首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer's disease (AD) has been treated with acetylcholinesterase (AChE) inhibitors such as donepezil. However, the clinical usefulness of AChE inhibitors is limited mainly due to their adverse peripheral effects. Depression seen in AD patients has been treated with serotonin transporter (SERT) inhibitors. We considered that combining SERT and AChE inhibition could improve the clinical usefulness of AChE inhibitors. In a previous paper, we found a potential dual inhibitor, 1, of AChE (IC50=101 nM) and SERT (IC50=42 nM), but its AChE inhibition activity was less than donepezil (IC50=10 nM). Here, we report the conformationally restricted (R)-18a considerably enhanced inhibitory activity against AChE (IC50=14 nM) and SERT (IC50=6 nM).  相似文献   

2.
Structure activity relationships are described for a series of succinyl hydroxamic acids 4a-o as potent and selective inhibitors of matrix metalloprotease-3 (stromelysin-1). Optimisation of P1' and P3' groups gave compound 4j (MMP-3 IC50=5.9nM) which was >140-fold less potent against MMP-1 (IC50=51,000nM), MMP-2 (IC50=1790nM), MMP-9 (IC50=840nM) and MMP-14 (IC50=1900nM).  相似文献   

3.
The amidrazone of D-mannonolactam (see compound 5, Fig. 1) was synthesized chemically as a mimic of the mannopyranosyl cation and tested as a potential inhibitor of mannosidases. In this study compound 5 is shown to be a more general mannosidase inhibitor than other currently known compounds and exhibits properties not previously observed with any other mannosidase inhibitors. Thus D-mannonolactam amidrazone not only inhibits the Golgi mannosidase I (IC50 = 4 microM) and mannosidase II (IC50 = 90-100 nM), but it is the first inhibitor that has been shown to be a potent inhibitor of the soluble or endoplasmic reticulum alpha-mannosidase (IC50 = 1 microM). This compound also inhibited the aryl-mannosidases regardless of anomeric configuration although it was much more effective on enzymes recognizing alpha-linked mannose, i.e. jack bean and mung bean alpha-mannosidases (IC50 = 400 nM) as compared with fungal beta-mannosidase (IC50 = 150 microM). Mannonoamidrazone was tested in animal cell cultures using influenza virus-infected Madin-Darby canine kidney cells as a model system, and was found to prevent almost completely the formation of complex types of N-linked oligosaccharides with the formation of about equal amounts of Man9(GlcNAc)2 and Man8(GlcNAc)2 structures. Thus D-mannonolactam amidrazone is a potent but broad spectrum mannosidase inhibitor whose structure and properties should provide valuable insight into the design of other useful glycosidase inhibitors.  相似文献   

4.
Compound 1 has been shown to be a dual prenylation inhibitor with FPTase (IC50=2 nM) and GGPTase-I (IC50=95 nM). Analogues of 1, which replaced the cyanophenyl group with various biaryls, led to the discovery of highly potent dual FPTase/GGPTase-I inhibitors. 4-trifluoromethylphenyl, trifluoropentynyl, and trifluoropentyl were identified as good p-cyano replacements.  相似文献   

5.
In an attempt to prepare a new water-soluble, parenteral COX-2 inhibitor, rofecoxib (9) and celecoxib (13) analogues were designed and synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors with in vivo anti-inflammatory activity. In this experiment, respective SO(2)Me and SO(2)NH(2) hydrogen-bonding pharmacophores were replaced by a tetrazole ring. Molecular modeling (docking) studies showed that the tetrazole ring of these two analogues (9 and 13) was inserted deep into the secondary pocket of the human COX-2 binding site where it undergoes electrostatic interaction with Arg(513). The rofecoxib (9) and celecoxib (13) analogues exhibited a high in vitro selectivity (9, COX-1 IC(50) = 3.8 nM; COX-2 IC(50) = 1.8 nM; SI = 2.11; 13, COX-1 IC(50) = 4.1 nM; COX-2 IC(50) = 1.9 nM; SI = 2.16) relative to the reference drug celecoxib (COX-1 IC(50) = 3.7 nM; COX-2 IC(50) = .2 nM; SI=1.68) and also showed high aqueous solubility at pH higher than 7 and good anti-inflammatory activity in a carrageenan-induced rat paw edema assay. However, 9 and 13 had no significant damage on gastric mucosa.  相似文献   

