetic footprints) interspersed with non-alignable sequences. Footprints cover ~20% of intergenic regions, often occur in clumps and are rare within 5′ UTRs but common within 3′ UTRs. The footprints have a higher ratio of transitions to transversions than expected at random and a higher GC content than the rest of the intergenic region. The number of footprints and the GC content of footprints within an intergenic region are higher when genes are oriented so that their 5′ ends form the boundaries of the intergenic region. Overall, the patterns and characteristics identified here, along with other comparative and experimental studies, suggest that many footprints have a regulatory function, although other types of function are also possible. These conclusions may be quite general across eukaryotes, and the characteristics of conserved regulatory elements determined from genomic comparisons can be useful in prediction of regulation sites within individual DNA sequences. 相似文献
18.
Ten types of mariner transposable elements (232 individual sequences) are present in the completed genomic DNA sequence of Caenorhabditis elegans and the partial sequence of Caenorhabditis briggsae. We analyze these replicated instances of mariner evolution and find that elements of a type have evolved within their genomes under no selection on their transposase genes. Seven of the ten reconstructed ancestral mariners carry defective transposase genes. Selection has acted during the divergence of some ancestral elements. The neutrally-evolving mariners are used to analyze the pattern of molecular evolution in Caenorhabditis. There is a significant mutational bias against transversions and significant variation in rates of change across sites. Deletions accumulate at a rate of 0.034 events/bp per substitution/site, with an average size of 166 bp (173 gaps observed). Deletions appear to obliterate preexisting deletions over time, creating larger gaps. Insertions accumulate at a rate of 0.019 events/bp per substitution/site, with an average size of 151 bp (61 events). Although the rate of deletion is lower than most estimates in other species, the large size of deletions causes rapid elimination of neutral DNA: a mariners half-life (the time by which half an elements sequence should have been deleted) is ~0.1 subsitutions/site. This high rate of DNA deletion may explain the compact nature of the nematode genome.
When this work was done, both authors were affiliated with the University of Illinois at Urbana-Champaign. Dr. Witherspoon is now working in the private sector, Dr. Robertson remains affiliated with the University of Illinois. 相似文献
19.
Postcopulatory sexual selection affects the evolution of numerous features ranging from mating behavior to seminal fluid toxicity to the size of gametes. In an earlier study of the effect of sperm competition risk on sperm size evolution, experimental populations of the nematode Caenorhabditis elegans were maintained either by outcrossing (sperm competition present) or by selfing (no sperm competition), and after 60 generations, significantly larger sperm had evolved in the outcrossing populations. To determine the effects of this selection on population genetic variation, we assessed genetic diversity in a large number of loci using random amplification of polymorphic DNA-PCR. Nearly 80% of the alleles present in parental strain populations persisted in the 6 experimental populations after the 60 generations and, despite a 2.2-fold difference in expected heterozygosity, the resulting levels of genetic variation were equivalent between the outcrossing and selfing experimental populations. By inference, we conclude that genetic hitchhiking due to sexual selection in the experimental populations dramatically reduced genetic diversity. We use the levels of variation in the selfing populations as a control for the effects of drift, and estimate the strength of sexual selection to be strong in obligatorily outcrossing populations. Although sequential hermaphrodites like C. elegans probably experience little sexual selection in nature, these data suggest that sexual selection can profoundly affect diversity in outcrossing taxa. 相似文献