6.
Extracts of Brassica napus (oilseed rape) seeds contain type 1 and type 2A protein phosphatases whose properties are indistinguishable from the corresponding enzymes in mammalian tissues. The type 1 activity dephosphorylated the beta-subunit of phosphorylase kinase selectively and was inhibited by the same concentrations of okadaic acid [IC50 (concentration causing 50% inhibition) approximately 10 nM], mammalian inhibitor 1 (IC50 = 0.6 nM) and mammalian inhibitor 2 (IC50 = 2.0 nM) as the rabbit muscle type 1 phosphatase. The plant type 2A activity dephosphorylated the alpha-subunit of phosphorylase kinase preferentially, was exquisitely sensitive to okadaic acid (IC50 approximately 0.1 nM), and was unaffected by inhibitors 1 and 2. As in mammalian tissues, a substantial proportion of plant type 1 phosphatase activity (40%) was particulate, whereas plant type 2A phosphatase was cytosolic. The specific activities of the plant type 1 and type 2A phosphatases were as high as in mammalian tissue extracts, but no type 2B or type 2C phosphatase activity was detected. The results demonstrate that the improved procedure for identifying and quantifying protein phosphatases in animal cells is applicable to higher plants, and suggests that okadaic acid may provide a new method for identifying plant enzymes that are regulated by reversible phosphorylation.  相似文献   

7.
The activity of three angiotensin I converting enzyme (ACE) inhibitors with unique related structures was assessed in vitro and in vivo. The three compounds were (S)(-)-1,2,3,4-tetrahydro-2-(3-mercapto-1-oxopropyl)-3-isoquinoline carboxylic acid (EU-4865), 1,2,3,4-tetrahydro-2-(3-mercapto-1-oxopropyl)-1- isoquinolinecarboxylic acid (EU-4881), and (S)(-)-1,2,3,4-tetrahydro-1-(3-mercapto-1-oxopropyl)-2- quinolinecarboxylic acid (EU-5031). In vitro EU-4881 was a competitive inhibitor that lacked potency (IC50 = 1980 nM) against purified ACE. The other two compounds were equipotent (IC50 = 41 nM) against purified ACE but differed in their inhibition kinetics. EU-4865 (Ki = 38 nM) was a noncompetitive inhibitor, and EU-5031 (Ki = 6.9 nM) was a competitive inhibitor. Against caveolae membrane-bound ACE EU-4881 also lacked potency (IC50 = 2852 nM). In vivo in the conscious acute aortic coarctate (AAC) rat it also lacked potency, having an ED30 (oral dose decreasing blood pressure 30 mmHg) greater than 100 mg/kg. The activity of EU-4865 and EU-5031 in the caveolae membrane-bound ACE and AAC rat reflected their different Ki values rather than their similar IC50 values. In vitro, EU-4865 and EU-5031 had IC50 values of 19 and 6.7 nM, respectively, and in vivo, they had ED30 values of 52 and 1.1 mg/kg, respectively. These results suggest that ACE has a binding requirement for a carboxy-terminus, hydrophobic amino acid that is important for in vivo activity.  相似文献   

8.
Tiazofurin (TR), an inhibitor of IMP dehydrogenase, causes remissions and induced differentiation in human leukemia through lowering the concentrations of GTP and dGTP. A deoxycytidine analog, difluorodeoxycytidine (DFDC), is an anti-tumor agent phosphorylated by deoxycytidine kinase, resulting in decreased concentration of dCTP, leading to inhibition of DNA synthesis. In HL-60 cells DFDC induced differentiation and inhibited proliferation in a dose-dependent manner (IC50 = 4 nM); TR provided synergism with DFDC. DFDC inhibited proliferation in OVCAR-5 human ovarian carcinoma cells (IC50 = 25 nM) and colony formation in PANC-1 human pancreatic carcinoma cells (IC50 = 2 nM) and rat hepatoma 3924A cells (IC50 = 22 nM). TR and DFDC are synergistically cytotoxic in hepatoma cells and additive in PANC-1 cells. The two drugs together should be helpful in treating leukemias and solid tumors in humans.  相似文献   

9.
Several potent prostate specific membrane antigen (PSMA) inhibitors have been described recently. We generated a PSMA-specific 2-5A ligand called RBI 1033 by linking 2-5A to the N-acetylaspartylglutamate (NAAG)-based inhibitor ZJ-24. We measured the inhibitory activity of RBI 1033 to the folate hydrolase activity of PSMA. Amazingly, we found that compared to ZJ-24 (IC50 = 53.9 nM), RBI 1033 was more than 10 times more potent (IC50 = 4.78 nM) as a folate hydrolase inhibitor, while SMCC 2-5A lacking the ZJ-24 part, did not show much activity (IC50 = 1974 nM). Also, RBI 1033's affinity to PSMA was found to be 10 times higher than ZJ-24 itself.  相似文献   

10.
Some bisphosphonates used for the treatment of bone disorders are also potent inhibitors of squalene synthase, a critical enzyme for sterol biosynthesis. Among seven drugs tested, YM 175 (cycloheptylaminomethylene-1,1-bisphosphonic acid) was the most potent inhibitor of rat liver microsomal squalene synthase (Ki = 57 nM) and sterol biosynthesis from [14C]mevalonate in rat liver homogenate (IC50 = 17 nM). EB 1053 (3-(1-pyrolidino)-1-hydroxypropylidene-1,1-bisphosphonic acid) and PHPBP (3-(1-piperidino)-1-hydroxypropylidene-1,1-bisphosphonic acid) were less potent inhibitors in both these assays. Pamidronate and alendronate were poor inhibitors of squalene synthase (IC50 > 10 microM) but were potent inhibitors of sterol biosynthesis from mevalonate (IC50 = 420 and 168 nM, respectively), suggesting that the latter two agents may have inhibited other enzymes involved in the synthesis of farnesyl pyrophosphate from mevalonate. Etidronate and clodronate were inactive in both these assays. YM 175 also inhibited sterol biosynthesis in mouse macrophage J774 cells (IC50 = 64 microM) and in rats, when administered acutely, it inhibited cholesterol biosynthesis in the liver (ED50 = 30 mg/kg, s.c.). Structural modifications on YM 175 to enhance cell permeability may result in a new class of cholesterol-lowering agents.  相似文献   

11.
A class of poly(ADP-ribose) polymerase (PARP-1) inhibitors, the imidazobenzodiazepines, are presented in this text. Several derivatives were designed and synthesized with ionizable groups (i.e., tertiary amines) in order to promote the desired pharmaceutical characteristics for administration in ischemic injury. Within this series, several compounds have excellent in vitro potency and our computational models accurately justify the structure-activity relationships (SARs) and highlight essential hydrogen bonding residues and hydrophobic pockets within the catalytic domain of PARP-1. Administration of these compounds (5q, 17a and 17e) in the mouse model of streptozotocin-induced diabetes results in maintainance of glucose levels. Furthermore, one such inhibitor (5g, IC(50)=26 nM) demonstrated significant reduction of infarct volume in the rat model of permanent focal cerebral ischemia.  相似文献   

12.
A new class of PARP-1 inhibitors, namely substituted fused uracil derivatives were synthesised. Starting from a derivative with an IC(50)=2microM the chemical optimisation program led to compounds with more than a 100-fold increase in potency (IC(50)<20nM). Additionally, physicochemical and pharmacokinetic properties were evaluated. It could be shown that compounds bearing a piperazine or phenyl substituted betaAla-Gly side chain exhibited the best overall profile.  相似文献   

13.
The high inhibitory potency of the previously developed bombesin antagonist [Leu13, psi CH2NHLeu14]bombesin (analogue I) (IC50 values of 30 and 18 nM for inhibition of bombesin-stimulated amylase secretion from guinea pig acinar cells and Swiss 3T3 cell growth, respectively) diminished considerably when shorter chain lengths were examined. For instance, [Leu13, psi CH2NHLeu14]bombesin-(5-14),[Leu13, psi CH2NHLeu14] bombesin-(6-14), and [Leu9, psi CH2NHLeu10]neuromedin C had IC50 values of 150, 150, and 280 nM, respectively. Incorporation of a D-Phe residue at position 6 of [Leu13, psi CH2NHLeu14] bombesin did not significantly change the various biological parameters. However, its presence in [Leu13, psi CH2NHLeu14]bombesin-(6-14) and at position 2 of psi-neuromedin C-(2-10) resulted in about 10-fold increases in potency up to and above that of the original antagonist. For instance, [D-Phe6,Leu13,psi CH2NHLeu14]bombesin-(6-14) and des-Gly1-[D-Phe2,Leu9,psi CH2NHLeu10]neuromedin C exhibited IC50 values of 5 and 28 nM, respectively. Analogues based on the litorin sequence which contains an NH2-terminal pyroglutamic acid residue at the bombesin position 6 equivalent were also quite potent. The ability of various analogues to interact with bombesin receptors on pancreatic acini correlated reasonably well with potencies derived from inhibition of bombesin-stimulated growth of Swiss 3T3 cells. Additional studies of NH2- and COOH-terminal structure-activity relationships resulted in the synthesis of [D-Phe6,Leu13,psi CH2NHPhe14]bombesin-(6-14), which was particularly effective in inhibiting 3T3 cell growth at high picomolar concentrations (IC50 = 0.72 nM and Ki = 3.1 nM for 3T3 cells; IC50 = 7.5 nM and Ki = 9.9 nM for acini). Detailed investigations with one of the most potent antagonists, [D-Phe6,Leu13,psi CH2NHLeu14]bombesin-(6-14) (Ki = 14 nM for acini cells and 7.1 for 3T3 cells), demonstrated that this analogue was a competitive inhibitor of bombesin and that this activity was specific for the bombesin receptor. Thus, inhibitory potencies have been improved generally up to 25 times over previously reported structures; and, given that bombesin itself has a Ki of 1.2 nM for 3T3 cell binding, some of these analogues are extraordinarily high affinity receptor antagonists. They can also be synthesized more readily and offer fewer proteolytic degradation sites than the original pseudopeptide and should be excellent candidates for in vivo studies aimed at inhibition of bombesin-dependent human small cell lung carcinoma growth.  相似文献   

14.
Structurally-related, but non-polyglutamylatable, derivatives of 10-CF3CO-DDACTHF (1), which incorporate L-glutamine (2) and L-isoglutamine (3) in place of L-glutamate, were prepared and evaluated as inhibitors of recombinant human (rh) GAR Tfase. While the L-glutamate alpha-carboxamide derivative 3 was much less effective as a rhGAR Tfase inhibitor (K(i) = 4.8 microM) and inactive in cellular functional assays, the gamma-carboxamide derivative 2 was found to be a potent and selective rhGAR Tfase inhibitor (K(i) = 0.056 microM) being only 4-fold less potent than 1 (K(i) = 0.015 microM). Moreover, 2 was effective in cellular functional assays exhibiting purine sensitive cytotoxic activity (IC50 = 300 nM, CCRF-CEM) only 20-fold less potent than 1 (IC50 = 16 nM), consistent with inhibition of de novo purine biosynthesis via selective inhibition of GAR Tfase. Like 1, 2 is transported into the cell by the reduced folate carrier. Unlike 1, the functional activity of 2 is not dependent upon FPGS polyglutamylation.  相似文献   

15.
A successful design of conformationally restricted novel quinazolinone derivatives linked via a cyclopentene moiety as potent poly(ADP-ribose)polymerase-1 (PARP-1) inhibitors has been developed. One selected member of the new series, 8-chloro-2-[(3S)-3-(4-phenylpiperidin-1-yl)cyclopent-1-en-1-yl]quinazolin-4(3H)-one (S-16d), was found to be highly potent with IC(50)=8.7 nM and good brain penetration.  相似文献   

16.
Various pyridopyridazinone derivatives were designed as Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. The pyridopyridazinone scaffold was used as an isostere of the phthalazine nucleus of the lead compound Olaparib in addition to some modifications in the tail part of the molecule. Preliminary biological evaluation indicated that most compounds possessed inhibitory potencies comparable to Olaparib in nanomolar level. The best PARP-1 inhibitory activity was observed for compound 8a with (IC50 = 36 nM) compared to Olaparib as a reference drug (IC50 = 34 nM). Molecular modeling simulation revealed that, the designed compounds docked well into PARP-1 active site and their complexes are stabilized by three key hydrogen bond interactions with both Gly863 and Ser904 as well as other favorable π-π and hydrogen-π stacking interactions with Tyr907 and Tyr896, respectively. Computational ADME study predicted that the target compounds 8a and 8e have proper pharmacokinetic and drug-likeness properties. These outcomes afford a new structural framework for the design of novel inhibitors for PARP-1.  相似文献   

17.
Two series of peptidomimetics containing an N-hydroxyamino acid core structure were prepared by mixed solution solid-phase synthesis and tested for inhibitory activity against the human immunodeficiency virus (HIV-1) protease (Pr) and the virus in cell culture. In general, N-hydroxy Gly containing pseudopeptides displayed modest HIV Pr inhibition (IC50 > or = 930 nM). In the N-hydroxy Phe derivatives, Fmoc-Phe-psi[CO-N(OH)]-Phe-Pro-NHtBu was the best inhibitor of the series (IC50 = 144nM) showing satisfactory inhibition of HIV replication in cell culture (ED50 = 98 nM) and remarkable stability against cell culture and plasma enzymes.  相似文献   

18.
A non-methionine FT inhibitor lead structure (1) was designed through computer modeling of the peptidomimetic FT inhibitor ABT839. Optimization of this lead resulted in compounds 2e and 2g, with FT IC(50) values of 1.3 and 1.8 nM, GGT IC(50) of 1400 nM, and EC(50) (Ras processing) values of 13 and 11 nM, respectively.  相似文献   

19.
Structural analogues of Ilomastat (Galardin), containing unsaturation(s) and chain extension carrying bulky phenyl group or alkyl moieties at P'1 were synthesized and purified by centrifugal partition chromatography. They were analyzed for their inhibitory capacity towards MMP-1, MMP-2, MMP-3, MMP-9 and MMP-14, main endopeptidases involved in tumour progression. Presence of unsaturation(s) decreased the inhibitory potency of compounds but, in turn increased their selectivity for gelatinases. 2b and 2d derivatives with a phenyl group inhibited preferentially MMP-9 with IC50 equal to 45 and 38 nM, respectively, but also display activity against MMP-2 (IC50 equal to 280 and 120 nM, respectively). Molecular docking computations confirmed affinity of these substances for both gelatinases. With aims to obtain a specific gelatinase A (MMP-2) inhibitor, P'1 of Ilomastat was modified to carry one unsaturation coupled to an alkyl chain with pentylidene group. Docking studies indicated that MMP-2, but not MMP-9, could accommodate such substitution; indeed 2a proved to inhibit MMP-2 (IC50=123 nM), while displaying no inhibitory capacity towards MMP-9.  相似文献   

20.
A novel series of cyclobutenedione centered C(4)-alkyl substituted furanyl analogs was developed as potent CXCR2 and CXCR1 antagonists. Compound 16 exhibits potent inhibitory activities against IL-8 binding to the receptors (CXCR2 Ki=1 nM, IC(50)=1.3 nM; CXCR1 Ki=3 nM, IC(50)=7.3 nM), and demonstrates potent inhibition against both Gro-alpha and IL-8 induced hPMN migration (chemotaxis: CXCR2 IC(50)=0.5 nM, CXCR1 IC(50)=37 nM). In addition, 16 has shown good oral pharmacokinetic profiles in rat, mouse, monkey, and dog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号